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H-Adaptive Local Radial Basis Function Collocation
Meshless Method
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Abstract: This paper introduces an effective H-adaptive upgrade to solution of
the transport phenomena by the novel Local Radial Basis Function Collocation
Method (LRBFCM). The transport variable is represented on overlapping 5-noded
influence-domains through collocation by using multiquadrics Radial Basis Func-
tions (RBF). The involved first and second derivatives of the variable are cal-
culated from the respective derivatives of the RBFs. The transport equation is
solved through explicit time stepping. The H-adaptive upgrade includes refine-
ment/derefinement of one to four nodes to/from the vicinity of the reference node.
The number of the nodes added or removed depends on the topology of the ref-
erence node vicinity. The refinement/derefinement is triggered by an error indica-
tor, which very simply depends on the ratio between the norm of the collocation
coefficients and collocation matrix. The refinement/derefinement is proportional
with the growth/decay of this indicator. Such adaptivity much increases the accu-
racy/performance ratio of the method. The performance of the method is numeri-
cally tested on two-dimensional Burger’s equation. The results are compared with
different numerical solutions, published in literature. Outstanding CPU efficiency
and accuracy are clearly demonstrated from the results. The paper probably for the
first time shows such a simple and effective H-adaptive meshless method, designed
on five noded influence domain. The advantages of the represented meshless ap-
proach are its simplicity, accuracy, similar coding in 2D and 3D, straightforward
applicability in non-uniform node arrangements, and native parallel implementa-
tion.
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1 Introduction

Meshless methods for solving continuum mechanics [Liu and Gu, (2001); Atluri,
(2004); Fasshauer, (2006)] and cellular automata based [Lorbiecka and Šarler,
(2010)] physical models represent one of the most progressing research discipline,
positioned between applied mathematics and computational engineering. A cen-
tral point of any meshless (or sometimes also named meshfree or mesh reduction)
method represents multivariate scattered data fitting and afterwards calculation of
derivatives or integrals based on it. The numerical methods, designed on these prin-
ciples can easily and in an ordered way handle different dimensions, irregular and
moving boundaries, by avoiding any additional geometrical constructions (mesh)
between the nodal nodes. There exists a large spectrum of meshless methods, de-
pending on the type of multivariate data fitting and formulation design. The multi-
variate data fitting can be made by polynomials, radial basis functions, etc, and the
formulation can originate from the strong, weak and weak-strong formulation. The
weak forms are usually more stable on the expense of the background mesh for per-
forming the integration of the shape and weight functions forms. Typical examples
of the weak forms are Element free Galerkin method, Meshless Petrov-Galerkin
method [Atluri and Shen, (2002); Atluri, (2004); Trobec, Sterk and Robic, (2009)],
typical examples of the strong forms are SPH [Monaghan, (1988)], DAM [Prax,
Sadat and Salagnac, (1996)] and Kansa method [Kansa, (1990a); Kansa, (1990b)],
and a typical example of weak-strong forms is [Liu, Wu and Ding, (2004)].

The present work is focused on one of the simplest classes of meshless methods
in development today, the Local Point Interpolation [Wang and Liu, (2002)] Radial
Basis Function [Buhmann, (2000)] Collocation Method (RBFCM) [Šarler, (2007)].
This method is additionally generalized and upgraded in order to be able to ap-
ply it in the adaptive node distribution sense. The original, global version of the
RBF collocation method, has been applied in different scientific and engineering
problems from heat transport [Zerroukat, Power and Chen, (1998)] and convec-
tive diffusive problems [Šarler, Perko and Chen, (2004)] to the fluid flow problems
[Šarler, Perko, Chen and Kuhn, (2001); Divo and Kassab, (2007)], phase change
phenomena [Kovačevič, Poredoš and Šarler, (2003)], wave equations [Haq, ul-
Islam and Arshed, (2008)] and solid mechanics problems [Mai-Duy, Khennane and
Tran-Cong, (2007); Le, Mai-Duy, Tran-Cong and Baker, (2008); Sorić and Jarak,
(2010)]. The method has been formulated by integrating the partial derivatives
[Mai-Duy and Tran-Cong, (2003)] and applied to transient problems [Mai-Cao and
Tran-Cong, (2005)], fluid flow [Mai-Duy, Mai-Cao and Tran-Cong, (2007)] and
moving boundaries [Mai-Cao and Tran-Cong, (2008)]. Several improvements have
been applied such as the advanced Neumann boundary conditions treatment [Li-
bre, Emdadi, Kansa, Rahimian and Shekarchi, (2008)] or double consideration of
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the boundary nodes [Šarler, (2005)]. The main drawback of this global method
originates in the need for solving the global matrices in order to solve the problem.
The condition number of the global matrix is highly sensitive to the shape of the
basis functions and the node distribution, as well. The problem becomes impor-
tant even with a relatively small number of the nodes (≈1000). The mitigation of
the related problem has been attempted by domain decomposition [Mai-Duy and
Tran-Cong, (2002)], multi-grid approach and compactly supported RBFs [Chen,
Ganesh, Golberg and Cheng, (2002)] which all represent a substantial complication
of the original simple method. A substantial breakthrough in the development of
the RBFCM was its local formulation for boundary value problems (LRBFCM) by
Lee at al. [Lee, Liu and Fan, (2003)]. They demonstrated that the local formulation
does not substantially degrade the accuracy with respect to the global one. On the
other hand, it is much less sensitive to the choice of the RBF shape parameter and
node distribution. The local RBFCM, where the collocation is made piecewise on
the influence domains, has been previously developed for diffusion problems [Šar-
ler and Vertnik, (2006)], convection-diffusion solid-liquid phase change problems
[Vertnik and Šarler, (2006)] and subsequently successfully applied in industrial pro-
cess of direct chill casting [Vertnik, Založnik and Šarler, (2006)]. The engineering
k-epsilon turbulence modeling was implemented by [Vertnik and Šarler, (2009)].
The LRBFCM represents a local variant of the global RBFCM (or Kansa method)
for thermo-fluid problems [Šarler, Perko, Chen and Kuhn, (2001); Šarler, (2005)].
LRBFCM is equivalent to Kansa method in case there is only one influence domain
and it extends over the entire calculation domain.

Different adaptive strategies (modifications of space and time discretization) have
been used in the past in connection with different numerical methods to enhance
the numerical effectiveness of computation. In general, the refinement schemes
can be classified into three major categories, which are h-refinement, p-refinement
and r-refinement. The h-refinement scheme, tackled in the continuation of this
paper, changes the number of the node and its neighboring nodes by insertion or
removal of the nodes, based on error indicator. This strategy has been already
introduced into global RBFCM [Libre, Emdadi, Kansa, Shekarchi and Rahimian,
(2008); Bourantas, Skouras and Nikiforidis, (2009); Ling, (2011)]. In the context
of the local methods, only local least squares approximation has been used, in con-
nection with the Delaunay triangulation [Park, C. and K., (2003)] [Liu, Huynh and
Gu, (2006)], [Liu, Kee and Lu, (2006); Kee, Liu and Lu, (2008)]. The adaptive
calculations have been made by reproducing kernel particle method for cracks in
[Rabczuk and Belytschko, (2005)] and large deformation problems in [Gan, Li and
Long, (2009)]. Adaptive calculations by using RBF have been used in the context
of mixed Eulerian-Lagrangean formulation by [Behrens and Iske, (2002)]. By the
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best knowledge of the present authors, an adaptive method with a simple 5-noded
LRBFCM has not yet been introduced.

In the p-refinement scheme, one increases the order of the approximation. This in
the meshless methods means increase of the number of shape functions, modifica-
tions of the shape functions and/or increase of the influence domain size [Stevens,
Power, Lees and Morvan, (2009)]. The r-refinement [Li, Petzold and Ren, (1998);
Mencinger, (2003); Kovačevič and Šarler, (2005); Perko and Šarler, (2007)] keeps
the total number of the nodes unchanged, but adjusts their position to obtain an op-
timal approximation [Shanazari and Rabie, (2009)]. The node distribution density
is controlled by moving the nodes into the regions of intense changes in the fields.
There are various ways to achieve the suitable moving. The most popular one is to
solve additional equations to control the node distribution density. The drawback of
such an approach represents the limitation of the number of computational nodes.
Therefore, one part of the domain might be covered with fewer nodes than needed
in order to satisfy the needs of the other regions.

The simplest possible h-adaptive approach in 2D is to subdivide the rectangular
stencil (FDM) or cell (FVM) to four new nodes [Berger, (1983); Berger and Colella,
(1989)]. It is easy, in general, to add nodes in meshless methods, since a corre-
sponding polygon (mesh) structure need not be developed.

The organization of the rest of the paper is as follows. Governing transport equa-
tion is introduced. LRBFCM is explained. The node refinement and derefinement
is discussed. Error estimator is introduced. A numerical example with Burger’s
equation is elaborated. The advantages and limitations of the method are analyzed,
together with the discussion on future work.

2 Governing equations

Let us focus our discussion to solution of the general transport equation, defined
on a fixed domain Ω with boundary Γ, standing for a reasonably broad spectra of
mass, energy, momentum, and species transfer problems

∂Φ(p, t)
∂ t

= ∇ · (D(p, t)∇Φ(p, t))−∇ · (ρv(p, t)Φ(p, t))+S (p, t) (1)

with ρ,Φ, t,p,v,D, and S standing for density, transport variable, time, position
vector, velocity, diffusion coefficient and source, respectively. The solution of the
governing equation for the transport variable at the final time t0 + ∆t is sought,
where t0 represents the initial time and ∆t the positive time increment. The solution
is constructed by the initial and boundary conditions that follow. The initial value
of the transport variable Φ(p, t) at a node with position vector p and time t0 is
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defined through the known function Φ0

Φ(p, t) = Φ0 (p, t) ; p ∈Ω+Γ (2)

The boundary Γ is divided into not necessarily connected parts Γ = ΓD∪ΓN with
Dirichlet and Neumann type boundary conditions, respectively. At the boundary
node p with normal nΓ and time t0 ≤ t ≤ t0 + ∆t, these boundary conditions are
defined through known functions ΦD

Γ
, ΦN

Γ

Φ = Φ
D
Γ ; p ∈ Γ

D (3)

∂

∂nΓ

Φ = Φ
N
Γ ; p ∈ Γ

N (4)

3 LRBFCM

The local meshless method, used in this paper for solving the above transport equa-
tion, is based on strong formulation and explicit time stepping. Spatial disretization
is performed through local collocation of the transport variable by RBF’s, followed
by application of partial differential operator on the collocation function. Such ap-
proach has been successfully tested in several thermo-fluid problems [Kosec and
Šarler, (2008b); Kosec and Šarler, (2008a); Sanyasiraju and Chandhini, (2008);
Kosec and Šarler, (2009); Vertnik and Šarler, (2009); Vertnik and Šarler (2011)]
as well as other computations [Šarler, Kosec, Lorbiecka and Vertnik, (2009); Lor-
biecka and Šarler, (2010)]. This most simple version of the approach can be al-
tered by using moving least squares (MLS) instead of collocation, and instead of
RBFs any kind of other basis functions. The MLS approach with monomial basis
is in literature referred as the Diffuse Approximate Method (DAM) [Prax, Sadat
and Salagnac, (1996); Perko and Šarler, (2007); Trobec, Kosec, Šterk and Šarler,
(2012)] and represents an alternative for LRBFCM. Due to the completely local
behavior, LRBFCM exhibits several convenient advantages such as ease of imple-
mentation, straightforward parallelization, simple consideration of complex physi-
cal models and CPU effectiveness.

The main idea behind the local meshless numerical approach is the use of a local
influence domain for approximation of an arbitrary field in order to evaluate the dif-
ferential operators needed to solve the partial differential equations. The principle
is represented in Figure 1.

Each node uses its own influence domain for spatial differential operations; the
domain is therefore discretized with overlapping influence domains. The approxi-
mation function is introduced as

θ(p) =
N

∑
n=1

αnΨn(p), (5)
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Figure 1: Scheme of the influence domain and the node in which the numerical
operations take place.

where θ ,αn,Ψn stand for the interpolation function, the number of basis func-
tions, the approximation coefficients and the basis functions, respectively. The ba-
sis could be selected arbitrarily, however in this paper only Hardy’s multiquadrics
(MQs)

Ψn (p) =
√

(p−pn) · (p−pn)/σ2
C +1, (6)

with σC standing for the free shape parameter of the basis function, are used. By
taking into account all influence nodes and equation (5), the approximation system
is obtained. In this paper the simplest possible case is considered, where the number
of influence domain nodes is exactly the same as the number of basis functions. In
such a case the approximation simplifies to collocation. The problem is described
through a linear system of N equations. The matrix formulation of the collocation
is thus

ΨΨΨααα = ΘΘΘ, (7)
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where

ΨΨΨ =

 Ψ11 ... Ψ1NSub

... ... ...
ΨNSub1 ... ΨNSubNSub

 ,

ααα =
[
α1 ... αNSub

]tr
,

ΘΘΘ =
[
Θ1 ... ΘNSub

]tr
. (8)

The determination of the coefficients is in all discussed cases focused on solving
the equation (7)

ααα = ΨΨΨ
−1

ΘΘΘ. (9)

With the constructed collocation function an arbitrary spatial differential operator
(L) can be computed

Lθ (p) =
N

∑
n=1

αnLΨn(p). (10)

In this work, only five-noded influence domains are used, together with five MQs.

The first and the second derivatives are needed when solving the transport type
equations, and the respective derivatives of MQ are

∂

∂ px,y
Ψn(p) =

1
σ2

C

px,y− pn
x,y

Ψ
(
np)

, (11)

∂ 2

∂ p2
x,y

Ψ
MQ
n (p) =

1
σ2

C

1

Ψ
MQ3
n (p)

. (12)

In general, the system (7) has to be solved only when the influence domain topol-
ogy changes and therefore the computation can be optimized by computing ΨΨΨ−1 in
a pre-process. Furthermore, the computation of the coefficients and the evaluation
of differential operators can be combined. All information about the numerical ap-
proach and the local nodal topology can be stored in a predefined vector, which has
to be re-evaluated only when the topology of the nodes changes. The differential
operator (χL

m) vector is introduced as

χ
L
m(p) =

N

∑
n=1

Ψ
−1
nmL(Ψn(p)) . (13)
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The introduced formalism holds in general and therefore the general notation for
partial differential operator (L) is used. However, in the present work, only opera-
tors ∂/∂ pε and ∇2 are needed.

χ
∇2

m (p) =
N

∑
n=1

Ψ
−1
nm ∑

ε

∂ 2

∂ p2
ε

Ψn(p), (14)

χ
∂/∂ pε

m (p) =
N

∑
n=1

Ψ
−1
nm

∂

∂ pε

Ψn(p), (15)

χ
1
m(p) =

N

∑
n=1

Ψ
−1
nmΨn(p). (16)

In equation (16) the interpolation (L = 1) operator is introduced as it is needed
when new nodes are added to the computational domain.

The structured formulation is convenient since most of the complex and CPU de-
manding operations are performed in the pre-process phase. For all inner time loop
operations only N point operations (FLOPS) are need for evaluation of an arbitrary
partial differential operator.

With Euler time stepping and the elaborated spatial discretization scheme the gen-
eral transport equation (1) can be numerically solved

Φ1
Ω
−Φ0

Ω

∆t
= ∇D0

Ω ·∇Φ
0
Ω + D0

Ω ∇
2
Φ

0
Ω−∇ ·

(
ρ

0
Ω v0

Ω

)
Φ

0
Ω−∇Φ

0
Ω ·
(

ρ
0
Ωv0

Ω

)
+ S0

Ω.

(17)

where Φ
0,1
Ω

= Φ(pΩ, [t0, t1]) and v0
Ω

= v0 (pΩ, t0) stand for the field value in the
interior node with index Ω at the current and the next time-step.

4 Manipulation of the nodes

The h-adaptivity, developed in the present paper, consists of (I) local refinement/de-
refinement rules for the nodes, (II) error indicator and (III) triggering of refine-
ment/derefinement with respect to the error indicator and (IV) management of the
new local topology. The domain is initially discretized with uniform equidistant
node arrangement in all discussed situations (i.e. the basic parent configuration).
This assumption, which implies certain restrictions on the shape of the computa-
tional domain, is used in the present paper in order to simplify the discussion. This
assumption will be relaxed in our future publications. In the case when a certain
part of the domain needs higher node density, additional nodes are added, as well
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as the unnecessary nodes are removed from the domain, where dense node distri-
bution is not needed. New nodes are added symmetrically around the considered
node. A maximum of four additional nodes are positioned in the domain at one re-
fine operation. Examples of refinement and derefinement are presented in Figures
3 and 4. In order to determine in which nodes the refinement should take place
an error indicator is introduced. The refinement/derefinement strategy follows the
following rules:

Refinement rules:

1. The level of the node marks how many times the node has been refined. The
lever zero marks the initial basic parent configuration.

2. The difference between the refinement levels of the neighboring nodes is not
allowed to exceed one.

3. In order to support the refinement of the node, the refinement request is
passed to all the nodes that block the refinement procedure due to the rule
2.

4. All child nodes are positioned symmetrically around the parent node.

5. If a node A is a neighbor of the node B, than the node B might not be the
neighbor of a node A (Figure 2).

refined node

non refined node

AB

 
Figure 2: Scheme of the neighbors of the nodes for two nodes with a different
refinement level.

Derefinement rules:

1. The initial basic parent configuration nodes (level zero) are not allowed to be
removed.
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Figure 3: 4 steps sequence of a node refinement.

 

 
 

Figure 4: 4 steps sequence of a node derefinement.

2. The level difference between neighbors after a node is derefined is not al-
lowed to exceed one.

3. The node is not allowed to be derefined if after closing an inconsistent distri-
bution regarding the refinement rules would appear.

4. The child node is not allowed to be removed if any other node sees it as a
neighbor.

5 Error indication and triggering of node distribution refinement/derefinement

A reliable and efficient error indicator and the associated refinement/derefinement
strategy are crucial issues for adaptive calculations. In general, two distinct types of
procedures are currently available for deriving error indicators: the recovery based



H-Adaptive Local Radial Basis Function Collocation Meshless Method 237

error indicator and the residual based error indicator. The recovery error indicator
was first introduced by Zienkiewicz and Shu in 1987 [Zienkiewicz and Zhu, (1987)]
by constructing locally an improved solution from the approximation. The recovery
procedure plays an important role in calculation of this indicator. On the other hand,
the residual based error indicator [Ainsworth and Oden, (1993)] makes use of the
residual of the numerical approximation and offers a very effective alternative.

The basic idea in this paper is to keep all numerical procedures as simple as possi-
ble and structured only on the local five-noded topology. Respectively, a suitable,
numerically effective local characterization of the node distribution topology and
field values is required. The idea of the proposed adaptation criterion is based on
the assumption that the numerical error and the instability change with the field
complexity and the spatial dimension of the influence domain. Through the numer-
ical experimentation, a straightforward error indication is formulated. The error
indicator is in the present collocation method introduced as a norm of the approx-
imation function coefficients, divided by the norm of the approximation function
system matrix

RI =
|ααα|
|ΨΨΨ−1| , (18)

with the norm

|ΨΨΨ|= max

(
N

∑
m=1
|Ψmi|

)
; i = 1,2, ...,N, (19)

defined as the largest absolute column sum. The refinement/derefinement criteria
is thus formulated as

if Rl > σ
hi
R → refine node

if σ
hi
R ≥ Rl ≥ σ

lo
R → preserve node

if Rl < σ
lo
R → derefine node

(20)

The nodes where the refinement indicator is within the allowed interval
(
Rmin

I ,Rmax
I
)

stay intact, otherwise the action is taken into account with respect to the presented
logic (20). Furthermore, the refinement algorithm is limited by the maximum num-
ber of refinement level (σmax

R ) allowed for the highest node distribution density,
and with the initial node distribution for the lowest node distribution density.

After the refinement action, new node field values are set through the approximation
from the local influence domain.

Θ(p) =
NSub

∑
m=1

χ
1
m (p) Θm. (21)
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In order to illustrate the refinement procedure, a known test field with a step jump,
mimicking the problematic field distribution (Figure 7), is subjected to the refine-
ment procedure (Figure 8). The contour plots in figures represent the refinement
indicator. Within the area of higher gradients in the field, the refinement indica-
tor is high and therefore more nodes are added in order to lower it, while within
the plain areas of the domain, the refinement indicator is low and therefore nodes
relax to the minimal possible node distribution density, i.e. initial distribution. Af-
ter the refinement, the indicator is below the prescribed value within the whole
domain and the areas with the high indicator before refinement are covered with
much denser node distribution. In the present illustrative case the σhi

R = 1.00 (top
left plot), σhi

R = 0.15(top right plot), σhi
R = 0.10(bottom left plot) and σhi

R = 0.05
(bottom right plot) with 265, 503, 811 and 2212 nodes, respectively, are shown.
The maximum allowed refinement σmax

R = 10 is used for all four plots with the test
field defined as (note that the tilde is used to denote a dimensionless value, the same
notation will be used in further discussions, as well).

f =
1− tanh(10sin(1.8 p̃x)−10 p̃y−2.6)

2
. (22)

6 Numerical example

In the present paper the time dependent Burgers’ equation is considered as a spe-
cial case of the general transport equation. The equation with convection, viscous
and time dependent terms is similar to the Navier-Stokes equation without pres-
sure gradient term. The Burgers’ equation was originally employed in weather
problems and later extended to more complex models of turbulent flows [Burgers,
(1948)]. The Burgers’ equation is used to model several physical phenomena like
shock waves, acoustics, various flow problems, etc. The equation behaves parabolic
when viscosity term is dominant and hyperbolic otherwise. The sharp discontinu-
ities might appear in the solution of the problem due to the nonlinearity of the
Burgers’ equation and this behavior makes the equation suitable for testing of the
numerical methods. Moreover, this behavior makes the test ideal for assessment of
node refinement strategy due to sharp jump in the solution.

There exists quite a large amount of publications [Bahadir, (2003); Özis, Esen and
Kutluay, (2005); Perko, (2007); Saka and Dag, (2008); Young, Fan, Hu and Atluri,
(2008); Zhang, Ouyang and Zhang, (2009); Abazari and Borhanifar, (2010)] on
the solution of the Burgers’ equation. The Burgers equation was previously solved
by the following related meshless techniques [Shi, Shu, Song and Zhang, (2005);
Hashemiana and Shodja, (2008); Hosseini, Hashemi and (2011)]. This makes the
test even more attracting; as it provides additional evaluation of the present numer-
ical approach through comparison with the others.
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A two dimensional Burgers’ equation on a square domain of the dimensionless size
1x1 (Figure 7) is considered

∂v
∂ t

+v ·∇v =
1

Re
∇

2v, (23)

where Re stands for Reynolds number. The problem can be solved in a closed form
[Fletcher, (1983)]

va (p, t) =

 3
4 −

1
4

(
1+ e−1 4px−4py+t

32 Re
)−1

3
4 + 1

4

(
1+ e−1 4px−4py+t

32 Re
)−1

 , (24)

where va stands for the analytical solution. The initial state and Dirichlet boundary
conditions are derived from the solution va (24).

Numerical implementation of the developed solution procedure is coded in C++
programming language in double precision and compiled with Intel C++ v. 11.1
compiler. The LAPACK (Linear algebra package) routines are used to solve the
LU decomposition. The standard C++ libraries are used for other mathematical
and system operations needed to complete the solver. Recently it was demonstrated
that the proposed local meshless based solution procedure can be effectively paral-
lelized with OpenMP [Kosec, Trobec, Depolli and Rashkovska, (2011)].

7 Results

We solve the Burger’s equation with the described adaptive solution procedure. The
maximum absolute error is defined as

E = max(|va
x(pΩ, t)− vx(pΩ, t)|) . (25)

For computation of errors, all domain nodes are taken into account. First, four
different uniform node distributions are tested for Reynolds numbers 102 and 103

with respect to time (Figure 8).

The results with 957, 2597, 10197 and 40397 regular node distributions are com-
puted with time-steps 10−4, 5 ·10−5, 10−5, and 10−6, respectively.

Furthermore, the results, computed with the proposed meshless method, are com-
pared with a selection of reasonably well documented published data. The results
of global radial basis collocation method [Ali, ul-Islam and Haq, (2009)] - Ref
1, implicit finite difference method [Bahadir, (2003)] - Ref 2 and the Eulerian-
Lagrangian method of fundamental solution [Young, Fan, Hu and Atluri, (2008)]
- Ref 3 are compared against present results in Table 1. The comparison case is
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Re=100 on a 437 uniformly distributed nodes where for the present results a time-
step 10−4 is used. From the comparison it is evident that the proposed approach
shows good agreement with respect to the reference numerical data.

0 0.2 0.4 0.6
0.8 1 0

0.5

1

0

0.2

0.4

0.6

0.8

1

p̃y

p̃x

f

 
Figure 3: Test function for demonstration of refinement.

The second part of the analysis is focused on the application of the adaptive node
distribution strategy. The behavior of case Re = 103 with respect to different adap-
tivity settings is considered. An example of transient node distribution propagation
is shown in Figure 9. Three different settings of node distribution adaptivity are
compared with the static node distribution computation. All cases are computed
with the same average number of the nodes (2601) through all the simulation in
order to keep the comparison reasonable. The numerical setup information is listed
in Table 2. All adaptive computations are done with time-step 10−5. To illustrate
the impact of adaptivity setup on the actual node distribution, the distributions af-
ter the first refinement for all three adaptive cases are plotted in Figure 10. The
comparison of static against adaptive node distribution computation is presented in
Figure 11.



H-Adaptive Local Radial Basis Function Collocation Meshless Method 241

Ta
bl

e
1:

A
co

m
pa

ri
so

n
of

pr
es

en
ta

da
pt

iv
e

m
et

ho
d

da
ta

w
ith

pu
bl

is
he

d
da

ta
.
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Figure 4: An example of different refinement settings with the contour plot standing
for the refinement indicator. From no refinement situation on the top left figure to
more refined distribution on the bottom right figure.

As expected, the discretizations with nodes refined near the jump, perform better.
From adap1 to adap3 the discretizations with lower to higher density near the jump
are tested. The higher is the concentration of the nodes near the jump, the better
performance is achieved. The behavior is expected, since the maximum error is
always within the area of the jump, while the other parts of the domain are not
subjected to intense computations, and are producing much lower errors.
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Figure 5: Solution of Burgers’ equation for Re=100 (left) and Re=1000 (right).
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Figure 6: Error as a function of time for Re=100 (left) and Re=1000 cases.

Table 2: The configuration parameters of the numerical method when solving Burg-
ers’ equation

stat1 adap1 adap2 adap3
σmax

R 0 2 4 6
ND 2597 1596 780 320
σ lo

R 0 0.0005 0.0010 0.0050
σhi

R 0 0.0010 0.0050 0.0150
σ

Nt
R 0 100 100 100
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Figure 7: Node distributions at three different times t̃ = [0,1.5,3.5] for adaptive
numerical example adap3.

8 Conclusions

The local meshless radial basis function collocation method, combined with the lo-
cal adaptive node distribution strategy, has been formulated for transport type equa-
tions in the present paper. There are at least two important distinct elements of the
developments shown, differing from other strong form adaptive meshless method
attempts: (I) A five noded collocation is preserved in all situations. This feature is
enabled by a smart nesting of the added and removed nodes. (II) The error indicator
is defined in an unique and simple way through the collocation coefficients vector
and collocation matrix norm. The LRBFCM solution procedure has been rewritten
and afterwards coded in terms of partial differential vectors in order to optimize the
computations as much as possible. The assessment of the method is done through
the well-known Burgers’ equation, where the performance is quantitatively com-
pared against other numerical approaches found in the literature. The Burgers’
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Figure 8: Node distributions for adap1-3 cases after the first time step.

equation example is used to assess the adaptive node distribution approach. As it
is shown in the presented analysis, the procedure behaves as expected and signif-
icantly improves the performance of the basic numerical method without adaptive
features. Our forthcoming publication will deal with the extension of the method
to arbitrary shaped 2D domains and moving boundary problems, associated with
solidification, as appear in many materials processing situations.
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