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A Combined Sensitive Matrix Method and Maximum
Likelihood Method for Uncertainty Inverse Problems

W. Zhang1, X. Han1,2, J. Liu1 and Z. H. Tan1

Abstract: The uncertainty inverse problems with insufficiency and imprecision
in the input and/or output parameters are widely existing and unsolved in the prac-
tical engineering. The insufficiency refers to the partly known parameters in the
input and/or output, and the imprecision refers to the measurement errors of these
ones. In this paper, a combined method is proposed to deal with such problems. In
this method, the imprecision of these known parameters can be described by proba-
bility distribution with a certain mean value and variance. Sensitive matrix method
is first used to transform the insufficient formulation in the input and/or output to
a resolvable one, and then the mean values of these unknown parameters can be
identified by maximizing the likelihood of the measurements. Finally, to quantify
the uncertainty propagation, confidence intervals of the obtained solutions are cal-
culated based on linearization and Monte Carlo methods. Two numerical examples
are presented to demonstrate the effectiveness of the present method.

Keywords: Inverse problems; Uncertainty; Sensitivity matrix method; Maxi-
mum likelihood method; Confidence interval

1 Introduction

Inverse problems are usually defined as problems to determine input through given
output, in contrast with the forward problems which are concern with the estimation
of output from known input. The inverse problem on a structure is of great inter-
est in mechanical engineering, aerospace engineering, civil engineering and so on.
The examples include identification of material properties [Pagnacco, Moreau and
Lemosse (2007)], reconstruction of external loads [Jiang and Hu (2008)], updating
of structure model [Chang, Chang and Xu (2000)], design of structure shape [Tiow,
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Yiu and Zangeneh (2002)] and many other applications[Liu and Han (2003); Hon,
Li and Melnikov (2010); Zhang, Liu, Han and Chen (2012)]. In these works, most
of the existing inverse methods focus on deterministic inverse problems in which all
of the known input, output and system parameters can be given in certain values. In
practical engineering, however, uncertainty widely exists in the material property,
external load and geometrical dimension etc. Thus, to obtain the feasible variable
parameters, the uncertainty inverse problems (UIPs) should be investigated.

Various inverse strategies and methods [Fonseca, Friswell and Mottershead (2005);
Jiang, Liu and Han (2008); Li and Moor (2002); Pradlwarter and Schueller (2008);
Nakagiri and Suzuki (1999); Rus, Lee and Gallego (2005); Turco(2005); Wor-
den, Manson, Lord and Friswell (2005)] have been developed to deal with such
problems. Nevertheless, there is very little literature concerned with UIPs with
the insufficiency and imprecision in the input and/or output parameters. It is very
common that the input and/or output parameters are available from experiments,
and they always not be sufficient and exact in the practical engineering. Liu etc
[Liu, Xu and Wu (2001)] proposed the concept of total solution to deal with UIPs
with insufficiency in the input and/or output parameters. In their work, however,
the imprecision of the partly known parameters are not considered. That is ob-
viously improper to deal with the practical engineering problem. If we consider
these parameters to be imprecise measurements that include random errors, then
we are faced with the problem of finding the solution which is best from a sta-
tistical point of view. In addition, to incorporate uncertainty in structure analysis,
design and evaluation, knowledge of the uncertainty in the obtained solutions is
required. Therefore, uncertainty propagation from the known parameters to the
unknown ones should be quantified. Apparently, this class of inverse problems
is unable to be solved by traditional inverse methods. It is valuable to develop a
corresponding inverse method.

Two methods, Sensitive matrix method (SMM) and maximum likelihood method
(MLM), can be used to solve this class of UIPs. SMM is suitable for solving the in-
verse problems with insufficiency in the input and/or output parameters. The most
important advantage of SMM is that it can be easily used to transform the partly
known parameters to a resolvable formulation in the forward model. In the SMM,
the sought parameters are always expressed in an explicit form, so that identifi-
cation of mean values of these parameters can be simply performed using matrix
inversion. However, it is difficult to cope with the imprecision of the partly known
parameters. Additionally, it is unable to answer questions that how many errors
present in the known imprecise parameters are transferred to the solution? and
what is the confidence intervals of this obtained solutions? On the other hand,
MLM holds complementary promises with respect to the SMM to deal with these
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problems. The MLM’s advantages are the capability to estimate the maximum like-
lihood solution of the mean values of the unknown parameters. Then, confidence
intervals of identified solutions can be calculated based on linearization and Monte
Carlo methods. It is natural to expect that a combination of a SMM and MLM
may provide an ideal performance for the inverse procedure needed for this class
of inverse problems.

In this paper, a method is proposed for inverse problems with insufficiency and
imprecision in the input and/or output parameters, by combining the advantages of
SMM and MLM in the inverse procedure. The method is based on the assumption
that a forward model is always available, and the partly known parameters in the in-
put and/or output are random variables. Finite element method (FEM) is employed
as the forward solver to calculate the responses corresponding to the given param-
eters. Firstly, SMM is used to transform the insufficient formulation in the input
and/or output to a resolvable one, and then the mean values of the unknown param-
eters in the input and/or output can be identified by MLM. Finally, quantification of
the uncertainty propagation from the known parameters to unknown parameters by
linearization and Monte Carlo methods is also studied. Two numerical examples
have been carried out to demonstrate the feasibility and validity of this combined
method as well as the implementing techniques.

2 Statement of the problem

For a general deterministic engineering inverse problem, the forward model can be
expressed by the equation:

Y = T(X) (1)

where Y = [y1,y2, · · · ,ym]T is a vector of output parameters representing the desired
response quantities, for example displacements, stresses and natural properties, etc;
X = [x1,x2, · · · ,xn]T is a vector that collects all input parameters representing the
external loads, material properties and boundary conditions, etc; T is a is the sys-
tem matrix of functions of vectors parameters representing the translation process
from input to output. If the outputs of the system can be obtained by means of
measurement, the deterministic inverse problem can be formulated as a simple op-
timization problem which minimizing the errors of the predicated outputs based on
the forward model and an assumed X∗ with respect to the measured outputs Ym.
Then, various optimization strategies can be adopted to solve this problem.

For an uncertainty inverse problem (UIP), some input and/or output parameters are
insufficient and imprecise, and Eq. (1) can be changed as:

(Yu,Yn) = T(Xu,Xn) (2)
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where the vectors with subscript u are the unknown part and those with subscript n
are the known parts in the corresponding random parameter vectors.

In order to state precisely what is meant by UIP with insufficiency and imprecision
in the input and/or output parameters, it is helpful to look at Fig.1. The input vector
X is subdivided into two parts. The first one Xn is the known parameters. They
obtained from the experimental measures, and obey probability distribution with a
certain mean value and variance. Conversely, the second one Xu is the unknown
parameters to be determined. The same situation is occurred in the output vectorY.
Because of the uncertainty propagation, it is clear that the unknown parameters in
the input Xu and/or output Yu will also follow a certain probability distribution.

( )Y T X=X Y
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uY

nY

nX

uX

 
nX

 

Figure 1: Schematic illustration of the inverse problem with insufficient and impre-
cise parameters

The main objective of this paper is to discuss method related to the determination
of mean values of the unknown parameters Xu,Yu from the known probability dis-
tribution of Xn,Yn, and the confidence intervals of the obtained solutions. It can be
mathematically represented as follows:

To estimate mean values and confidence intervals:

(Yu,Xu) (3a)

For given the probability distributions:

(Yn,Xn) (3b)

Subject to:

(Yu,Yn) = T(Xu,Xn) (3c)

The above UIP is more complex and difficult to solve than the deterministic inverse
problems, and the traditional inverse methods are incapable of dealing with this
problem.
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3 A combined method

3.1 Basic ideas

The first step, SMM [Liu, Xu and Wu (2001)] is used to cope with insufficiency
in the input and/or output parameters. The main purpose is to divide the param-
eter into the known and unknown parts, and transform the complex engineering
problem into a simple and solvable explicit form. The second step, MLM [Fon-
seca, Friswell and Mottershead (2005)] is applied to deal with imprecision in the
input and/or output parameters. The main aim is to estimate mean values of those
unknown parameters. Then, confidence intervals of the obtained parameters for a
given confidence level can be calculated by using the linearization and Monte Carlo
methods.

3.2 Determination of the mean values

SMM, besides being useful for solving complex engineering problems, makes the
formulation more readable and so easier to understand. We can see that Eq. (2)
relates the cause vector X to the effect vector Y by the transformation matrix T.
However, the sensitivity matrix S is applied to relate a finite change between a
compound vector of parameter Q = X and the effect vector Y as follows:

Y = SQ (4)

where

Y = [∆yi, i = 1, · · · ,m] , Q = [∆x j, j = 1, · · · ,n] ,

S = [∆y j/∆x j, i = 1, · · · ,m; j = 1, · · · ,n] .

The sensitivity matrix S can be calculated by numerical computation [Yech (1986)].

By dividing the parameter vectors into the known and unknown parts, the Eq. (4)
can be rewritten as follows[

Yu

Yn

]
=
[

S11 S12
S21 S22

][
Qu

Qn

]
(5)

Then, all the known parts in the vectors Y,Q are moved to the right-hand-side of
Eq. (5) and denoted as a new vector d, while all the unknown parts are moved to
the left-hand-side and denoted as a new vector m. Eq. (5) is thus transferred as

Gm = d (6)
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where d =
[

S12Qn

Yn−S22Qn

]
, G =

[
I −S11
0 S21

]
, m =

[
Yu Qu

]T . Thus, the insufficient

parameters in the input and/or output in Eq. (2) can be transformed to a resolvable
formulation by sensitive matrix method.

In many engineering problem, there is sufficient evidence to suspect the known
imprecise parameter Xn and Yn are generated by a normal distribution and inde-
pendent:

xi
n ∼ N(x̂i

n,(σ
xi
n )2) (7a)

yi
n ∼ N(ŷi

n,(σ
yi
n )2) (7b)

where N is called the normal distribution. x̂i
n and ŷi

n denote the ith mean value, and
σ xi

n and σ
yi
n represent the ith deviation in Xn and Yn, respectively.

Therefore, maximum likelihood method can be applied to UIP where a joint prob-
ability density function can be assigned to the known parameters. The essential
problem is to find the most likely parameter, and to estimate the confidence inter-
vals of the obtained parameters in Eq. (6). The known parameters are independent
so that we can use the product form of the joint probability density function:

f (d|m) = f1(d1|m) · f2(d2|m) · · · fm(dm|m) (8)

where fi(di|m) is probability density function for each of the iparameter.

In practice, based on Eq. (7), the likelihood function is:

L(d|m) = f (d|m) = f1(d1|m) · f2(d2|m) · · · fm(dm|m)

=
1

(2π)m/2 ∏
m
i=1 σi

∏
m
i=1 e−(di−(Gm)i)2/2σ2

i
(9)

According to the maximum likelihood principle we can determine the mean values
of the unknown parameters that maximize the likelihood function. The constant
factor does not affect the maximization of Eq. (9), so we can solve:

max∏
m
i=1 e−(di−(Gm)i)2/2σi (10)

The logarithm is a monotonically increasing function, so we can equivalently solve:

max(log∏
m
i=1 e−(di−(Gm)i)2/2σi) = max(−

m

∑
i=1

(di− (Gm)i)2/2σ
2
i ) (11)
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Finally, the problem becomes:

min
m

∑
i=1

(di− (Gm)i)2/σ
2
i (12)

From Eq. (12), we can find that aside from the distinct 1/σ2
i factors in each term,

this is identical to the least squares problem. As above discussed, we can use SMM
to solve the mean values of vector m in Eq. (12). To incorporate the variance into
a solution in each of iteration step, Eq. (12) is changed as:

Gwm = dw (13)

where Gw = WG, dw = Wd, W = diag(1/σ1,1/σ2, · · · ,1/σm), and σ
2 can be

obtained from derivation by probability theory:

σ
2 = {σ2

1,σ
2
2} (14)

where σ
2
1,σ

2
2 are the variance to d in Eq. (7) . The element of vector d di ∼[

N(µ1,σ
2
1)

N(µ2,σ
2
2)

]
, and µ1, µ2 and σ

2
1, σ

2
2 denote the mean value and variance of di,

respectively:

µ1 = s12(x̂i
n− xhi

n ) (15a)

µ2 = (ŷi
n− yhi

n )− s22(x̂i
n− xhi

n ) (15b)

σ
2
1 = s2

12(σ
xi
n )2 (15c)

σ
2
2 = (σ yi

n )2 + s2
22(σ

xi
n )2 (15d)

where x̂i
n− xhi

n and ŷi
n− yhi

n represent the small change of the ith element in vectors
Xn and Yn, respectively. In other word, they denote the element of vectors Qn and
Yn in Eq. (6), respectively. From Eq. (15c) and (15d), we can conclude that the
vectors Xn and Yn has limited change, while its variance is not changed.

We can easily found that the least squares solution to Eq. (13) is the maximum
likelihood solution. In other word, mean values of the unknown parameters can be
determined from solving Eq. (13) by using SMM in the statistical point. There-
fore, the simplified matrix inversion can be used to determine mean values of the
unknown parameter vector m from the known parameter vector dw in each of iter-
ation step. As we known, the least squares solution of the unknown parameters can
be calculated as:

m = (GT
wGw)−1GT

wdw (16)
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It is noted that G−1
w obtainable only if matrix Gw is square and non-singular. In

most cases, we have to use singular value decomposition [Golub, van Van Loan
(1996)] to calculate m.

3.3 Determination of the confidence intervals

A sample formulation σ
2 = {σ2

1,σ
2
2} obtained from Eq. (14) is adopted to measure

the uncertainty propagation from the partly known parameters to the identification
action. Consider the linear relationship between m and dw in Eq. (16) in each of
iteration step, we can use Linearization method to calculate the appropriate covari-
ance:

cov(Adw) = Acov(dw)AT (17)

Eq. (17) has A = (GT
wGw)−1GT

w. Therefore, the appropriate covariance for the
unknown parameters can be computed by:

covm = (GT
wGw)−1GT

wIm((GT
wGw)−1GT

w)T = (GT
wGw)−1 (18)

where Im is m by m identity matrix. In the case of independent and identically
normal distribution, the covariance matrix cov(dw) is simply the variance σ

2 times
Im, and Eq. (18) simplifies to:

covm = σ
2(GT G)−1 (19)

Then, we can calculate 95% confidence intervals for individual obtained parameters
with the mean values which are identified by SMM and variance cov(m) in each
of iteration step. The 95% confidence intervals are given by [Aster, Borchers and
Thurber (2005)]:

m±1.96 ·
√

diag(cov(m)) (20)

where the 1.96 factor arises from 1
σ
√

2π

∫ 1.96
1.96 e−

x2

2σ2 dx = 0.95.

Monte Carlo method is also used to estimate the confidence intervals of the ob-
tained solutions, since it copes with linear and nonlinear mapping of known prob-
ability distribution into unknown probability distribution very well. We simulate a
collection of known parameter vectors and then examine the statistics of the corre-
sponding unknown parameter. This means that we resolve the least squares prob-
lem many times for system model corresponding to independent known parameter,
computing a suite of solutions to Gm = d = µ +σ . Then, an empirical estimate of
the covariance matrix can be calculated as:

cov(m) = BT B/N (21)
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where N denotes the number of simulation, B = mT −mT is a N×m matrix that
the ith row contains the difference between the ith parameter estimate m and the
average parameter m. After this, the confidence intervals of the obtained parame-
ters similarly calculated by Eq. (20). A great difference of Monte Carlo method
from linearization method is that Monte Carlo method needs a lot of numerical
computations, and it is very suit for linear and nonlinear problems.

3.4 Solution procedure

Based on the above discussion, the solution procedure of this type of UIP can be
described as follows:

1. Construct a forward model Eq. (2) for the problem under consideration. The
model parameters are simultaneously determined. Specify the known and unknown
parameters in input and output for the practical problem. The known parameters
are assumed to follow a normal distribution Eq. (7) from engineering experience
or previous research results.

2. Finite element method (FEM) is adopted as forward solver to calculate the re-
sponse from the given parameters. Assume initial mean values of the unknown
parameters X0

u, combing them together with the known ones Xn into the forward
solver to calculate the corresponding output (Y0

u,Y0
n).

3. Compute the sensitivity matrix Si using the calculated mean value vectors Xi
u,

Xn, Yi
u and Yi

n. Calculate matrix Gi in Eq. (6) fromSi. According to the difference
between the known mean Yn and the calculated Yi

n, construct the matrix di.

4. Calculate the parameter increment vector in Eq. (16) by SMM. Obtain a new set
of parameters by adding the increment into the solution in the next iteration. We
use linearization method Eq. (19) to compute variance for the unknown parameters,
and adopt Eq. (20) to estimate the confidence intervals of the obtained solutions.

5. Calculate the output (Yi+1
u ,Yi+1

u ) again from the forward solver by the newly
obtained mean values of Xi+1

u and known Xn, Yn. Stopping criterion is created as∥∥Yi+1
u −Yi

u

∥∥
2 ≤ εyu (22a)∥∥Yi+1

n −Yn
∥∥

2 ≤ εyn (22b)∥∥Xi+1
u −Xi

u

∥∥
2 ≤ εx (22c)

where εyu, εyn and εx are a small constant.

6. If Eq. (22) is satisfied, this set of parameters is considered to be mean values
for the problem. Otherwise, go back to step (2). Combining these parameters, we
use Eq. (21) to calculate the variance for the unknown parameters by Monte Carlo
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method. Confidence intervals of the obtained solutions can also be determined by
Eq. (20), and the solution procedure stops.

For detail, this inverse procedure is illustrated in the flow chart of Fig. 2. “confi-
dence interval 1” means that he confidence interval is calculated by linearization
method, and “confidence interval 2” denotes that the one is obtained from Monte
Carlo method.

4 Numerical examples and discussion

4.1 Identification of material properties of a beam

A stepped section beam with a centralized force P = 1000N on its end is shown
schematically in Fig. 3. This frame has different material and geometrical proper-
ties in the spans 1-2 and 2-3, respectively. The span 1-2 has length l1 = 600mm,
and the span 2-3 has length l2 = 250 mm. This frame is fixed at node 1, simply
supported at node 2 and free at node 3. This example can be performed only in the
xy plane for simplicity. The input parameters include Young’s modulus (E1,E2) and
section areas (A1,A2) of the beam. And the translational and rotational displace-
ments of the beam at the node 2 (x2,θ2) and the node 3 (x3,y3,θ3) can be known as
the output parameters.

The objective of material identification for this problem is to determine the param-
eters E1,E2 and estimate the confidence intervals of the obtained solutions. For
testing the presented combined method, we intentionally assume that the output x2,
θ2 and θ3 are unknown, but the transnational displacements x3,y3 and the section
areas A1,A2 are experimentally obtained. Consider imprecise measurements that
include random errors, these known parameters follow a normal distribution. Take
3% deviation level of measurement for example, the normal distribution of these
parameters can be described as A1 ∼ N(600,182)mm2, A2 ∼ N(448,13.442)mm2,
x3 ∼ N(0.011,0.00332)mm and y3 ∼ N(1.487,0.04462)mm. In other word, this
problem has both partly known parameters in the input and output, and these known
parameters are described as a random distribution. This situation is most likely to
happen in practical engineering. In this case, apparently, identification of mean
values and confidence intervals of the material parameters would be very difficult
when using the traditional inverse algorithms only based on the partly known out-
put distribution of x3, y3. However, the presented combined method is available for
this problem. It is able to make use of the other known input parameters of A1 and
A2.

According to the solution procedure described in Section 3, the parameter vec-
tors for this problem are thus set up as follows: X = {Xu,Xn}, Xu = {E1,E2},
Xn = {A1,A2}, Y = {Yu,Yn}, Yu = {x2,θ2,θ3}, Yn = {x3,y3}, and the initial mean
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Figure 2: Solution procedure for inverse problem with insufficient and imprecise
parameters

values of E1 and E2 are assumed 1.8× 105 and 2.5× 105, respectively. Combing
these assumed mean values of E1 and E2 and the known A1 of 600, A2 of 448 into
the forward solver FEM, we obtained the corresponding first output parameters x2,
θ2, x3, y3 and θ3 to be 4.8×10−3mm, 2.3×10−3, 4.5×10−3 mm, 6.7×10−3mm
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Figure 3: A beam with a centralized force

and 0.9346, respectively. Then, a sensitivity matrix S centering on this set of pa-
rameters is obtained. This is done by way of varying each input parameter among
E1 , E2, A1 and A2, and then calculating the corresponding changes of output pa-
rameters x2, θ2, x3, y3 and θ3 for each varied combination of input parameters.
Subsequently the matrix G and the vector dw in Eq. (16) are formed. Using the
SVD algorithm to solve Eq. (16), the mean values of unknown input parametersE1
, E2 and output parameters x2, θ2, θ3 are computed to be 3.59×104Mpa, 1.87×105

Mpa, 9.62× 10−4mm, 4.63× 10−4 and 2.1× 10−3, respectively (as shown in the
2nd row in Table 1). Now, we use linearization method to estimate confident in-
tervals of the unknown parameters. In this study, 1%, 3% and 5% deviation level
of the known parameters is considered, respectively. In linearization method, the
variance can be obtained by Eq. (19) at each of the iterations based on the variance
σ

2 and sensitively matrix G. Then, confident intervals of the obtained parameters
can be computed by Eq. (20). Updating the originals of input parameters E1 and E2
with newly computed values 3.59×104 Mpa and 1.87×105 Mpa, and combining
them together with the known input parameters A1 and A2 into the forward solver
FEM once again. Then, a new set of output parameters x2, θ2, x3, y3 and θ3 is
calculated to be 0.024mm, 0.012, 0.015mm, 0.027mm and 3.38, respectively (as
shown in the 3rd row in Table 1). The stopping criterion is examined to decide if
the solution procedure ends. As the stopping criterion is not satisfied, the iteratively
process is required to continue. After 6 times of such iterations, the stopping crite-
rion is satisfied. The solution procedure for mean values and confidence interval of
material parameters stops. For detail, the solution at each of the iterations is given
in Table 1. In Table 1, data in bold italic are the value obtained at corresponding
solving process.
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Figure 4: Convergence process of the errors

Fig. (4) shows the convergence process of errors εi

εi = (o j+1
i −o0

i )/o j+1
i , i = 1, · · · ,5 (23)

where o j+1
i denotes the output parameters computed from the forward solver FEM

at the j + 1 iteration, o0
i (i = 1,2,3) are the output parameters x2, θ2 and θ3 calcu-

lated from the SMM at the j+1 iteration, and o0
i (i = 4,5) represent the known out-

put parameters x3, y3. The maximal error between the actual and computed mean
values of the sought parameters is only 0.012. It can be easy found that the required
number of iterations to convergence of the SMM is very less, about six iterations in
total required in the present method. Furthermore, this example demonstrates the
high efficiency of the proposed method.

Using the mean values of x2, θ2, x3, y3 and θ3 obtained by SMM, in Monte Carlo
method, the variance can be calculated by Eq. (21). 95% confident intervals of them
are then estimated by Eq. (20). The results are listed in Table 2. It has been find
that variance of the identified parameters obtained by linearization and Monte Carlo
Methods are agreed well (as shown in column 3 and 5 of Table 2). 95% confidence
intervals estimated by two methods are shown in column 4 and 6 of Table 2, and
its range also agreed well regardless of the presence of the deviation. Fig. 5 shows
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95% confidence intervals of E1 and E2 obtained by using linearization method at
each of iterations for different deviation levels. From this figure, it can be found
that the confidence intervals of the obtained parameters enlarge as the deviation
level increase. Fig. 6 depicts the histogram of E1, E2, x2, θ2 and θ3 calculated by
Monte carlo method using 1000 samples. It is easy to see that each of these five
distributions of the obtained solutions is mostly symmetric about their mean values.
Fig. 7 illustrates the comparison of the confidence interval of E1 and E2 between
the present combined method and numerical simulation using Monte Carlo method.
The abscissa of the figure is assigned for E1, and the ordinate stands for E2. The
mark of cross “* ” in the figure shows the relationship between E1 and E2. The
thick and thin lines along the ordinate and abscissa indicate the 95% confidence
intervals for 1% deviation of all known measurement given in row 2 and 3 of Table
2. These are within the projection regions of the relationship between E1 and E2.
Consequently, the presented method can be judged to be valid for estimation of
confidence interval in regard to material identification.
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Figure 5: 95% confidence interval of E1 and E2 by linearization method

4.2 Reconstruction of external Loads of a truss

Fig. 8 illustrates the model used for loads reconstruction of a nine-bar truss made
of steel. This truss is fixed at node 1 without in-plane rotation and translation. Joint
4 is subjected to a vertical load F1, and joint 5 is subjected to a horizontal load F2.
All bars have a same cross-section area denoted by A. The truss element is used to
create an FEM mesh. Each bar is an element and hence there are total of nine truss
elements. In this case, the input parameters include external loads at node 4 and
5 (F1,F2), Young’s module E, area of cross section A. And the output parameters
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Figure 6: Histogram of E1 ,E2, x2, θ2 and θ3 by Monte carlo method
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Figure 7: Comparison of four confidence interval with simulation result for 1%
deviation level of measurements

include stresses of the bar 1 and 2 (σ1, σ2) and the translational displaces at node 2
(x2) and node 3 (x3, y3).
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Figure 8: A nine bar truss with two point load

It is assumed that the partly known parameters in the input (E,A) and output (σ1, σ2)
follow a normal distribution. Consider 5% deviation level of measurement, these
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parameters can be described as E ∼N(2×105,(1×104)2)Mpa, A∼N(25,1.252)mm2,
σ1 ∼ N(71.1,3.62) Mpa and σ2 ∼ N(−38.9,(−1.9)2)Mpa. This problem is also
commonly happen in the real situations.

The problem dealt with in this section is to reconstruct unknown external loads
(F1, F2)in the form of nodal forces and to estimate the confidence intervals of the
identified nodal forces so as to correspond to the probability distribution of the
partly known input and output (E,A,σ1, σ2). The presented method is available for
this problem.

This case can be solved in the exactly same way as the material identification of the
beam. Firstly, we assume F1 and F2 are 1.0× 103N and 0.5× 103N, respectively.
Displacements x2, x3, y3 and stressesσ1, σ2 are calculated to be -0.89 mm, -4.58
mm, 18.84 mm, -4.44 Mpa and 30.56 Mpa by forward solver, respectively. Then,
the sensitivity matrix is obtained from these parameters. Subsequently, F1, F2, x2,
x3 and y3 are computed in the same way as that in the previous example (as shown
in 2nd row in Table 3). Using the FEM model, with the calculated F1 and F2, the
known E and A, a new set of parameters are computed to be 14.62 mm, 38.13 mm,
-67.11 mm, 71.32 Mpa and -39.07 Mpa. We also use the Eq. (22) to assess whether
the present solution is satisfactory in accuracy. This solving process experiences a
total of three iterations. Fig. (9) shows the convergence process of the parameter
errors. The maximal error of the solved parameters with respect to their actual
values is 1.87%. The corresponding solutions at each of iteration are listed in Table
3.

The confidence intervals of the solved parameters are estimated as the same way
in the previous example. We also considered three deviation levels 1%, 3% and
5%. The results are given in Table 4. We can find that 95% confidence intervals
estimated by two methods are agreed well regardless of the presence of the devi-
ation. Fig. 10 shows the histogram of F1, F2, x2, θ2 and θ3calculated by Monte
carlo method using 1000 samples. Fig. 11 depicts the comparison between the
confidence interval estimation of F1 and F2 obtained from the suggest method and
that from numerical simulation. F1 is denote the abscissa of the figure, and F2 rep-
resents ordinate. The symbol “* ” in the figure shows the relationship between F1
and F2. The colorful thick and thin lines along the ordinate and abscissa indicate
the 95% confidence intervals for 5% deviation of all known measurement given in
row 2 and 3 of Table 4. These are within the projection regions of the relationship
between F1 and F2. Therefore, the propose method is feasibility for confidence
interval estimation in regard to load reconstruction.

From the two examples, it can be clearly concluded that the present combined
method is very efficient for solution of uncertainty inverse problem with insuffi-
ciency and imprecision in the input and/or output parameters. In practical appli-
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Figure 9: Convergence process of the unknown parameter errors

cation of the combined method, however, two points should be noticed. Firstly, as
one of gradient based approaches, the SMM requires an initial estimation for mean
values of the unknown parameters. This work should be performed by a rational
combination of physical theory and engineering experience. Secondly, confidence
intervals estimated by the linearization and Monte Carlo methods are agreed well
regardless of the presence of the deviation in the linear problem. Additionally, the
obtained confidence intervals should be having physical sense. For example, the
Young’s modulus should be greater than 0 in Fig. 5(a).

5 Conclusions

A method that combines sensitive matrix method and maximum likelihood estima-
tion is proposed for UIPs with insufficiency and imprecision in the input and/or
output parameters. This combined method has been used as the inverse operator
to determine mean values of the unknown parameters and quantify confidence in-
tervals for the identified solutions. This inverse operator takes both the advantage
of easier to perform of SMM and the advantage of quantifying uncertainty prop-
agation of MLM. We have demonstrated, though the use of the present combined
method for solving two practical problems of material identification and load re-
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Figure 10: Histogram of F1, F2, x2, θ2 and θ3 by Monte carlo method
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Figure 11: Comparison of four confidence interval with simulation result for 5%
deviation level of measurements

construction, that this method has a high feasibility and validity for this class of
UIP. Issues to be addressed include the extension of the proposed method to the
case of more complex problems.
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