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A New Optimized Algorithm with Nonlinear Filter for
Ultra-Tightly Coupled Integrated Navigation System of

Land Vehicle
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Abstract: The extended particle filter (EPF) assisted by the Takagi-Sugeno (T-
S) fuzzy logic adaptive system (FLAS) is used to design the ultra-tightly coupled
GPS/INS (inertial navigation system) integrated navigation, which can maneuver
the vehicle environment and the GPS outages scenario. The traditional integrated
navigation designs adopt a loosely or tightly coupled architecture, for which the
GPS receiver may lose the lock due to the interference/jamming scenarios, high
dynamic environments, and the periods of partial GPS shading. An ultra-tight
GPS/INS architecture involves the integration of I (in-phase) and Q (quadrature)
components from the correlator of a GPS receiver with the INS data. The EPF
is a particle filter (PF) which uses the extended Kalman filter (EKF) to generate
the proposal distribution. The PF depends mostly on the number of particles in
order to achieve a better performance during the high dynamic environments and
GPS outages. The T-S FLAS is one of these approaches that can prevent the diver-
gence problem of the filter when the precise knowledge on the system models is not
available. The results show that the proposed fuzzy adaptive EPF (FAEPF) can ef-
fectively improve the navigation estimation accuracy and reduce the computational
load as compared with the EPF and the unscented Kalman filter (UKF).

Keywords: Ultra-tightly coupled, Fuzzy logic, Extended Kalman filter (EKF),
Unscented Kalman filter (UKF), Extended particle filter (EPF)

1 Introduction

Recently, some researchers are involved in the ultra-tightly coupled GPS/INS in-
tegrated navigation system due to the fact that the conventional passive integra-
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tion systems are highly susceptible to the signal interference and/or jamming dis-
tortions. There are various architectures for integrating the GPS with INS [Saly-
chev (1998)]. The traditional GPS/INS integration designs use a loosely or tightly
coupled architecture. The loosely coupled integration uses the GPS to derive the
position and the velocity as measurements. To prevent GPS outages, the loosely
coupled integration is a sub-optimal architecture (i.e., when using less than four
available satellites). A tightly coupled GPS/INS navigation filter blends the GPS
pseudorange, the inertial measurements and obtains the vehicle navigation solution
[Farrell and Barth (1999)]. The ultra-tightly coupled architecture combines the I
(in-phase) and Q (quadrature) correlator components in the receiver signal tracking
loops and the INS navigation filter function as a single integrated filter.

In the ultra-tightly coupled integration mode, the correlator variables I/Q and the
INS states formed the error states which are given as measurements to the inte-
gration filter [Yu, Wang and Ji (2010)]. The integration filter estimates the inertial
errors and bias offsets. The inherent property of this system is the integration of
INS derives Doppler feedback to the carrier tracking loops. Babu and Wang (2004)
mentioned the advantage of INS Doppler aiding removes the vehicle Doppler from
the GPS signal, which facilitates a significant reduction in the carrier tracking loop
bandwidth and periods of the partial GPS shading on a comparative scale the dy-
namics on the pseudorandom noise (PRN) code is slight due to its low frequency.
The bandwidth reduction improves the anti-jamming performance of the receiver,
and also increases the post correlated signal strength [Wang and Li (2011)]. In
addition, the accuracy of the raw measurements also increases due to the lower
bandwidths.

If the estimation is not accurate, it may cause the system instability and the loss of
lock. Thus, the design of navigation filter is one of the important tasks in the ultra-
tightly coupled GPS/INS integration. In the current integration scenarios, the ex-
tended Kalman filter (EKF) and the unscented Kalman filter (UKF) are employed to
implement the ultra-tight system [Babu and Wang (2009), Yuan and Zhang (2009)].
Theses Kalman filtering techniques suffer from the divergence during the GPS sig-
nal blockages due to approximations during linearization process and the system
miss-modeling [Noureldin, Karamat, Eberts and El-Shafie (2009)]. The EKF also
results in the high computational load owing to the Jacobian matrices evaluations,
i.e. from the linear approximations to the nonlinear functions [Julier, Uhlmann
and Durrant (2000)]. Moreover, these small error tolerances of EKF can cause
the inconsistency of the covariance update and lead to the filter instability or the
divergence [Lerro and Shalom (1995)].

To overcome shortcomings of EKF, the popular alternatives include the UKF [Julier,
Uhlmann and Durrant (1995)] and PF [Won, Melek and Golnaraghi (2010)]. The
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UKF approximates the Gaussian distribution by a set of deterministically selected
samples called the sigma points, which are propagated through the true non-linear
models to capture the true mean and the covariance of the transformed distribu-
tion. Nevertheless, when the non-linearity is highly prominent, both the EKF and
UKF assume the noise is Gaussian distribution, which is a poor approximation
to the posterior distribution [Doucet, Godsill and Andrieu (2000), Doucet, Freitas
and Gordon (2001)] for highly nonlinear systems. To tackle these problems, the
extended particle filter (EPF) was proposed to approximate the posterior distribu-
tion for highly nonlinear systems, which was a non-parametric filter and dealt with
nonlinear and/or non-Gaussian noises easily. The EKF is used to generate the pro-
posal distribution for acquiring a maximum a posteriori probability. Besides, the
important density function can approximate the true posterior density distribution.
The important proposal distribution integrates the latest observation into the sys-
tem state transition density so as to match the posteriori density properly. However,
the particle filter requires an impractically large number of particles to sample the
state space effectively; otherwise, it is easy to lose the track and inaccuracy when
estimating the weights because the sample depletion is in the state space.

To improve the above-mentioned problems, we propose the fuzzy adaptive EPF
with the T-S fuzzy logic adaptive system (FLAS) to cope with the low computation
load and the high accurate of estimations under the maneuvering environments and
periods of the partial GPS signal outages [Boucher and Noyer (2010)]. The un-
certainty of process noise and measurement noise will degrade the performance of
EPF. To deal with the noise uncertainty and the system nonlinearity simultaneously,
the fuzzy reasoning system is constructed of obtaining the suitable process noise
according to the time-varying change in dynamics. By monitoring the innovation
information, we use the FLAS to determine the process noise covariance according
to the innovation information so as to obtain the accurate estimation and tracking
capability. The results show that the fuzzy adaptive EPF scheme can remarkably
improve the accuracy of navigation estimation during GPS outages and the ma-
neuvering environments. In addition, it can successfully reduce the computational
cost.

This paper is organized as follows. In Section 2, the preliminary background of
the nonlinear filters is briefly reviewed and the basic concept of PF and EPF al-
gorithms are presented. The ultra-tightly coupled integrated navigation strategy is
introduced in Section 3. Section 4 describes the proposed fuzzy logic adaptive EPF
sensor fusion strategy. In Section 5, the numerical simulations and performance
evaluation are carried out, and comparing the performance of the proposed FAEPF
method with the relatively conventional EPF and UKF approaches. Some important
remarks from the present research are summarized in Section 6.
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2 The nonlinear filters

In the decades, the nonlinear filtering approach has been investigated the navigation
problem, but not as common as the EKF [e.g., Li, Wang, Rizos, Mumford and Ding
(2006), Crassidis (2006)]. The Kalman filtering has been recognized as one of the
most powerful state estimation techniques. The purpose of the Kalman filter is to
provide the estimation with minimum error variance. The extended Kalman filter is
a nonlinear version of the Kalman filter and is widely used to the navigation sensor
fusion.

By using the nonlinear stochastic difference equations of EKF, we can deal with
the case is as follows:

xk+1 = f(xk,wk), zk = h(xk,vk), (1)

where E [·] represents the expectation, and superscript “T” denotes the matrix trans-
pose. The state vector xk ∈ℜn, the process noise vector wk ∈ℜn, the measurement
vector zk ∈ ℜm, and the measurement noise vector vk ∈ ℜm. In Eq. (1), both the
vectors wk and vk are the zero mean Gaussian white sequences having the zero
cross correlation with each other:

E[wkwT
i ] =

{
Qk, i = k
0, i 6= k

, E[vkvT
i ] =

{
Rk, i = k
0, i 6= k

, E[wkvT
i ] = 0,

f or all i and k,

(2)

where Qk is the process noise covariance matrix, and Rk is the measurement noise
covariance matrix.

The EKF is the first of the approximate nonlinear filters, which linearizes the sys-
tem and measurement equations about a single sample point with the assumption
that the a priori distribution is Gaussian. The Kalman filter algorithm starts with
an initial condition value, the state vector x̄0 and the state covariance matrix P̄0.
When the new measurement zk becomes available with the progression of time,
the estimation of states and the corresponding error covariance would follow recur-
sively ad infinity. Further detailed discussion of EKF can be referred to [Brown and
Hwang (1997), Gelb (1997)].

2.1 The unscented Kalman filter

The UKF was first proposed by Julier, Uhlmann and Durrant (1995). Instead of
linearizing Jacobian matrices in the EKF and achieving first-order accuracy, the
UKF uses a deterministic sampling approach to capture the mean and covariance
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estimates with a minimal set of sample points (weighted samples). The state dis-
tribution of EKF is approximated by a Gaussian random variable (GRV), which is
then propagated analytically through the first-order linearization of the nonlinear
system.

The first step in the UKF is to sample the prior state distribution, i.e. to generate the
sigma points through the unscented transformation (UT) [Julier (2002), Julier and
Uhlmann (2002)]. By employing the UT method to calculate the statistics of a ran-
dom variable, and it needs a nonlinear transformation. However, using a probability
distribution is easier than to approximate an arbitrary nonlinear transformation. A
set of sigma points is deterministically chosen so as to capture the true mean and
covariance of the random variable. The samples are propagated through true non-
linear equations, and the model is not linearized. The UKF generates these sigma
points about the mean estimate. The UKF works on the principle that a set of dis-
cretely sampled sigma points can be used to parameterize the mean and covariance
of GRVs. Then, the posterior mean and covariance are propagated through the true
nonlinear function without the linearized steps. The UKF requires a little compu-
tational cost due to the deterministic sampling of sigma points as opposed to the
random particles of particle filter [Gordon, Ristic and Arulampalam (2004)]. The
flow chart of UKF approach is summarized:

1) The transformed set is given by instantiating each point through the process
model:

(ζ̄k)i = f ((X̄k)i). (3)

2) Predicted mean

x̄k =
2n

∑
i=0

W (m)
i (ζ̄k)i. (4)

3) Predicted covariance

P̄k =
2n

∑
i=0

W c
i [(ζ̄k)i− x̄k][(ζ̄k)i− x̄k]T +Qk. (5)

4) Instantiate each of the prediction points through observation model:

(Z̄k)i = h((ζ̄k)i). (6)

5) Predicted observation

z̄k =
2n

∑
i=0

W (m)
i (Z̄k)i. (7)
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6) Innovation covariance

Pyy =
2n

∑
i=0

W (c)
i [(Z̄k)i− z̄k][(Z̄k)i− z̄k]T +Rk. (8)

7) Cross covariance

Pxz =
2n

∑
i=0

W (c)
i [(ζ̄k)i− x̄k][(Z̄k)i− z̄k]T . (9)

8) Performing update using the nominal KF

Kk = PxzP−1
yy , (10)

x̂k = x̄k +Kk(zk− z̄k), (11)

Pk = P̄k−KkPyyKT
k . (12)

2.2 The generic particle filter

The sequential importance sampling (SIS) is one of the Monte Carlo methods,
which implements the Bayesian estimation by Monte Carlo simulation. The idea of
SIS uses the samples with weights to approximate the posterior p(Xk|Yk). When
the number of samples is infinite, the approximated approaches are the true poste-
rior density [Arulampalan, Maksell, Gordon and Clapp (2002)]. The key idea is to
represent the required posterior density function by a set of random samples with
the associated weights and to compute estimates on the basis of these samples and
weights.

Let {Xi
k, ω i

k}N
i=1 denote a random measure that characterizes the joint posterior

probability distribution function (pdf) p(Xk|Yk). Here {Xi
k, i = 1, ..., N} are the

particles with weights {ω i
k, i = 1, ...,N}. The weights are normalized such that

∑i ω i
k = 1. At k step, the posterior density can be approximated as

p(Xk|Yk)≈
N

∑
i=1

ω
i
kδ (Xk−Xi

k), (13)

where

ω
i
k ∝ ω

i
k−1

p(yk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1,yk)
, (14)
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where p(yk|xi
k) is the likelihood function of the measurements yk, p(xi

k|xi
k−1) is the

prior, and q(xi
k|xi

k−1,yk) is the importance density. To normalize Eq. (14), we can
obtain

ω
i
k =

ω i
k

∑ω i
k
, (15)

and the estimation of the posterior can be represented by:

p(xk|Yk)≈
N

∑
i=1

ω
i
kδ (xk−xi

k), (16)

when N→ ∞ it can approximate the true probability density p(Xk|Yk).
Besides, a good proposal distribution is essential to the efficiency of importance
sampling. From Eqs. (13) and (14), it is shown that the particle filter consists of
the recursive propagation of weights and the support points when each measure-
ment is received sequentially. However, the generic particle filter has a problem of
the degeneracy phenomenon. The degeneracy problem may reduce accuracy of the
estimation. To avoid the degeneracy phenomenon of particles, one of the accurate
methods is to add the number of samples (or particles). Nevertheless, if the par-
ticle filter adds too many particles in the filter, a large computational burden will
be devoted. Therefore, the resampling is a better method to reduce the degener-
acy of algorithm. As for the resampling scheme, there are many selections such
as the sampling importance resampling (SIR), the residual resampling and the sys-
tematic resampling. In this paper, the systematic resampling is used in all of the
experiments. The corresponding pseudocode is displayed in Fig. 1.

2.3 The extended particle filter

The importance density function is used in the SIS and SIR schemes, in which
the transition prior does not consider the most recent measurement data yk. Con-
sequently, the deficiency may arise in the particle filters, especially when there
is slight overlap between the importance density function and the posterior pdf
p(Xk|Yk), and the estimation result is poor. To avoid this problem that may arise
from using the transition prior as the importance density function, the filter needs
to incorporate the latest measurement data into it. In the structure of SIR, one adds
EKF algorithm into the SIR filter [Aggarwal, Gu and El-Sheimy (2007), Carpenter,
Fearnhead and Clifford (1999)]. The importance weights of particles will be up-
dated through the resampling. In this framework, each particle is generated by the
EKF, which is employed to generate and propagate the importance density func-
tion. Moreover, the EKF is utilize to the proposal distribution generation within
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Figure 1: The pseudocode for the systematic resampling.

a particle filter framework, which is called the extended particle filter (EPF). The
algorithm of EPF is summarized in Fig. 2.

3 The ultra-tight GPS/INS integrated system

The ultra-tightly coupled GPS/INS integration strategy is shown in Fig. 3. The
quadrature signals from the receiver correlator, in-phase (I) and quadrature (Q)
components form the measurements of the filters. These I and Q measurements
from channels { 1, 2, ... N} are integrated with the position, velocity and attitude
of the INS in a complementary filter.

The received satellite signal can be presented as

y(t) = A ·CA(t) ·D(t) cos(2π f0 (t− τ)+θ0)+η , (17)

where A is the signal amplitude, CA(t) is the C/A code sequence, D(t) is the naviga-
tion data, τ is the propagation delay between the satellite and the receiver, f0 is the
carrer frequency, θ0 is the initial carrer phase, and η is the Gaussian noise. Ignoring
the atmospheric and oscillator effects, the propagation delay τ can be expanded as
follows:

τ =
|Ps(ts)−Pr(tr)|

c
, (18)
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Figure 2: The procedure of extended particle filter algorithm.

where Ps(ts) is the satellite position at transmit time, Pr(tr) is the receiver position
at receive time, tr = ts + τ, and c is the velocity of light. Considering the motion of
both the satellite and the receiver, the numerator Eq. (18) can be expanded through
the Taylor’s series:

|Ps(ts)−Pr(tr)| ≈ |Ps(t0− τ)−Pr(t0)|+
d
dt
|Ps(t0− τ)−Pr(t0)|(t− t0), (19)

where t0 is the time at a reference point.
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Figure 3: Illustration of the in-phase (I) and quadrature (Q) components as the
measurements of the ultra-tightly coupled GPS/INS integration.

Substituting Eqs. (18) and (19) into Eq. (17), yields

y(t) = A ·CA(t) ·D(t) cos(2π f t +θ)+η , (20)

where

PL = |Ps(t0− τ)−Pr(t0)| , (21)

VL =
d
dt
|Ps(t0− τ)−Pr(t0)| , (22)
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f = f0−
VL f0

c
, (23)

θ = θ0 +
2π f0t0VL

c
− 2π f0

c
PL. (24)

The I and Q components of a satellite signal through the correlation can be written
as

I =
∫ (k+1)T

kT
{cos(ω̂t + θ̂)[Acos(ωt +θ)+η0]}dt

=
A

2ωe
{sin(ωe(k +1)t +θe)− sin(ωekt +θe)}+ηI ,

(25)

Q =
∫ (k+1)T

kT
{sin(ω̂t + θ̂)[Acos(ωt +θ)+η0]}dt

=
−A
2ωe
{cos(ωe(k +1)t +θe)− sin(ωekt +θe)}+ηQ,

(26)

where ωe = ω̂ −ω = 2π( f̂ − f ) is the frequency error tracked by the FLL, θe =
θ̂−θ is the phase error tracked by the PLL, k is the measurement epoch, T is the in-
tegration interval, and ηI and ηQ are the noise components. These error parameters
fe and θe are described in terms of the position and velocity as

fe =
f0

c
|V̂L−VL|, (27)

θe =
2π f0

c
(|V̂L−VL|t−|P̂L−PL|), (28)

where PL and VL are the measured position and velocity of the receiver, respec-
tively, and the P̂L and V̂L are the receiver estimates of the position and velocity,
respectively.

4 The proposed fuzzy adaptive extended particle filter strategy

The process model of the extended particle filter is dependent on the dynamical
characteristics of vehicle. It is well-known that poorly designed mathematical
model for the EPF may lead to the divergence. The FLAS can be used to adapt the
gain and prevent the particle filter from the divergence. In addition, the FLAS is
employed to make the necessary trade-off between the accuracy and computational
burden due to the increased dimension of the state vector and associated matrices.

In this paper, a Takagi-Sugeno (T-S) fuzzy logic system is used to detect the diver-
gence of EPF and adapt the filter. The T-S fuzzy system represents the conclusion
by functions.
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A typical rule in the T-S model has the form:

IF Input x1 is F1
1 and Input x2 is F1

2 . . . and Input xn is F1
n

THEN Output yk = fk(x1,x2, . . . ,xn) = Ck0 +Ck1x1 + · · ·+Cknxn,

where Cki(i = 0 ∼ n) are constants in the k-th rule. For the first-order model, we
have the rule in the form:

IF Input x1 is F1
1 and Input x2 is F1

2

THEN Output yk = C10 +C11x1 +C12x2,

where F1
1 and F1

2 are fuzzy sets and C10, C11 and C12 are constants. For a zero-order
model, the output level is a constant:

IF Input x1 is F1
1 and Input x2 is F1

2 THEN Output yk = C10.

The output is the weighted average of theyk:

y =
M

∑
k=1

wk.yk, (29)

where the weights wk are computed as below:

wk =

n
∏
i=1

µFk
i
(xi)

M
∑
j=1

[
n
∏
i=1

µF j
i
(xi)
] . (30)

The FLAS mechanism can be incorporated with determining the process noise co-
variance, leading to the proposed fuzzy adaptive extended particle filter (FAEPF).
The FAEPF is composed of the FLAS and the EPF. Characteristics of the FLAS
depend on the fuzzy rules and the effectiveness of rules directly influences its per-
formance. The defuzzification is used to provide the deterministic value of a mem-
bership function for the output. Using the fuzzy logic to infer the consequent of a
set of fuzzy production rules, it invariably leads to the fuzzy output subsets. The
fuzzy modeling method describes characteristics of a system by utilizing the fuzzy
inference rules.

The degree of divergence (DOD) parameters identifies the degree of change in vehi-
cle dynamics and needs to be defined [Tseng and Jwo (2009), Jwo and Lai (2009)].
In this study, we present that an adaptive approach is given as follows. The innova-
tion information at the present epoch is employed to timely reflect the change in the
vehicle dynamics. The DOD parameter ξ can be defined as the trace of innovation
covariance matrix at present epoch (i.e., the window size is one) and divided into
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the number of satellites as follows:

ξ =
1
m

m

∑
i=1

υυυ iυυυ
T
i , (31)

where υυυk = [υ1 υ2...υm]T , m is the number of measurements (number of signals
from the receiver correlator, in-phase and quadrature). Furthermore, the averaged
magnitude of innovation can also be used at the present epoch:

ζ =
1
m

m

∑
i=1
|υi|. (32)

In the FLAS, the DOD parameters are employed to the inputs for the fuzzy infer-
ence engines. By monitoring the DOD parameters, we use the FLAS to on-line
determine the process noise covariance of EPF according to the innovation infor-
mation, and accordingly improve the performance in terms of tracking capability
and the estimation accuracy. Besides, by using the adaptive adjustment of pro-
cess noise covariance to ensure a rapid parameter convergence and to reduce the
computational load of PF.

5 Numerical simulations and performance evaluation

The proposed fuzzy adaptive EPF scheme, UKF and EPF are carried out in the
ultra-tightly coupled integrated navigation system processing. Fig. 4 shows the
configuration of the ultra-tight integration processing on the basis of the FLAS-
coupled EPF filtering mechanism. The simulation was conducted by a personal
computer with Intel(R) 2 Dual CPU T7250 (2GHz). The commercial software
Satellite Navigation (SATNAV) Toolbox with GPSoft LLC was employed to gener-
ate the satellite positions and pseudoranges. For the simulation of GPS, we consider
the ionospheric delay, the tropospheric delay, the receiver noise and the multipath.
The GPS signals for nine different satellites with PRN codes 3, 4, 6, 7, 9, 16, 18,
19, 21 were generated.

Using the differential equations, we can describe the two-dimensional inertial nav-
igation state is as follows:

ṅ
ė
v̇n

v̇e

ψ̇

=


vn

ve

an

ae

ωr

=


vn

ve

cos(ψ)au− sin(ψ)av

sin(ψ)au + cos(ψ)av

ωr

 , (33)
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Figure 4: The configuration of the ultra-tight integration processing based on the
FLAS-coupled EPF filtering mechanism.
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Figure 5: Illustration of the two-dimensional inertial navigation.

where [au,av] are the measured acceleration in the body frame, and ωr is the mea-
sured yaw rate in the body frame as shown in Fig. 5. The error model of INS is
augmented by some sensor error states such as accelerometer biases and gyroscope
drifts. In fact, there are several random errors associated with each inertial sensor.
It is difficult to set a certain stochastic model for each inertial sensor that works
efficiently at all environments and reflects the long-term behavior of sensor errors.
By linearizing Eq. (33), we can acquire the following equation:

d
dt



δn
δe
δvn

δve

δψ

δau

δav

δωr


=



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −ae cos(ψ) −sin(ψ) 0
0 0 0 0 −an sin(ψ) cos(ψ) 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





δn
δe
δvn

δve

δψ

δau

δav

δωr


+



0
0

uacc

uacc

ugyro

ub
acc

ub
acc

ub
gyro


,

(34)

which will be utilized in the integration navigation filter as the inertial error model.
In Eq. (34), δn and δe represent the east and north position errors, respectively,
δvn and δve denote the east and north velocity errors respectively, δψ indicate yaw
angle, and δau, δav and δωrmean the accelerometer biases and gyroscope drift,
respectively.

The measurement Jacobian matrix for the ultra-tightly coupled architecture is writ-
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ten as

Hk =



h1
iy h1

ix h1
iẏ h1

iẋ 0 0 0 0
h1

qy h1
qx h1

qẏ h1
qẋ 0 0 0 0

...
...

...
...

...

hn
iy hn

ix hn
iẏ hn

iẋ 0
...

hn
qy hn

qx hn
qẏ hn

qẋ 0
0 0 1 0 0

0 0 0 1 0
...

0 0 0 0 1 0 0 0


, (35)

where the matrix elements are

h1
ix =

1
2

[
∂E[I]
∂θe

∂θe

∂x
+

∂E[I]
∂we

∂we

∂x

]
,h1

iẋ =
1
2

[
∂E[I]
∂θe

∂θe

∂ ẋ
+

∂E[I]
∂we

∂we

∂ ẋ

]
, (36)

h1
qy =

1
2

[
∂E[Q]

∂θe

∂θe

∂y
+

∂E[Q]
∂we

∂we

∂y

]
,h1

qẏ =
1
2

[
∂E[Q]

∂θe

∂θe

∂ ẏ
+

∂E[Q]
∂we

∂we

∂ ẏ

]
, (37)

where h1
ix is the vector that represents the east position with the I measurement

tracked in channel 1, h1
iẋ indicates the east velocity, h1

qy is the vector that denotes
the north position with the Q measurement tracked in channel 1, h1

qẏ means the
north velocity, and n is the number of the tracked satellites.

The membership functions (MFs) of input fuzzy variable DOD parameters as shown
in Fig. 6, which mean the triangle MFs. In this paper, the presented FLAS is the
If-Then form and consists of nine rules:

1. IF ξ is zero and ζ is zero THEN s is 1,

2. IF ξ is zero and ζ is small THEN s is 1,

3. IF ξ is zero and ζ is large THEN s is 1,

4. IF ξ is small and ζ is zero THEN s is 2ξ +2ζ +4,

5. IF ξ is small and ζ is small THEN s is 2ξ +2ζ +4,

6. IF ξ is small and ζ is large THEN s is 6ξ +6ζ +12,

7. IF ξ is large and ζ is zero THEN s is 6ξ +6ζ +12,

8. IF ξ is large and ζ is small THEN s is 6ξ +6ζ +12,
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Figure 6: Membership functions of input fuzzy variables ξ (top) and ζ (bottom).

9. IF ξ is large and ζ is large THEN s is 6ξ +6ζ +12,

where s denotes the scale factor of the process noise covariance matrix in the EKF.
To investigate the influence of high dynamic environments and GPS outages on the
ultra-tight GPS/INS integration system performance, we present these two different
experiments in the high dynamic environments and GPS signal blockages scenar-
ios. First, the high-dynamic maneuvers can be described the motion dynamics of
vehicle approximately. Second, investigating the performance during the period
of GPS outage, we assume that the signal is blocked out during the time interval
701∼1000 seconds.

5.1 Effect of the high dynamic environments on filters estimation

The experiment shows a simulated vehicle trajectory originating from the (0,0)
m location in the ENU coordinate frame. The trajectories of the simulated vehi-
cle (solid) and the unaided INS derived position (dashed) are shown in Fig. 7.
The simulated sensor outputs for the accelerometers and gyroscope are shown as
in Fig. 8. According to the dynamic characteristics, the vehicle is simulated to
conduct constant-velocity (CV) straight-line during seven time intervals, 0-300,
501-600, 701-1000, 1101-1400, 1501-1600, 1701-1800 and 1901-2000s, all at
a speed of 10π m/s. Furthermore, the higher dynamic maneuvering conducted
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Start Point 
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Figure 7: Trajectory of the high dynamic environments scenarios for the simulated
vehicle (solid) and the INS derived position (dashed).

Figure 8: Simulated sensor outputs for the accelerometers and gyroscope. (From
Fig. 7 trajectory data output)
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counter-clockwise and clockwise circular/turn motion during 301-500, 601-700,
1001-1100, 1401-1500, 1601-1700 and 1801-1900s. The description of vehicle
motion is listed in Table 1. The standard deviations of inertial sensors are 9×10-4

m/s2 for accelerometers and gyroscopes, respectively.

Table 1: Description of the vehicle motion. (For the high dynamic environments
scenarios)

Time interval (sec) Motion
[0-300]
[301-500]
[501-600]
[601-700]
[701-1000]
[1001-1100]
[1101-1400]
[1401-1500]
[1501-1600]
[1601-1700]
[1701-1800]
[1801-1900]
[1901-2000]

Constant velocity straight line
Circular motion
Constant velocity straight line
Counter-clockwise turn
Constant velocity straight line
Counter-clockwise turn
Constant velocity straight line
Counter-clockwise turn
Constant velocity straight line
Clockwise turn
Constant velocity straight line
Clockwise turn
Constant velocity straight line

By using the UKF, EPF and FAEPF approaches, Figs. 9 to 11 show the naviga-
tion results for maneuvering vehicle under the high dynamic environments. Fig.
12 provides comparison of east and north position root mean squared errors via
these three approaches: The UKF, EPF and FAEPF. Comparing the FAEPF with
EPF, we find the FAEPF with only uses 50 particles performs better than the EPF
with 100 particles. From these numerical results, several time intervals of the vehi-
cle are maneuvering. Since the EPF can generate an approximate true probability
density estimate of the system, the proposal distribution of EPF is closer to the
true posterior distribution than the UKF. However, it requires a large number of
particles to sample the high dimensional state space effectively, and increases the
computational load.

The proposed fuzzy adaptive EPF has a good capability to detect the change in ve-
hicle dynamics quickly and adjust the process noise covariance by monitoring the
DOD parameters. The FLAS is able to on-line determine the process noise covari-
ance of EPF, and prevents the divergence, and obtains the high navigation accuracy.
Therefore, the FAEPF can successfully reduce the computational load, which does
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Figure 9: Comparison of the navigation accuracy for UKF and EPF in high dynamic
environments.
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Figure 10: Comparison of the navigation accuracy for EPF and FAEPF in high
dynamic environments.
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Figure 11: Comparison of the navigation accuracy for UKF, EPF and FAEPF in
high dynamic environments. (FAEPF approach is the black line; EPF approach is
the green line; UKF approach is the blue line)
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Figure 12: Comparison of east and north position RMS errors via UKF, EPF and
FAEPF approaches for the high dynamic environments scenarios.
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Figure 13: Trajectory for the simulated vehicle (solid) and the INS derived position
(dashed), where GPS outages occur during 701 1000s.
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Figure 14: Simulated sensor outputs for the accelerometers and gyroscope. (From
Fig. 13 trajectory data output)

not need an impractically large number of particles to sample the posterior density
function.

Table 2: Description of the vehicle motion. (For the GPS outages scenarios)

Time interval (sec) Motion
[0-100] Constant velocity straight line
[101-300]
[301-400]
[401-500]
[501-550]
[551-700]

Circular motion
Constant velocity straight line
Clockwise turn
Constant velocity straight line
Counter-clockwise turn

[701-850]
[851-1000]
[1001-1050]
[1051-1200]

Clockwise turn
Constant velocity straight line
Clockwise turn
Constant velocity straight line
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Figure 15: Comparison of positioning errors for UKF and EPF for GPS outages
during 701∼1000 seconds.
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Figure 16: Comparison of positioning errors for EPF and FAEPF for GPS outages
during 701∼1000 seconds.
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 701~1000 seconds. 
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Figure 17: Comparison of positioning errors for UKF, EPF and FAEPF for GPS
outages during 701∼1000 seconds. (FAEPF approach is the black line; EPF ap-
proach is the green line; UKF approach is the blue line)
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5.2 Navigation performance during the GPS outages

Figs. 15-17 show the effect of vehicle dynamics with the navigation error estima-
tion in several nonlinear filters during the GPS outages. Trajectories of the simu-
lated vehicle (solid) and the unaided INS derived position (dashed) are shown in
Fig. 13. The simulated sensor outputs for the accelerometers and gyroscope are
shown as in Fig. 14. Moreover, the description of vehicle motion is listed in Table
1. The simulated GPS signal blockages occur from 701s to 1000s. In this time inter-
val, the vehicle also experiences two dynamic categories (i.e., clockwise turn during
701-850s and constant velocity straight line motion during 851-1000s). From the
above simulation, comparing Figs. 15 and 16 with three different nonlinear filters
under the vary scenario. During these periods (300 seconds), the navigation filter
only uses the inertial sensors measurement to correct the trajectory of vehicle since
the navigation data are disconnected. Note that the positioning errors of the EPF
and FAEPF are reduced remarkably. Besides, these two filters can improve the fast
acquisition, track the signal in the ultra-tightly coupled integration, and maintain
the navigation estimation accuracy as compared with the UKF approaches. How-
ever, the above mention discussion that the proposed FAEPF employs the FLAS to
automatically adjust the process noise covariance while the FLAS timely detects
the increase of DOD parameter. As a result, the proposed FAEPF approach on the
basic of the GPS signal blockage is effective to reduce the divergence errors in the
navigation processing and to decrease the computational load. Fig. 18 provides the
comparison of east and north position errors via all these three different approaches:
The UKF, EPF and FAEPF.

6 Conclusions

This paper proposed a fuzzy adaptive extended particle filter for the ultra-tight
GPS/INS navigation processing to prevent the divergence problem in the high dy-
namic environments and periods of the partial GPS shading. The extended particle
filter has good potential for the ultra-tightly coupled GPS/INS integrated naviga-
tion system. Unlike the relatively traditional designs adopt the loosely or tightly
coupled integration architectures, the ultra-tight GPS/INS architecture involving
the fusion of I (in-phase)and Q (quadrature) variables from the correlator of a GPS
receiver with the INS. The EPF can efficiently deal with the non-linear and/or non-
Gaussian problem, where the EKF is used to generate the proposal distribution and
leads to the remarkable accurate estimation. However, it requires an impractically
large number of particles to sample the state space effectively, and costs a lot of the
computational load.

In this study, the fuzzy logic system is employed to improve the EPF performance.
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Figure 18: Comparison of east and north position RMS errors via UKF, EPF and
FAEPF approaches for the GPS outages scenarios.

The FLAS is incorporated into the EPF and the fuzzy logic as a mechanism, which
detects the dynamical changes and implements the on-line determination of process
noise covariance. By monitoring the innovative information, we can obtain the
good performance. Comparing the performance of UKF and EPF, the proposed
FAEPF approach demonstrates very accurate results and low computational load
under the high dynamic environments during the GPS outages.
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