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An O(N) Fast Multipole Hybrid Boundary Node Method
for 3D Elasticity

Q. Wang1, Y. Miao1,2, H.P. Zhu1 and C. Zhang3

Abstract: The Hybrid boundary node method (Hybrid BNM) is a boundary type
meshless method which based on the modified variational principle and the Moving
Least Squares (MLS) approximation. Like the boundary element method (BEM),
it has a dense and unsymmetrical system matrix and needs to be speeded up while
solving large scale problems. This paper combines the fast multipole method
(FMM) with Hybrid BNM for solving 3D elasticity problems. The formulations
of the fast multipole Hybrid boundary node method (FM-HBNM) which based on
spherical harmonic series are given. The computational cost is estimated and an
O(N) algorithm is obtained. The algorithm is implemented on a computer code
written in C++. Numerical results demonstrate the accuracy and efficiency of the
proposed technique.

Keywords: Hybrid boundary node method, Meshless method, Moving Least Squ-
ares approximation, Fast multipole method.

1 Introduction

In recent years, a new class of numerical methods, namely, the meshfree or mesh-
less methods have been proposed and developed to solve the partial differential
equations (PDEs). This is because the finite element method (FEM) or boundary
element method (BEM) has much difficulty in solving problems involving chang-
ing domains such as large deformation or crack propagation. Besides, it may be
arduous, time consuming and computationally expensive while meshing a 3D ob-
ject with complicated geometry by FEM or BEM.

Many kinds of meshless methods have been proposed so far. The element free
Galerkin method (EFG) [Belytschko, Lu and Gu (1994)] uses a global symmetric
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weak form and the shape function comes from the moving least-squares (MLS)
approximation [Belytschko, Krongauz, Organ, Fleming and Krysl (1996)]. In an
attempt to avoid generation of the background cells, the meshless local Petrov-
Galerkin (MLPG) approach [Atluri and Zhu (1998)] uses local form over local
sub-domains. The EFG and MLPG are domain type meshless methods. Base on
the idea of reducing the dimensionality of the problem like BEM, the boundary
integral equations (BIEs) are combined with the meshless technique and boundary
type meshless methods are developed, such as the boundary node method (BNM)
[Mukherjee and Mukherjee (1997), Chati, Mukherjee and Mukherjee (1999)], the
Galerkin boundary node method (GBNM) [Li and Zhu (2009)] and the boundary
face method (BFM) [Zhang, Qin, Han and Li (2009)].

By combining the MLS approximation scheme with the hybrid displacement vari-
ational formula, a new boundary type meshless method, called Hybrid boundary
node method (Hybrid BNM) [Zhang, Yao and Li (2002), Zhang, Tanaka and Mat-
sumoto (2004), Zhang and Yao (2001), Zhang and Yao (2003), Zhang and Yao
(2004)] is proposed. This method has been developed [Miao, Wang and Yu (2005),
Miao and Wang (2006)] and applied to elastodynamics problems [Miao, Wang,
Liao and Zheng (2009)], Helmholtz problems [Miao, Wang and Wang (2009)] and
multi-domain problems [Wang, Zheng, Miao and Lv (2011)]. The Hybrid BNM
not only reduces the spatial dimensions by one like BEM, but also does not require
any cells neither for interpolation of the solution variables nor for the boundary
integration. In fact, the Hybrid BNM requires only discrete nodes located on the
surface of the domain and its parametric representation. However, as the traditional
BEM, the Hybrid BNM has a dense and unsymmetrical system matrix, which re-
quires O(N2) memory and O(N3) operations if a direct solver is used, such as
Gaussian elimination method. The computational time of an iterative solver is still
O(M×N2), where M is the number of iterations, and the memory required is also
O(N2). Therefore, the Hybrid BNM must be speeded up while dealing with large
scale problems.

In the early 1980s several O(N) and O(N logN) algorithms were introduced in
N-body system for computing the interactions between the bodies, for which a
standard solution leads to a computational complexity of O(N2). These algorithms
were based on the expansion of potential field generated by N sources in multi-
polar or Taylor series and grouping far field influences. An oct-tree data struc-
ture [Barnes and Hut (1986)] is introduced to hierarchically subdivide the domain
into well-separated areas, which can interact via the truncated expansions. The al-
gorithm can reduce the computational complexity of the problem from O(N2) to
O(N logN). By expanding the kernel in terms of spherical harmonic series and
using the duality principle between the inner and outer expansions of harmonic
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functions, the concept of local expansion [Greengrad and Rokhlin (1987)] is intro-
duced to translate and sum the effects of multiple remote multipole expansions into
a single local value. This algorithm is known as the fast multipole method (FMM)
and can further reduce the complexity of the problem to O(N).
Because of the computational analogy between the interaction evaluation for the N-
body problem and the matrix-vector multiplication, the FMM are widely employed
to accelerate the solutions of PDEs through the BIEs in conjunction with iterative
solvers. An original work of the application of the FMM for integral equations for
two dimensional Laplace’s equations [Rokhlin (1985)] shows the efficiency of the
algorithm.

The implementation of FMM to accelerated BEM in 3D elasticity problems is in-
vestigated by many researchers and several O(N) algorithms based upon spher-
ical harmonic expansions are obtained. The original 3D elasticity fundamental
solution can be decomposed into five terms and each of them can be expanded in
terms of spherical harmonic series with their corresponding duality principle [Fu,
Klimkowski and Rodin (1998)]. Starting from the kernel expansion of the fun-
damental solution of the Laplacian, a new multipole expansion together with the
corresponding translations for the fundamental solution of linear elastostatics can
be obtained [Yoshida, Nishimura and Kobayashi (2001)]. An O(N) Taylor series
multipole boundary element method for three-dimensional elasticity problems is
presented [Popov and Power (2001)], in which an efficient clustering technique
and an additional Taylor series expansion around the collocation points are used to
further reduce the computational complexity to O(N).
In this paper the Hybrid BNM is combined with FMM for solving 3D elasticity
problems. The fast multipole boundary node method (FM-HBNM) for potential
problems [Zhang, Tanaka and Endo (2005)] has been employed to study the ther-
mal behavior of carbon nanotubes (CNT) composites [Zhang and Tanaka (2007b),
Zhang and Tanaka (2008)], which is a very complex problem and almost impossi-
ble to obtain a reasonable discretization for the geometry with FEM. An original
work of applying the FMM to accelerate Hybrid BNM for 3D elasticity problems
has been investigated by the author’s group [Wang, Miao and Zheng (2010)]. In this
paper, the main formulations of the FM-HBNM for 3D elasticity problems which
using the spherical harmonic series are given. The computational complexity is
estimated and an O(N) algorithm can be obtained.

This paper is organized as follows. The Hybrid BNM for 3D elasticity problems
is reviewed in the second section. This is followed by the detail of the formulae
of FM-HBNM for 3D elasticity problems. The procedures for the algorithm are
summarized and the computational cost estimation is given next. Finally, in the
fifth section, numerical results are given. The results show that the presented tech-
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nique can further reduce the computational complexity to O(N) while the accuracy
remains high.

2 Review of the Hybrid BNM

In this section, the Hybrid BNM for 3D elasticity problems[Zhang and Yao (2004),
Miao and Wang (2006)] is reviewed. The Hybrid BNM is based on a modified
variational principle. In 3D elasticity, the functions in the modified variational
principle that assumed to be independent are: displacements ũi and tractions t̃i on
the boundary and displacements ui inside the domain. Consider a domain Ω en-
closed by Γ = Γu +Γt with ūi and t̄i are the prescribed displacements and tractions,
respectively. The corresponding variational functional is defined as follows:

ΠHB=

∫
Ω

1
2

ui, jCi jkluk,ldΩ−
∫

Γ

t̃i(ui− ũi)dΓ−
∫

Γt

t̄iũidΓ (1)

where, the boundary displacements ũi satisfies the essential boundary condition,
i.e. ũi = ūi on Γu.

The displacements ũ and tractions t̃ at the boundary are approximated by the MLS
approximation as follows:

ũ(s) =
N

∑
J=1

ΦJ(s)ûJ (2)

t̃(s) =
N

∑
J=1

ΦJ(s)t̂J (3)

where N is the number of nodes for MLS approximation which located on the
surface; ûJ and t̂J are nodal values, and ΦJ(s) is the shape function of the MLS
approximation, corresponding to node sJ .

The u and t inside the domain can be approximated by fundamental solutions as

u =


u1
u2
u3

=
N

∑
J=1

 uJ
11 uJ

12 uJ
13

uJ
21 uJ

22 uJ
23

uJ
31 uJ

32 uJ
33


xJ

1
xJ

2
xJ

3

 (4)

t =


t1
t2
t3

=
N

∑
J=1

 tJ
11 tJ

12 tJ
13

tJ
21 tJ

22 tJ
23

tJ
31 tJ

32 tJ
33


xJ

1
xJ

2
xJ

3

 (5)

where uJ
i j = ui j(sJ,Q) and tJ

i j = ti j(sJ,Q) are the fundamental solutions; xJ
i are un-

known parameters. For 3D elasticity problems, the fundamental solutions are

uJ
i j =

−1
16πr(1− v)µ

{(3−4v)δi j− r,ir, j} (6)
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tJ
i j =

−1
8π(1− v)r2 {[(1−2v)δi j +3r,ir, j]

∂ r
∂n

+(1−2v)(r,in j− r, jni)} (7)

where r = r(sJ,Q) and Q is the field point while sJ is the source point.

As the modified variational principle holds both in the whole domain and any sub-
domain, the local sub-domain around each node can be taken into consideration. By
taking variations in Eq. 1 with respect to the independent variables, the following
set of equations, expressed in matrix form, are given as

Ux = Hû (8)

Tx = Ht̂ (9)

where

UIJ =
∫

ΓI

 uJ
11 uJ

12 uJ
13

uJ
21 uJ

22 uJ
23

uJ
31 uJ

32 uJ
33

hI(Q)dΓ (10)

TIJ =
∫

ΓI

 tJ
11 tJ

12 tJ
13

tJ
21 tJ

22 tJ
23

tJ
31 tJ

32 tJ
33

hI(Q)dΓ (11)

HIJ =
∫

ΓI

 ΦJ(s) 0 0
0 ΦJ(s) 0
0 0 ΦJ(s)

hI(Q)dΓ (12)

xT = [x1
1,x

1
2,x

1
3, ...,x

N
1 ,xN

2 ,xN
3 ] (13)

ûT = [û1
1, û

1
2, û

1
3, ..., û

N
1 , ûN

2 , ûN
3 ] (14)

t̂T = [t̂1
1 , t̂1

2 , t̂1
3 , ..., t̂N

1 , t̂N
2 , t̂N

3 ] (15)

where hI(Q) is a weight function, ΓI is a regularly shaped local region around node
sI in the parametric representation space of the boundary surface. Therefore, the
integrals in Eq. 10, Eq. 11 and Eq. 12 can be computed without using boundary
elements [Zhang and Yao (2004), Miao and Wang (2006)].

For a general problem, either ũi or t̃i are known at each node on the boundary and
by rearranging Eq. 8 and Eq. 9, a final algebraic equation in terms of x only can be
obtained as below:

Ax = d (16)
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For the node sI , if ũi is known, select the correspond row in U to A, otherwise,
select the correspond row in T to A, and the corresponding term of d comes from
the matrix-vector product of Hû or Ht̂. Then the unknown vector x is obtained
by solving the final algebraic equation. The nodal values û and t̂ on the boundary
can be computed by the back-substitution of x into Eq. 8 and Eq. 9, then use Eq. 2
and Eq. 3 the displacements and tractions on the boundary can be obtained. The
displacements and tractions at interior points can be evaluated by the traditional
boundary integral equations.

The coefficient matrix A is dense and nonsymmetrical. The solution of system
in Eq. 16 requires O(N2) memory and O(N3) CPU time to solve if using a direct
solver such as Gauss elimination. When use an iterative solver, the most time-
consuming part of computation will be the matrix-vector multiplications in each
iteration step and O(N2) CPU time will be required. This is why the conventional
Hybrid BNM is inefficient for large-scale problems, despite it is a boundary type
meshless method which is robust in the meshing stage.

3 The FM-HBNM

The fast multipole method can be employed to accelerate the Hybrid BNM for solv-
ing Eq. 16. The main idea of the FMM is to translate the node-to-node interactions
to cell-to-cell interactions, where the cells can be constructed by a hierarchical
oct-tree structure. Iterative solvers (such as GMRES [Saad and Schultz (1986)])
are used in the FMM, where matrix-vector multiplications are computed using fast
multipole expansions. Using the FMM for Hybrid BNM, the computational time
of a problem can be reduced to O(N).
In this section, the formulations of FM-HBNM are summarized. Consider the for-
mula below, it is the inner product between one row of the matrix A in Eq. 16 and an
iteration vector x′ corresponding to the solution vector x, which is given by either

N

∑
J=1

∫
ΓI

uJ
i jhI(Q)x′JidΓ(Q) (17)

or
N

∑
J=1

∫
ΓI

tJ
i jhI(Q)x′JidΓ(Q) (18)

The first formula is computed for convenience. Consider two cells Ca and Cb, which
contain Na nodes and Nb nodes, respectively. The computational cost of a standard
algorithm for the mutual interactions between the two groups is of order O(Na×
Nb) (see Fig. 1). In the cell-to-cell strategy, the computational cost is reduced to
O(Na +Nb) (see Fig. 2).
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Is

Js

bC

aC

Figure 1: Node-to-node interactions

bC

aC

Js

Is

Figure 2: Cell-to-cell interactions

3.1 Multipole moments

The fundamental solution in Eq. 6 can be rewritten as the following form:

uJ
i j = uJ

i j(sJ,Q) =
1

8πµ
(δi j

2
r(sJ,Q)

− λ + µ

λ +2µ

∂

∂Qi

∂

∂Q j
r(sJ,Q)) (19)
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Rewrite Eq. 19 as

uJ
i j(sJ,Q) =

1
8πµ

(δi j
2

r(sJ,Q)
− λ + µ

λ +2µ

∂

∂Q j

Qi− sJi

r(sJ,Q)
) (20)

Since the condition |O1sJ|< |O1Q| holds (see Fig. 3), the following identity holds:

r(sJ,Q) =
∞

∑
n=0

n

∑
m=−n

Sn,m(
−−→
O1Q)Rn,m(

−−→
O1sJ) (21)

Is

I

Q

Js

1O

aC

bC

2O

Figure 3: Interaction between two cells

By substituting Eq. 21 into Eq. 20, one can obtain

uJ
i j =

1
8πµ

∞

∑
n=0

n

∑
m=−n

(FS
i j,n,m(

−−→
O1Q)Rn,m(

−−→
O1sJ)+GS

j,n,m(
−−→
O1Q)(

−−→
O1sJ)iRn,m(

−−→
O1sJ))

(22)

where

FS
i j,n,m(

−→
Ox) =

λ +3µ

λ +2µ
δi jSn,m(

−→
Ox)− λ + µ

λ +2µ
(
−→
Ox)i

∂

∂x j
Sn,m(

−→
Ox) (23)

GS
j,n,m(
−→
Ox) =

λ + µ

λ +2µ

∂

∂x j
Sn,m(

−→
Ox) (24)
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Rn,m(
−→
Ox) =

1
(n+m)!

Pm
n (cosθ)eimφ rn (25)

Sn,m(
−→
Ox) = (n−m)!Pm

n (cosθ)eimφ 1
rn+1 (26)

(r,θ ,φ) are the polar coordinates of the point x, Pm
n is the associated Legendre

function and a superposed bar indicates the complex conjugate, respectively.

The solid harmonics Rn,m and Sn,m have the following properties:

Rn,−m(
−→
Ox) = (−1)mRn,m(

−→
Ox) (27)

Sn,−m(
−→
Ox) = (−1)mSn,m(

−→
Ox) (28)

Suppose that the boundary node sI belongs to cell Ca and node sJ is one of the Nb
nodes in cell Cb. Using Eq. 22, the sum in expression (17) for the nodes included
in Cb can be obtained as

Nb

∑
J=1

∫
ΓI

uJ
i jhI(Q)x′JidΓ(Q)

=
1

8πµ

∞

∑
n=0

n

∑
m=−n

(
∫

ΓI

FS
i j,n,m(

−−→
O1Q)hI(Q)dΓ(Q)M1

i,n,m(O1)

+
∫

ΓI

GS
j,n,m(
−−→
O1Q)hI(Q)dΓ(Q)M2

i,n,m(O1))

(29)

where M1
i,n,m(O1) and M2

i,n,m(O1) are multipole moments centered at O1 (the center
of Cb), expressed as

M1
i,n,m(O1) =

Nb

∑
J=1

Rn,m(
−−→
O1sJ)x′Ji (30)

M2
i,n,m(O1) =

Nb

∑
J=1

(
−−→
O1sJ)iRn,m(

−−→
O1sJ)x′Ji (31)

According to Eq. 27 and Eq. 28, the multipole moments have the following prop-
erties:

M1
i,n,−m(O1) = (−1)mM1

i,n,m(O1) (m≥ 0) (32)

M2
i,n,−m(O1) = (−1)mM2

i,n,m(O1) (m≥ 0) (33)
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Q

Js

1O

2O

2O

M
2M

M2L

L2L

M2M=Multipole to multipole translation

M2L=Multipole to local translation

M2L=Local to local translation

bC

p

bC

p

aC

aC

1O

Figure 4: Conversions of multipole to local expansions

3.2 Multipole to multipole (M2M) translations

Suppose Cb is obtained by a larger cell Cp
b (see Fig. 4), the multipole moments

about the center of Cb (O1 in Fig. 4) can be translated to the center of Cp
b (O′1 in

Fig. 4).

If
−→
Ox and

−→
Oy are two arbitrary vectors, then

Rn,m(−→yx) =
n

∑
n′=0

n′

∑
m′=−n′

Rn′,m′(
−→
yO)Rn−n′,m−m′(

−→
Ox) (34)

Using Eq. 34, one can obtain the following two equations from Eq. 30 and Eq. 31:

M1
i,n,m(O′1) =

n

∑
n′=0

n′

∑
m′=−n′

Rn′,m′(
−−−→
O′1O1)M1

i,n−n′,m−m′(O1) (35)

M2
i,n,m(O′1)=

n

∑
n′=0

n′

∑
m′=−n′

Rn′,m′(
−−−→
O′1O1)(M2

i,n−n′,m−m′(O1)−(
−−−→
O1O′1)iM1

i,n−n′,m−m′(O1))

(36)

Eq. 35 and Eq. 36 are called as multipole to multipole (M2M) translations.
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3.3 Multipole to local (M2L) translations

If
−→
Ox and

−→
Oy are two vectors such that |−→Oy|< |−→Ox|, then

Sn,m(−→yx) =
∞

∑
n′=0

n′

∑
m′=−n′

Rn′,m′(
−→
yO)Sn+n′,m+m′(

−→
Ox) (37)

Using Eq. 37, Eq. 29 can be rewritten as

Nb

∑
J=1

∫
ΓI

uJ
i jhI(Q)x′JidΓ(Q)

=
1

8πµ

∞

∑
n′=0

n′

∑
m′=−n′

∫
ΓI

FR
i j,n,m(

−−→
O2Q)hI(Q)dΓ(Q)L1

i,n′,m′(O2)

+
1

8πµ

∞

∑
n′=0

n′

∑
m′=−n′

∫
ΓI

GR
j,n,m(
−−→
O2Q)hI(Q)dΓ(Q)L2

i,n′,m′(O2)

(38)

where

L1
i,n′,m′(O2) =

∞

∑
n=0

n

∑
m=−n

(−1)n′Sn+n′,m+m′(
−−−→
O1O2)M1

i,n,m(O1) (39)

L2
i,n′,m′(O2) =

∞

∑
n=0

n

∑
m=−n

(−1)n′Sn+n′,m+m′(
−−−→
O1O2)(M2

i,n,m(O1)− (
−−−→
O1O2)iM1

i,n,m(O1))

(40)

Eq. 39 and Eq. 40 are known as the multipole to local (M2L) translations, which
translate the multipole moments about the center of Cb to the local moments about
the center of Ca (see Fig. 3).

Suppose Ca is obtained by a larger cell Cp
a (see Fig. 4). Assume that Cp

a and Cp
b are

still far away from each other, from Eq. 39 and Eq. 40 we can obtain

L1
i,n′,m′(O

′
2) =

∞

∑
n=0

n

∑
m=−n

(−1)n′Sn+n′,m+m′(
−−−→
O′1O′2)M

1
i,n,m(O′1) (41)

L2
i,n′,m′(O

′
2) =

∞

∑
n=0

n

∑
m=−n

(−1)n′Sn+n′,m+m′(
−−−→
O′1O′2)(M

2
i,n,m(O′1)− (

−−−→
O′1O′2)iM1

i,n,m(O′1))

(42)
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Eq. 41 and Eq. 42 translate the multipole moments about the center of Cp
b to the

local moments about the center of Cp
a (see Fig. 4). Also, the local expansions have

the following properties:

L1
i,n,−m(O′2) = (−1)mL1

i,n,m(O′2) (m≥ 0) (43)

L2
i,n,−m(O′2) = (−1)mL2

i,n,m(O′2) (m≥ 0) (44)

3.4 Local to local (L2L) translations

The center of the local moments will be shift from the center of Cp
a to Ca (see Fig. 4)

by the following equations, which can be obtained from Eq. 34, Eq. 38, Eq. 43 and
Eq. 44:

L1
i,n′,m′(O2) =

∞

∑
n=n′

n

∑
m=−n

Rn−n′,m−m′(
−−−→
O′2O2)L1

i,n,m(O′2) (45)

L2
i,n′,m′(O2) =

∞

∑
n=n′

n

∑
m=−n

Rn−n′,m−m′(
−−−→
O′2O2)(L2

i,n,m(O′2)− (
−−−→
O′2O2)iL1

i,n,m(O′2)) (46)

Eq. 45 and Eq. 46 are called as local to local (L2L) translations. Eq. 38 can be
rewritten as

Nb

∑
J=1

∫
ΓI

uJ
i jhI(Q)x′JidΓ(Q)

=
1

8πµ

∞

∑
n′=0

n′

∑
m′=−n′

A1
i j,n′,m′L

1
i,n′,m′(O2)+

1
8πµ

∞

∑
n′=0

n′

∑
m′=−n′

A2
j,n′,m′L

2
i,n′,m′(O2)

(47)

where

A1
i j,n′,m′ =

∫
ΓI

FR
i j,n′,m′(

−−→
O2Q)hI(Q)dΓ(Q) (48)

A2
j,n′,m′ =

∫
ΓI

GR
j,n′,m′(

−−→
O2Q)hI(Q)dΓ(Q) (49)

3.5 Expansions for expression (18)

The process for computing the expression (18) is exactly the same as the sum (17).
Using the relation between tJ

i j and uJ
i j:

tJ
i j(sJ,Q) =

∂

∂Ql
uJ

ik(sJ,Q)ckl p jnp(Q) (50)
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where

ckl p j = λδklδp j + µ(δkpδl j +δk jδl p) (51)

one can obtain exactly the same formulations about the multipole moments and
M2M, M2L and L2L translations, and Eq. 47 is replaced by

Nb

∑
J=1

∫
ΓI

tJ
i jhI(Q)x′JidΓ(Q)

=
1

8πµ

∞

∑
n′=0

n′

∑
m′=−n′

B1
i j,n′,m′L

1
i,n′,m′(O2)+

1
8πµ

∞

∑
n′=0

n′

∑
m′=−n′

B2
j,n′,m′L

2
i,n′,m′(O2)

(52)

where

B1
i j,n′,m′ =

∫
ΓI

∂

∂Ql
FR

ik,n′,m′(
−−→
O2Q)ckl p jnp(Q)hI(Q)dΓ(Q) (53)

B2
j,n′,m′ =

∫
ΓI

∂

∂Ql
GR

k,n′,m′(
−−→
O2Q)ckl p jnp(Q)hI(Q)dΓ(Q) (54)

In practical computations, the sum in the infinite series (35), (36), (41), (42), (45),
(46), (47) and (52) are truncated after p terms.

4 FM-HBNM algorithm and estimation of the computational cost

In this section, the detail of the procedures for the algorithm proposed is sum-
marized and the computational cost of the algorithm is estimated. The restarted
preconditioned GMRES is employed as the iterative equation solver. An adaptive
version of the FMM with a hierarchy of boxes which refine the computational do-
main is used.

4.1 FM-HBNM algorithm

The main procedures in the FM-HBNM are as follows:

Step 1: Discretization: For a given problem, create nodes which disturbed on the
boundary of the domain in the same manner as in the original Hybrid BNM.

Step 2: Construction of oct-tree structure: Consider a smallest cube that can contain
the entire domain needed to compute. Use it as the root cell (which is considered
as level 0). Then divide this root cell into eight equal smaller cubes, which can be
called as cells of level 1. Continue dividing in this way, that is, the cells of level
l + 1 is obtained from level l by subdividing of a cell into eight equal cells. The
eight cells at level l +1 obtained by subdivision of the box at level l are considered
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as its children. Stop the subdivision of a cell while the number of nodes included
in the cell is smaller than a prescribed number. Delete the child cell if it contains
no node. A childless cell we call it leaf. Two cells are said to be neighbors if they
are at the same level and share at least a vertex (a box is a neighbor of itself). Two
cells are said to be well separated if they are at the same level but not neighbors.
Each box b has an interaction list, whose members are the children of the neighbors
of b’s parent which are well separated from box b. An oct-tree data structure with
hierarchy of cells can be constructed by this procedure.

Step 3: Determination of matrixes associated with cells: Choose the desired multi-
pole expansion order p. With each box that l > 1, associate matrixes which describe
the multipole moments M1

i,n,m and M2
i,n,m about the box center. With each box that

l > 2, associate matrixes which describe the multipole moments L1
i,n,m and L2

i,n,m
about the box center. With each leaf associate matrices described A1

i j,n′,m′ , B1
i j,n′,m′ ,

A2
j,n′,m′ and B2

j,n′,m′ . Associate matrices UL and TL to the leaf described the near-field
coefficients of U and L which will be computed directly.

Step 4: Computational of the integral associated with leaves: For each leaf, com-
pute UL, TL, A1

i j,n′,m′ , A2
j,n′,m′ , B1

i j,n′,m′ and B2
j,n′,m′ by Eq. 10, Eq. 11, Eq. 48, Eq. 49,

Eq. 53 and Eq. 54, respectively.

Step 5: Computation of the multipole moments at leaves: For an iteration vector x′Ji
form multipole moments M1

i,n,m and M2
i,n,m about the center of each leaf from all the

nodes included in that leaf by Eq. 30 and Eq. 31.

Step 6: Translation of the multipole moments: Consider a non-leaf box of level l.
Compute multipole moments M1

i,n,m and M2
i,n,m about the center of each box at level

l by merging multipole moments from its children using Eq. 35 and Eq. 36 (M2M
in Fig. 4). This procedure is repeated for l ≥ 2 tracing the tree structure of boxes
obtained in step upward (decreasing l). Steps 5 and 6 are considered as upward
pass.

Step 7: Computation of the coefficients of the local expansions: Consider boxes
at level l from level 2 to the finest level. For each box a at level l, convert the
multipole moments M1

i,n,m and M2
i,n,m of each box b in the interaction list of box a

to the local expansion about the centre of box a, using Eq. 41 and Eq. 42 (M2L in
Fig. 4).

If l > 2, then shift the local expansion of a’s parent to itself, using Eq. 45 and Eq. 46
(L2L in Fig. 4).

Add these two local expansions together. Step 7 is considered as downward pass.

Step 8: Evaluation of the integral in sum (17) or (18): The contribution of the far
field is computed by Eq. 47 and Eq. 52 while the contribution of the near field de-
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duced by the nodes contained in the neighborhood of the leaf is computed directly.
Add the two parts.

Step 9: Update: Update the candidate vector and go back to step 5.

4.2 Estimation of the computational cost

The computational cost for Steps 5-8 are estimated since in FM-HBNM Steps 5-8
are iterated. When estimate the computational cost, we assume that the number of
total boundary nodes is N and the boundary nodes distributed uniformly, the max
number of boundary nodes in a leaf is M. The multipole expansions are truncated
after p terms. Then the number of leaves s is N/M, the depth of the oct-tree d is
log8 s.

Before the estimation, we have the following assumptions:

In Eq. 30 and Eq. 31, the computational time of Rn,m(
−−→
O1sJ)x′Ji and (

−−→
O1sJ)iRn,m(

−−→
O1sJ)x′Ji

are supposed as:

T
{

Rn,m(
−−→
O1sJ)x′Ji

}
= a1

T
{
(
−−→
O1sJ)iRn,m(

−−→
O1sJ)x′Ji

}
= a2

In Eq. 35 and Eq. 36:

T
{

Rn′,m′(
−−→
O′O)M1

i,n−n′,m−m′(O)
}

= a3

T
{

Rn′,m′(
−−→
O′O)(M2

i,n−n′,m−m′(O)− (
−−→
OO′)iM1

i,n−n′,m−m′(O))
}

= a4

In Eq. 41 and Eq. 42:

T
{
(−1)n′Sn+n′,m+m′(

−−−→
O1O2)M1

i,n,m(O1)
}

= a5

T
{
(−1)n′Sn+n′,m+m′(

−−−→
O1O2)(M2

i,n,m(O1)− (
−−−→
O1O2)iM1

i,n,m(O1))
}

= a6

In Eq. 45 and Eq. 46:

T
{

Rn−n′,m−m′(
−−−→
O2O3)L1

i,n,m(O2)
}

= a7

T
{

Rn−n′,m−m′(
−−−→
O2O3)(L2

i,n,m(O1)− (
−−−→
O2O3)iL1

i,n,m(O2))
}

= a8

In Eq. 47:

T
{

A1
i j,n′,m′L

1
i,n′,m′(O2)

}
= a9



16 Copyright © 2012 Tech Science Press CMC, vol.28, no.1, pp.1-25, 2012

T
{

A2
j,n′,m′L

2
i,n′,m′(O2)

}
= a10

In Eq. 17

T
{

ULi jx′Ji
}

= a11

where ULi j is one element of UL.

Now we can estimate the computational cost as follows:

Cost of Step 5:

In Step 5, the multipole moments at leaves are computed. The number of leaves
is s, the number of nodes in a leaf is M and the infinite expansions are truncated
after p. Notice that the multipole moments M1

i and M2
i have six components totally.

For every component, the number of multipole moments is (p + 1)2. Because of
the relations in Eq. 32 and Eq. 33, only (p + 1)(p + 2)/2 multipole moments are
stored and computed. Therefore the total computational time for computation of
multipole moments at leaves is:

T5 = 3Ms(p+1)(p+2)(a1 +a2)/2 = 3N(p2 +3p+2)(a1 +a2)/2

Cost of Step 6:

In Step 6, the multipole moments are translated upward. The number of M2M
translations via Eq. 35 and Eq. 36 at level l is 8l . The M2M translations are iterated
from l = d to l = 3 and the total number of M2M translations is

n6 =
d

∑
l=3

8l = 8(s−64)/7

For one multipole moment M1
i,n,m or M2

i,n,m, the computational time is (n+1)2a3 or
(n + 1)2a4, respectively. There are (p + 1)(p + 2)/2 multipole moments for every
component of M1

i or M2
i and the computational time for per M2M translation is:

T ′6 =
p

∑
n=0

3(n+1)3(a3 +a4) = 3(p4 +6p3 +13p2 +12p+4)(a3 +a4)/4

Therefore the cost for M2M translations is

T6 = n6T ′6 = 6(s−64)(p4 +6p3 +13p2 +12p+4)(a3 +a4)/7

Cost of Step 7:

In Step 7, the coefficients of the local expansions are computed by M2L translations
and L2L translations.
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The number of M2L translations via Eq. 41 and Eq. 42 at level l is 189×8l , where
189 is the max number of cells in the interaction list of one cell. The M2L trans-
lations are iterated from l = 2 to l = d and the total number of M2L translations
is

n7M =
d

∑
l=2

189×8l = 189×8(s−8)/7

For one multipole moment L1
i,n,m or L2

i,n,m, the computational time via Eq. 41 or
Eq. 42 is (p + 1)2a5 or (p + 1)2a6, respectively. Sine Eq. 43 and Eq. 44, there
are (p + 1)(p + 2)/2 multipole moments for every component of L1

i or L2
i and the

computational time for per M2L translation is:

T ′7M =
p

∑
n=0

3(n+1)(p+1)2(a5 +a6) = 3(p4 +5p3 +11p2 +7p+2)(a5 +a6)/2

The total computational time for M2L translations can be obtained as:

T7M = n7MT ′7M = 189×12(s−8)(p4 +5p3 +11p2 +7p+2)(a5 +a6)/7

The number of L2L translations via Eq. 45 and Eq. 46 at level l is 8l and they are
iterated from l = d to l = 3, then the total number of M2M translations is

n7L =
d

∑
l=3

8l = 8(s−64)/7

For one multipole moment L1
i,n,m or L2

i,n,m, the computational time via Eq. 45 or
Eq. 46 is ((p + 1)2− n2)a7 or ((p + 1)2− n2)a8, respectively. Sine Eq. 43 and
Eq. 44, there are (p + 1)(p + 2)/2 multipole moments for every component of L1

i
or L2

i and the computational time for per L2L translation is:

T ′7L =
p

∑
n=0

3((p+1)2−n2)(n+1)(a7 +a8)

= 3(p4 +20p3 +57p2 +40p+2)(a7 +a8)/4

The total computational time for L2L translations can be obtained as:

T7L = n7LT ′7L = 2(s−8)(3p4 +20p3 +57p2 +40p+2)(a7 +a8)/7

Cost of Step 8:

In Step 8, the integral in sum (17) or (18) are computed.
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The contribution of the far field is computed by Eq. 47 or Eq. 52, the number of
total nodes is N, then the total cost for Eq. 47 or Eq. 52 is:

T8F = 3N(p2 +3p+2)(a9 +a10)/2

The contribution of the near field is computed directly. The number of leaves is
N/M and the max number of neighbors of a leaf is 27. Therefore, the cost for direct
computation per leaf is 27M2a11×9 = 243M2a11 and the total computational time
for direct computation is

T8D = 243M2×N/Ma11 = 243MNa11

Hence the total computational time per iteration is

TTotal = T5 +T6 +T7M +T7L +T8F +T8D

One can indicate that the total computational complexity of FM-HBNM is nearly
O(N). Since a3 +a4 ≈ a5 +a6 ≈ a7 +a8 , the cost T7M ≈ 387T6 ≈ 387T7L and the
complexities of T6, T7M and T7L are O(N p4). This means that the M2L translation
is the bottleneck in the algorithm. In order to further reduce the cost of M2L, a
new diagonal form, which can further reduce the M2L cost to O(p3) is proposed
[Greengard and Rokhlin (1997)]. Other methods such as constructing new adaptive
tree structures [Cheng, Greengard and Rokhlin (1999), Shen and Liu (2007), Bapat
and Liu (2010), Zhang and Tanaka (2007a)] are also investigated to further reduce
the computational cost. Applying these methods in our algorithm is an important
subject of the future research.

5 Numerical results

The proposed techniques have been implemented in C++. For the purpose of error
estimation, a formula is defined as

e =
1
|u|max

√
1
N

N

∑
i=1

(u(e)
i −u(n)

i )2 (55)

where u(e)
i and u(n)

i refer to the exact and numerical solutions respectively and |u|max

is the maximum value of u over N nodes.

Three models shown in Fig. 5 are chosen to verify our method, which are geome-
tries of three iterations in creating the Menger Sponge. The Menger Sponge was
first described by Austrian mathematician Karl Menger. In mathematics, it is a
fractal curve. The Menger Sponge is constructed by dividing a unit cube into an
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array of 27 smaller cubes of side one third, then removing the central cube and
six cubes at the centre of each face. This procedure is repeated with each of the
20 remaining smaller cubes. At any point in the process, there will be 20n cubes
remaining where n is the number of iterations which have been carried out. The
Menger Sponge is the limit of this construction process as n tends to infinity. Fig. 5
shows three iterations in creating the Menger Sponge.

The Menger Sponge has topological dimension only 1, which means that in many
ways its behavior is much closer to that of curves and line drawings than to surfaces
or solid volumes. At the same time, the Menger Sponge in fact contains a distorted
copy of every other topologically 1-dimension set. It means that any curve, line,
diagram or graph can be distorted to fit in the sponge without self intersection and
mathematicians describe the Menger Sponge as a “universal curv”.

In the three models, the dimensions of the original cube are set to be 270 and the
coordinate systems are located at the centers of the models. The properties are given
by: Young’s modules E = 1.0 and Poisson’s ratio v = 0.25. Linear displacement
fields are prescribed on all the boundaries as:

ux =
2x+ y+ z

2
,uy =

x+2y+ z
2

,uz =
x+ y+2z

2
(56)

In the FM-HBNM, a restarted preconditioned GMRES(m) with m=25 is employed
as the preconditioner being the inverse of the blocked diagonal matrix correspond-
ing to the nodes in leaves. All the infinite expansions are truncated after p = 10 and
the maximum number of boundary nodes in a leaf box is set to be 60. The iteration
is terminated when the relative error is less than 10−5. All the computations are
performed on a PC with a 2.67 GHz CPU and 8.0 GB RAM.

(a) (b) (c)

Figure 5: Three models in creating the Menger Sponge

Tab. 1-3 show the time results of the three models in Fig. 5. The first, second



20 Copyright © 2012 Tech Science Press CMC, vol.28, no.1, pp.1-25, 2012

and third columns list the degrees of freedom (DOFs), number of levels used in
the multipole hierarchy, and number of iterations of GMRES, respectively. The
fourth, fifth and sixth columns indicate the time consumption of the upward pass,
downward pass in FM-HBNM and the total CPU time of FM-HBNM, respectively.
From Tab. 1-3 we can observe that the downward pass is the most time-consuming
procedure in FM-HBNM, which verifies the estimation of the computational time
in section 4. Figure 6 shows the CPU time per iteration of the FM-HBNM for the
models (a) and (b) (see Fig. 5). In Fig. 6 one can observe that the CPU time of
model (a) is less than model (b) while the DOFs are nearly equivalent. The main
reason consists in the M2L translation, which is the bottleneck of the algorithm and
the computational cost related with the number of cells in the interaction list. The
details of the analysis for the computational cost can be found in section 4. Fig. 7
shows the relative errors of ux for the model (a), which evaluated over 108 points
uniformly distributed along the lines x = y = 60, x = y = 110, x = y = 120 and
x = y = 130. The results demonstrate that the FM-HBNM is extremely effective
for large-scale computation and the computational complex is nearly O(N). It can
also be concluded that FM-HBNM overcomes the restriction of the memory.

Table 1: Time results for model (a)

DOFs Levels Iterations T-up T-down T-FMM

13 824 4 22 8 752 764
31 104 4 23 6 775 797
55 296 5 25 10 874 922
69 984 5 31 18 1 530 1 598
86 400 5 31 28 3 390 3 442

104 544 5 32 32 3 766 3 847
146 016 5 32 47 4 757 4 927
169 344 6 33 40 4 105 4 252
194 400 6 33 40 3 777 3 951
221 184 6 33 44 4 044 4 249
249 696 6 33 48 3 823 4 074
279 936 6 38 78 4 929 5 252
311 904 6 42 116 6 272 7 071

6 Conclusions

In this paper, an O(N) fast multipole algorithm based upon the spherical harmonic
series for 3D elasticity problems is proposed. Formulations for the FM-HBNM are
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Table 2: Time results for model (b)

DOFs Levels Iterations T-up T-down T-FMM

50 688 5 37 16 1 667 1 733
79 200 5 47 38 4 574 4 747

114 048 5 44 65 12 558 12 738
202 752 5 47 71 12 494 12 770
316 800 6 45 104 12 809 13 800
383 328 6 62 213 28 504 30 064
45 6192 6 52 210 29 324 30 901

Table 3: Time results for model (c)

DOFs Levels Iterations T-up T-down T-FMM

866 304 6 83 753 174 659 180 655
1 353 600 6 91 925 246 678 253 956

summarized and haven been implemented in a computer code written with C++.
The computational cost is estimated and we can indicate that the M2L translation is
most time-consuming in our algorithm. Numerical results show that the technique
is effective and the computational time is nearly linear per iteration.

The FM-HBNM introduced in this paper retains the advantages of both the mesh-
less method and the fast solver, which is especially applicable for large scale prob-
lems and problems with complicated geometries, such as porous materials, crack
problems and composite materials.

From the fourth section and numerical results, one can see that the M2L transla-
tion is the bottleneck in FM-HBNM and there are still rooms to further reduce the
computational time. Applying the new version of FMM and the new adaptive tree
structures to our algorithm may be good choices. These are subjects of our future
researches.
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