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Stress Analysis of Elastic Roof with Boundary Element
Formulations

Dan Ma1,2 and Xianbiao Mao1

Abstract: Roof is one of the most important structures in coal mining engineer-
ing, which needs to be studied thoroughly at the theoretical level, while elastic roof
is treated as one of the problems for elastic plates in this paper. The existing liter-
atures on elastic plates have largely restricted to different engineering but all most
minority for coal mining engineering. Based on the mechanical models of plane
and bending stress for elastic roof, using the boundary integral equations which
is obtained by the natural boundary reduction, this paper obtains the elastic roof’s
Airy stress functions of the problem of inner elastic plane roof and bending deflec-
tion respectively, as well as the analytical and numerical solutions to the each stress
field functions. We also analyze the rules of different stress distribution for the two
stress fields varying with the radius and the angle by comparison. The results of
calculation show that, with the increasing of the radius and the angles of the elastic
circular plate roof with a pair of tensile forces along its diameter on the boundary,
the value of the stress meets uniformity; with the increasing of radius, the stress
declines under a concentrated force.

Keywords: boundary element method; elastic roof; stress function; boundary in-
tegral formula; Airy stress function.

1 Introduction

In coal mining engineering, especially in longwall mining, the fracture of the roof
would affect the distribution of the abutment pressure ahead of the longwall face
and following the fracture of roof a series of phenomena would be happened around
the face area. For instance, the convergence in the working area and the load acting
on the support would be increased, and sometimes some kinetic phenomena may be
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occured [Miao et al. (2011)]. Because of this, the mining researchers and engineers
always paid special attention to the research of pressure at roof.

In generally, rock stratum is usually regarded as plate in the working area. Miao
et al. (2010) treated the roof of rock stratum as elastic plate. For the elastic plate,
the stress solution in different engineering problems has been analyzed [León and
París (1989), Tanaka et al. (1996), Lin et al. (1999), England (2009a,b), Banichuk
et al. (2010), Peter and Lee (2011), Sakagami et al. (2011)], but so far, there is
all most minority analysis in coal mining engineering, which needs to be studied
thoroughly at the theoretical level.

The Boundary Element Method (BEM) [Hartmann (1989)] solves field problems
by solving an equivalent source problem. In the case of electric fields, it solves
for equivalent charge, while in the case of magnetic fields, it solves for equivalent
currents. BEM also uses an integral formulation of Maxwell’s Equations, which
allows for very accurate field calculations. In theory, it is convenient to analyze the
problems of elastic roof under various boundary conditions using the natural BEM.

The natural BEM [Yu (2002)] is a branch of a number of BEMs, based on a com-
plex variable method, a method using a Fourier series, or a Green’s function method
to induce a Dirichlet boundary value problem as a differential equation into Poisson
integration equation of the studied area or to induce Neumann boundary value prob-
lem of differential equation into a strong singular boundary integral equation [Yu
(2002)]. The natural BEM is widely used to solve problems of a circular interior
and exterior domain and other plane and engineering problems, as rock surround-
ing the roadway [Li et al. (2011), Ma et al. (2011)]. Yu and Du (2003) and Liu
and Yu (2008) have investigated coupling methods between natural BEM and finite
element methods. Based on the natural BEM on the boundary value problem of a
bi-harmonic equation of a circular exterior domain, a boundary integration equation
of the Airy stress function in polar coordinates is obtained.

This paper uses the surface forces on the boundary to calculate the stress function
and its normal derivative, which are substituted into the integration equation, thus
obtained the specific expression of a stress function under various boundary condi-
tions, thus permits the analysis of stress and related deformation inside the elastic
roof, and then the rules of different distribution for the two stress fields varying
with the radius and the angles are analyzed.
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2 The differential equation and boundary conditions of elastic circle plate

The differential equation for the plate bending based on the G. R. Kirchhoff as-
sumptions is:

∆
2
φ =

q
D

= f (1)

where, φ is the deflection of plate, q is surface distribution set degree of the lateral
load acting on the plate, D is the bending rigidity of the plate. There are usually
three boundary conditions for bending of plate, as following:

(1) φ |
Γ

= φ0,
∂φ

∂n

∣∣∣
Γ

= φn,

(2) φ |
Γ

= φ0,Mφ = m,

(3) T φ = t,Mφ = m.

where, T,M are the differential boundary operator, respectively, T φ ,Mφ have the
following expressions respectively under the condition of polar coordinate system:T φ =

[
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[
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]
Γ

=−Mr
D

(2)

where, µ is the Poisson’s ratio, and Vr,Mr are denoted as the total radial distribution
shear force and the radial distribution bending moment respectively.

3 Boundary integration formula and natural integration formula of bihar-
monic equation inner the elastic circle plate with natural boundary reduc-
tion

Assumption: Eq. (3) is the boundary value problem of biharmonic equation inner
the elastic circle plate.{

∆2φ (r,θ) = q(r,θ)
D = f (r,θ) inner the region Ω

(T φ ,Mφ) = (t,m) on the boundary Γ
(3)

where, its region of integration is Ω =
2π∫
0

R∫
0

f (r,θ)drdθ , Yu (2002) using Green’s

function method and a natural boundary reduction, obtains the boundary integration
formula of the stress function:

φ (r,θ) = Ar (θ)∗φn (θ)+Br (θ)∗φ0 (θ)

+
2π∫
0

R∫
0

G
(
r,θ ;r′,θ ′

)
f
(
r′,θ ′

)
r′dr′dθ

′ (4)
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where, φ0 (θ) ,φn (θ) are denoted as the boundary stress function and its normal
derivative, respectively, and the natural integration formula of the bending inner
the elastic circle plate:

T φ −
2π∫
0

R∫
0

T G
(
r,θ ;r′,θ ′

)
f
(
r′,θ ′

)
r′dr′dθ

′ =
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1
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2
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2

∗φn (θ) (5)
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2
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R
φn (θ)− 1
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2
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where, “∗” is the convol for variable θ , G(r,θ ;r′,θ ′) is the Green’s function of the
biharmonic equation inner the elastic circle plate, and we have:

Ar (θ) =−
(
R2− r2

)2

4πR [R2−2Rr cosθ + r2]
(7)
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(
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Collect the equations above, we obtain:
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For the problem of elastic bending roof, Eq. (10) is the deflection φ (r,θ) of bound-
ary integration formula for a random point inner the elastic circle plate, while
f (r,θ) = q(r,θ)/D.

For the problem of elastic inner roof, in generally, and compared with Eq. (1), we
have f (r,θ) = 0, thus we can obtain the Airy stress function φ (r,θ) of Poisson
integration formula for a random point inner the elastic circle plate, as Eq. (11).

φ (r,θ) = Ar (θ)∗φn (θ)+Br (θ)∗φ0 (θ) =
2π∫
0

(
R2− r2

)2

4π

{
[2R−2r cos(θ −θ ′)]φ0 (θ ′)

[R2 + r2−2Rr cos(θ −θ ′)]2
− φn (θ ′)

[R2 + r2−2Rr cos(θ −θ ′)]

}
dθ
′

(11)

4 Stress analysis inner elastic plane roof

Fig. 1 is a schematic diagram of elastic circular plate roof with a pair of tensile
forces along its diameter on the boundary. Let the stress P = 1 and the radius
R = 1. By analyzing, this is a problem of stress analysis inner elastic plane, we
can obtain the stress function according to Eq. (11). We first need to determine the
boundary stress function φ0 (θ) and its normal derivative φn (θ) according to the
known surface force X̄ and Ȳ on the roadway.

Firstly, a base point A is selected on the roadway boundary [Love (1944)], namely

φA = 0,

(
∂φ

∂x

)
A

= 0,

(
∂φ

∂y

)
A

= 0. (12)
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Figure 1: Elastic circular plate roof with a pair of tensile forces along its diameter
on the boundary

Then, according to the known surface force X̄ and Ȳ on the roadway boundary, for
a random point on the boundary, we have

φB =
∫ B

A
(x− xB)Ȳ ds+

∫ B

A
(yB− y)X̄ds (13)(

∂φ

∂x

)
B

=−
∫ B

A
Ȳ ds (14)(

∂φ

∂y

)
B

=
∫ B

A
X̄ds (15)

Here, we have,

φ0 (θ) = φB =

{
PRsinθ 0≤ θ ≤ π

0 π ≤ θ ≤ 2π
(16)
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∂φ
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(
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)
B
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{
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Substituting Eqs. (16) and (19), P = 1 and R = 1 into Eq. (11), we have:

φ (r,θ) =

(
1− r2

)3

4π

π∫
0

sinθ ′

[1+ r2−2r cos(θ −θ ′)]2
dθ
′

=

(
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)3

4π

θ∫
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sin(θ −θ ′)
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thus the integral becomes:

φ (r,θ) =
1

4π

[
2πr sinθ +4r sinθ arctan

(
2r sinθ

1− r2

)
+2−2r2

]
, (0≤ r ≤ 1)

(21)

Based on the literature [Love (1944)],

σr =
1
r

∂φ

∂ r
+

1
r2

∂ 2φ

∂θ 2 , σθ =
∂ 2φ

∂ r2 ,τrθ =− ∂

∂ r

(
1
r

∂φ

∂θ

)
. (22)

Thus, we can get the stress function inner the elastic plane roof:

σr (r,θ) =− 1
π

(
r2−1

)2
[(

r2 +1
)2−4cos2 θ

]
(r4 +1)2 +4r2 (r4 + r2 +1)2−8r2 cos2 θ
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]
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π

(
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)2 +4
(
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(
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)
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[
(r2 +1)2−2r2 cos2 θ

]
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τrθ (r,θ) =− 1
π

2
(
r6− r4− r2−1

)
sin2θ

(r4 +1)2 +4r2 (r4 + r2 +1)2−8r2 cos2 θ

[
(r2 +1)2−2r2 cos2 θ

]
(25)

Fig. 2 is a three-dimensional plot to show the numeric solution of σr (r,θ) with the
variation of r and θ . Fig. 3 shows that when θ is invariable, the numeric solution
become 0 while r = 0.8 with r range from 0 to 1. It can be seen that: The values
of σr (r,θ) are symmetry while θ = 0.5π,π,1.5π , which mean uniformity of the
stress distribution.

Fig. 4 is a three-dimensional plot to show the numeric solution of σθ (r,θ) with the
variation of r and θ . Fig. 5 shows that while r is invariable, the numeric solution
become cyclical variation with θ range from 0 to 2π . It can be seen that: The values
of σθ (r,θ) are symmetry while θ = 0.5π,π,1.5π , which mean uniformity of the
stress distribution.

Fig. 6 is a three-dimensional plot to show the numeric solution of τrθ (r,θ) with
the variation of r and θ , which has a uniformity of the stress distribution, too.

5 Stress analysis on elastic bending roof

Fig. 7 is a schematic diagram of elastic clamped circular plate roof under a concen-
trated force P at the point K (rk,θk), which is a non-axisymmetric bending problem.

We can solve the bending problem of different lateral loads on the circular plate
roof. Because the boundary of circular plate roof is fixed, thus both the boundary
stress function and its normal derivative equal to zero, namely, φ0 (θ) = 0,φn (θ) =
0. we obtain Eq. (26) according to Eq. (4).

φ (r,θ) =
2π∫
0

R∫
0

G
(
r,θ ;r′,θ ′

)
f
(
r′,θ ′

)
r′dr′dθ

′ (26)

where, f (r,θ) = q(r,θ)/D, and the key point is apply singular generalized func-
tions to express surface distribution set degree q(r,θ) of the lateral load acting on
the plate. Here, the concentrated force q can be expressed by Dirac Function δ :

q(r,θ) =
P
r

δ 〈r− rk〉δ 〈θ −θk〉 (27)

Substituting Eq. (27) into Eq. (26), we have:

φ (r,θ) =
2π∫
0

R∫
0

G
(
r,θ ;r′,θ ′

) P
r δ 〈r− rk〉δ 〈θ −θk〉

D
r′dr′dθ

′ =
P
D

G(r,θ ;rk,θk)
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Figure 2: Numeric solution of σr (r,θ)

 

Figure 3: Variation curve for σr (r,θ) with the increase of r while θ is invariable
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Figure 4: Numeric solution of σθ (r,θ)

 

Figure 5: Variation curve for σθ (r,θ) with the increase of θ while r is invariable
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Figure 6: Numeric solution of τrθ (r,θ)

 
Figure 7: Elastic clamped circular plate roof under a concentrated force
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(28)

It can be seen that, for elastic clamped circular plate roof under a concentrated
force, we can obtain the analytic solution of the concentrated force at the point
K (rk,θk) based on the Green’s Function G(r,θ ;r′,θ ′), without piecewise integral.

φ (r,θ) =
P
D

G(r,θ ;rk,θk)

=
P
D

2π∫
0

R∫
0

1
16π


[
r2−2rr′ cos(θ −θ ′)+ r′2

]
ln

R2[r2−2rr′ cos(θ−θ ′)+r′2]
R4−2rr′R2 cos(θ−θ ′)+r2r′2

+(R2−r2)(R2−r′2)
R2

dr′dθ
′

(29)

Especially, we can obtain the deflection solution of the concentrated force at the
center of the elastic clamped circular plate roof.

φ (r,θ) =
P
D

G(r,θ ;0,0) |R=1 =
P

16πD

(
2r2 lnr− r2 +1

)
(30)

Fig. 8 shows the numeric solution of the deflection solution of the concentrated
force at the center, which shows that with an increase of r, make a decrease for φ ,
r ∈ (0,1] ,φ ∈ [0,0.02) .

6 Conclusions

(1) In this paper, the problems of stress analysis inner elastic plane and bending
for the plane can be treated as boundary problem of biharmonic equation inner the
elastic circle plate. We obtain the Poisson integration formula based on a natural
boundary reduction, thus we get the analytic solution for the stress function of the
problem of inner elastic plane roof and bending deflection. The detailed examples
have show the advantages to solve the problem by BEM, and offered a similarity
solution.

(2) We have analyzed rules of the distribution of the stress function inner elastic
plane roof, while r is invariable, the numeric solution become cyclical variation
with θ range from 0 to 2π . For the problem of bending deflection, with an increase
of r, make a decrease for φ .

(3)We have developed the analytical solution of stress inner elastic plane roof and
bending deflection. The solutions are exactly equal to the answers given in various
sources of the literature.
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Figure 8: Numeric solution of the deflection solution of the concentrated force at
the center
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