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Torsional Wave Propagation in the Finitely Pre-Stretched
Hollow Bi-Material Compound Circular Cylinder
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Abstract: This paper studies the torsional wave dispersion in the hollow bi-material
compounded cylinder with finite initial strains. The investigations are carried out
within the scope of the piecewise homogeneous body model with the use of the
three-dimensional linearized theory of elastic waves in initially stressed bodies.
The mechanical relations of the materials of the cylinders are described through
the harmonic potential. The numerical results on the influence of the initial stretch-
ing or compression of the cylinders along the torsional wave propagation direction
are presented and discussed
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1 Introduction

The study of propagation laws of the torsional waves in bi-material compounded
circular cylinders have been made in many investigations, such as Armenakas
(1967, 1971), Reuter (1969), Haines and Lee (1971a, 1971b), Thurston (1976),
Kaul, Shaw and Muller (1981), Kleczevski and Parnes (1987) and others. The
studies of the corresponding problems in the noted researches have been carried
out within the scope of the piecewise homogeneous body model by employing the
classical linear theory of elastodynamics. However, the present level of all the ar-
eas of natural sciences and engineering requires investigations of such problems
with the nonlinear dynamical effects taken into account, one of which is the initial
stresses in the cylinders. The initial stresses occur in the structural elements during
their manufacture and assembly. Moreover, the initial
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stresses may appear in the structural elements as a result of the changing of the
environmental conditions, for example, temperature.

The investigations of the influence of the initial (residual) stresses on the propaga-
tion (dispersion) of the elastic waves are very interesting and urgent.

Because, the results of these investigations are used for measuring residual as well
as applied stresses in a member of elements of constructions. The laws of wave
propagation bodies with initial stresses are the basic of the mentioned measure-
ment system which is called as non-destructive (NDT) stress analysis. The results
of the corresponding theoretical and experimental investigations are periodically
discussed at NDT conferences, many related articles are published in The Jour-
nal of the Acoustical Society of America, NDT International, ets. Note that the
mentioned theoretical investigations are usually made within the framework of the
Three-dimensional Linearized Theory of Elastic Waves in Initially Stresses Bodies
(TLTEWISB) constructed using the linearization principle of the general nonlinear
theory of elasticity or its simplified modifications.

A systematic consideration of the results attained by employing TLTEWISB has
been given in monographs Eringen and Suhubi (1975), Guz (2004). Moreover,
a review of the mentioned investigations was made in papers Guz and Makhort
(2000), Guz (2002), Akbarov (2007). It follows from the foregoing references that
the investigations of the wave propagation in the pre-stressed cylinders were started
by the works Green (1961), Suhubi (1965), Demiray and Suhubi (1970) and others,
in which the subject of the study was the homogeneous circular cylinder.

Before the beginning of the 21th century there was not any investigation on the
wave propagation problems in the pre-stressed bi-material compounded cylinders.
The axisymmetric wave dispersion in the initially stressed bi-material compounded
cylinder has been studied in such papers as Akbarov and Guz (2004), Akbarov
and Guliev (2008, 2009a, 2009b, 2009c, 2010), Ozturk and Akbarov (2008, 2009a,
2009b) for the recent five years. When the subjects of these papers are viewed, it is
seen that the paper Akbarov and Guz (2004) investigates the longitudinal axisym-
metric wave propagation in the initially small pre-strained bi-material compounded
cylinder. The works Akbarov and Guliev (2008, 2009a, 2009b, 2009c, 2010) de-
velop the investigation started in Akbarov and Guz (2004) for the case where the
initial strains in the cylinders are finite ones. In other words, the results attained
in the papers Akbarov and Guliev (2008, 2009a, 2009b, 2009c, 2010) can be em-
ployed not only for the cases where the cylinders’ materials are sufficiently stiff,
but also for the cases where these materials are highly elastic.

The subject of the papers Ozturk and Akbarov (2008, 2009a, 2009b) is the investi-
gation of the dispersion relations of the torsional waves in a pre-stressed bi-material
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compounded cylinder. In these works it is assumed that the initial strains in the
constituents are small and these strains are calculated within the scope of the clas-
sical linear theory of elasticity. Consequently, the results of the investigations can
be employed only for the compounded cylinders made from stiff materials. But
these results do not suitable for the compounded cylinders fabricated from the high
elastic materials such as elastomers, various type polymers and etc. Therefore in
present paper the attempt is made for the development of the investigations car-
ried out in the papers Ozturk and Akbarov (2008, 2009a, 2009b) for the hollow
bi-material compound cylinder made from high elastic materials, in other words
for the case where the initial strains in the components of the cylinder are finite
ones and the magnitude of those are not restricted. In this case, as in Akbarov
and Guz (2004), Akbarov and Guliev (2008, 2009a, 2009b, 2009c, 2010), Ozturk
and Akbarov (2008, 2009a, 2009b), it is assumed that in each component of the
compounded cylinder there exists only the homogenous normal stress acting on the
areas which are perpendicular to the lying direction of the cylinders. The mechan-
ical relations of the materials of the cylinders are described through the harmonic
potential.

2 Formulation of the problem

We consider the compound (composite) circular cylinder shown in Fig. 1 and as-
sume that in the natural state the radius of the internal circle of the inner hollow
cylinder isR and the thickness of the inner and outer cylinders are h(1) and h(2), re-
spectively. In the natural state we determine the position of the points of the cylin-
ders by the Lagrangian coordinates in the Cartesian system of coordinates Oy1y2y3
as well as in the cylindrical system of coordinates Orθz.

Assume that the cylinders have infinite length in the direction of the Oy3 axis and
the initial stress state in each component of the considered body is axisymmetric
with respect to this axis and homogeneous. Such ah initial stress field may be
present with stretching or compressing of the considered body along the Oy3 axis.
The stretching or compressing may be conducted for the inner hollow cylinder and
the external hollow cylinder separately before they are compounded. However, the
results which will be discussed below can also be related to the case where the
inner and external hollow cylinders are stretched together after the compounding.
In this case as a result of the difference of Poisson’s coefficients of the inner and
external cylinders’ materials the inhomogeneous initial stresses acting on the areas
which are parallel to the Oy3 axis arise. Nevertheless, according to the well known
mechanical consideration, the mentioned inhomogeneous initial stresses can be ne-
glected under consideration, because these stresses are less significantly than those
acting on the areas which are perpendicular to the Oy3 axis.
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Figure 1: The geometry of the bi-material compound hollow cylinder.

With the initial state of the cylinders we associate the Lagrangian cylindrical system
of coordinates O′r′θ ′z′ and the Cartesian system of coordinates O′y′1y′2y′3. The
values related to the inner and external hollow cylinders will be denoted by the
upper indices (1) and (2), respectively. Furthermore, we denote the values related
to the initial state by an additional upper index, 0. Thus, the initial strain state in
the inner and external hollow cylinders can be determined as follows.

u(k),0
m = (λ (k)

m −1)ym, λ
(k)
1 = λ

(k)
2 6= λ

(k)
3 , λ

(k)
m = const,

m = 1,2,3; k = 1,2, (1)

where u(k),0
m is a displacement and λ

(k)
m is the elongation along the Oym axis. We

introduce the following notation:

y′i = λ
(k)
i yi, r′ = λ

(k)
1 r, R′ = λ

(2)
1 R. (2)

The values related to the system of the coordinates associated with the initial state
below, i.e. with O′y′1y′2y′3, will be denoted by upper prime.

Within this framework, let us investigate the axisymmetric torsional wave propaga-
tion along the O′y′3 axis in the considered body. We make this investigation by the
use of coordinates r′ and z′ in the framework of the TLTEWISB. We will follow the
style and notation used in the monograph Guz and Makhort (2000).



Torsional Wave Propagation 95

Thus, we write the basic relations of the TLTEWISB for the case considered. These
relations are satisfied within each constituent of the considered body because we
use the piecewise homogeneous body model.

The equations of motion are:

∂

∂ r′
Q′ (k)r′θ +

∂

∂ z′
Q′ (k)

θz +
1
r′

(
Q′ (k)r′θ +Q′ (k)

θr′

)
= ρ

′(k) ∂ 2

∂ t2 u′ (k)
θ

. (3)

The mechanical relations are:

Q′(k)r′θ = ω
′(k)
1221

∂u′(k)
θ

∂ r′
−ω

′(k)
1212

u′(k)
θ

r′
, Q′(k)

θ ′z′ = ω
′(k)
1331

∂u′(k)
θ

∂ z′
, (4)

In (3) and (4) through the Q′(k)r′θ , Q′(k)
θz′ the perturbation of the components of Kirch-

hoff stress tensor are denoted. The notation u′(k)
θ

shows the perturbations of the
components of the displacement vector. The constants ω ′

(k)
1221,ω ′(k)1212 and ω ′

(k)
3113

in (3), (4) are determined through the mechanical constants of the inner and outer
cylinders’ materials and through the initial stress state. ρ ′(k) is a density of the k-th
material.

As it has been noted above, in the present investigation we assume that the elastic-
ity relations of the cylinders’ materials are described by harmonic potential. This
potential is given as follows:

Φ =
1
2

λ s2
1 + µs2 (5)

where

s1 =
√

1+2ε1 +
√

1+2ε2 +
√

1+2ε3−3

s2 =
(√

1+2ε1−1
)2

+
(√

1+2ε2−1
)2

+
(√

1+2ε3−1
)2

.
(6)

In relation (6) λ , µ are material constants, εi(i = 1,2,3) are the principal values of
the Green’s strain tensor. The expressions (5) and (6) are supplied by the corre-
sponding indices under solution procedure.

For the considered axisymmetric initial strain state the components of the Green’s
strain tensor are determined through the components of the displacement vector by
the following expressions:

εrr =
∂ur

∂ r
+

1
2

(
∂ur

∂ r

)2

+
1
2

(
∂uθ

∂ r

)2

+
1
2

(
∂uz

∂ r

)2

,
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εθθ =
1
r

∂uθ

∂θ
+

ur

r
+

1
2r2

(
∂ur

∂θ
−uθ

)2

+
1

2r2

(
∂uθ

∂θ
−ur

)2

+
1

2r2

(
∂uz

∂θ

)2

,

εzz =
∂uz

∂ z
+

1
2

(
∂ur

∂ z

)2

+
1
2

(
∂uθ

∂ z

)2

+
1
2

(
∂uz

∂ z

)2

,

εrz =
1
2

(
∂uz

∂ r
+

∂ur

∂ z
+

∂ur

∂ r
∂ur

∂ z
+

∂uθ

∂ r
∂uθ

∂ z
+

∂uz

∂ r
∂uz

∂ z

)
,

εrθ =

1
2

(
∂uθ

∂ r
+

1
r

∂ur

∂θ
− 1

r
uθ +

1
r

∂ur

∂ r

(
∂ur

∂θ
−ur

)
+

1
r

∂uθ

∂ r

(
∂uθ

∂θ
−uθ

)
+

∂uz

∂ r
∂uz

∂θ

)

εθz =
1
2

(
1
r

∂uz

∂θ
+

∂uθ

∂ z
+

1
r

∂ur

∂ z

(
∂ur

∂θ
−ur

)
+

1
r

∂uθ

∂ z

(
∂uθ

∂θ
−uθ

)
+

1
r

∂uz

∂θ

∂uz

∂ z

)
(7)

In this case the physical components S(i j) of the Lagrange stress tensor are deter-
mined as follows:

S(i j) =
1
2

(
∂

∂ε(i j)
+

∂

∂ε( ji)

)
Φ, (8)

where indices (i j) = (11), (12), (13), (22), (23) and (33) indicate the symbols rr,
rθ , rz, θθ , θz and zz respectively.

In this case the equation of motion is following one.

∇iqi j = ρ
∂ 2u j

∂ t2 , qi j = Sin (g j
n +∇nu j) (9)

Here qi j and Sin are the contravariant components of the Kirchhoff and Lagrange
stress tensors, respectively, u j is a contravariant component of the displacement
vector, g j

nmixed component of the metric tensor. Moreover, in (9) ∇ishows the
covariant derivative and ρ indicates the density of a material.

It is known that the following relation exists between the physical and contravariant
components of tensors.

q(i j) = qi jHiH j S(i j) = Si jHiH j, u(i) = uiHi (10)



Torsional Wave Propagation 97

Using the expressions (5)- (10) it can be obtained the equation of motion in the
cylindrical system of coordinates.

Note that the expressions (5)-(8) are written in the arbitrary system of cylindrical
coordinate system without any restriction related to the association of this system
to the natural or initial state of the considered compound cylinders. As well as the
equations (9) and (10) are written in an arbitrary curvilinear system of coordinates.

According to the problem statement and according to the equations (1), (2), (5)-(8),
we obtain the following expressions for the initial stress-strain state.

S(k),0
zz =

[
λ

(k)
(

2λ
(k)
1 +λ

(k)
3 −3

)
+2µ

(k)
(

λ
(k)
3 −1

)](
λ

(k)
3

)−1
,

S(k),0
(nm) = 0 i f (nm) 6= zz,

λ
(k)
2 = λ

(k)
1 =

[
2− λ (k)

µ(k)

(
λ

(k)
3 −3

)][
2

(
λ (k)

µ(k) +1

)]−1

, (11)

By linearization of the equations (7)-(9) with respect to the perturbation of the rota-
tional displacement of the cylinders (denoted by u(k)

θ
(u′ (k)

θ
) in the system of coordi-

nate Orθz (O′r′θ ′z′)) we attain the equations (3), (4) and the following expressions
for the components ω ′

(k)
1221, ω ′

(k)
1212 and ω ′

(k)
1331 .

ω
′(k)
1221 = ω

′(k)
1212 =

µ(k)

λ
(k)
3

,

ω
′(k)
1331 =

λ
(k)
1

λ
(k)
1 +λ

(k)
3

(
2µ

(k)−λ
(k)
(

2λ
(k)
1 +λ

(k)
3 −3

))
+

1

λ
(k)
3

S(k),0
33 . (12)

Thus, the torsional wave propagation in the bi-material compounded cylinder will
be investigated by the use of the equations (3), (4) and (12). In this case we will
assume that the following complete contact conditions and boundary conditions are
satisfied:

Q′(1)
rθ

∣∣∣
r′=λ

(1)
2 R

= 0,

Q′(1)
rθ

∣∣∣
r′=λ

(1)
2 R(1+h(1)/R)

= Q′(2)
rθ

∣∣∣
r′=λ

(1)
2 R(1+h(1)/R)

,

u′(1)
θ

∣∣∣
r′=λ

(1)
2 R(1+h(1)/R)

= u′(2)
θ

∣∣∣
r′=λ

(1)
2 R(1+h(1)/R)
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Q′(2)
rθ

∣∣∣
r′=λ

(1)
2 R

(
1+h(1)/R+λ

(2)
2 h(2)/

(
λ

(1)
2 R

)) = 0. (13)

In this way, the investigation of the considered wave dispersion problem is reduced
to the study of the eigen-value problem formulated through the equations (3), (4),
(12) and condition (13). Note that in the case where the initial strains are absent in
the constituents in the cylinder, i.e. in the case where λ

(k)
1 = λ

(k)
2 = λ

(k)
3 = 1.0, the

foregoing formulation coincide with the corresponding one proposed in the scope
of the classical linear elastodynamics.

3 Solution procedure and obtaining the dispersion relation

According to the monograph Guz (2004), for solution of the equations (3) and (4)
we use the following presentation.

u′(m)
θ

(r′,z′, t) =− ∂

∂ r′
Ψ

(m)(r′,z′, t) (14)

where the function Ψ(m) in (14) satisfies the equation written below.[
∆
′+
(

ξ
′(m)
)2 ∂ 2

∂ z′2
− ρ ′

ω ′1221

∂ 2

∂ t2

]
Ψ = 0, (15)

where

∆
′ =

d2

dr′2
+

1
r′

d
dr′

,
(

ξ
′(m)
)2

=
2
(

λ
(m)
3

)3

(
λ

(m)
2

)2(
λ

(m)
2 +λ

(m)
3

) . (16)

It follows from the problem statement that the presentation

Ψ
(m)(r′,z′, t) = ψ

(m) (r′)exp i(kz′−ωt) (17)

holds. Thus, we obtain from (15), (17) the following equation for unknown function
ψ(m) (r′).[

d2

dr′2
+

1
r′

d
dr′
−

(
k2
(

ξ
′(m)
1

)2
− ρ ′(m)ω2

ω ′
(m)
1221

)]
ψ

(m) (r′)= 0. (18)

Introducing the notation(
s(m)
)2

=

(
k2
(

ξ
′(m)
1

)2
− ρ ′(m)ω2

ω ′
(m)
1221

)
(19)
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The solution to the equation (18) can be written as follows.

ψ
′(1)(r′) =

{
A(1)J0

(
s(1)kr′

)
+B(1)Y0

(
s(1)kr′

)
i f

(
s(1)
)2

> 0

A(1)I0
(
s(1)kr′

)
+B(1)K0

(
s(1)kr′

)
i f

(
s(1)
)2

< 0
, (20)

ψ
′(2)(r′) =

{
A(2)J0

(
s(2)kr′

)
+B(2)Y0

(
s(2)kr′

)
i f

(
s(2)
)2

> 0

A(2)I0
(
s(2)kr′

)
+B(2)K0

(
s(2)kr′

)
i f

(
s(2)
)2

< 0
. (21)

Using the equations (21), (20), (17), (14) and (4) we obtain the following dispersion
equation from the condition (13).

det
∥∥αi j

∥∥= 0, i; j = 1,2,3,4, (22)

where

α11 =



µ(1)

λ
(1)
3

{
1
2

[
J0

(
s(1)kλ

(1)
2 R

)
− J2

(
s(1)kλ

(1)
2 R

)]
− J1(s(1)kλ

(1)
2 R)

s(1)kλ
(1)
2 R

}
,(

s(1)
)2

> 0
µ(1)

λ
(1)
3

{
−1

2

[
I0

(∣∣s(1)
∣∣kλ

(1)
2 R

)
+ I2

(∣∣s(1)
∣∣kλ

(1)
2 R

)]
+

I1(|s(1)|kλ
(1)
2 R)

|s(1)|kλ
(1)
2 R

}
,(

s(1)
)2

< 0

α12 =



µ(1)

λ
(1)
3

{
1
2

[
Y0

(
s(1)kλ

(1)
2 R

)
−Y2

(
s(1)kλ

(1)
2 R

)]
− J1(s(1)kλ

(1)
2 R)

s(1)kλ
(1)
2 R

}
,(

s(1)
)2

> 0
µ(1)

λ
(1)
3

{
−1

2

[
K0

(∣∣s(1)
∣∣kλ

(1)
2 R

)
+K2

(∣∣s(1)
∣∣kλ

(1)
2 R

)]
+

K1(|s(1)|kλ
(1)
2 R)

|s(1)|kλ
(1)
2 R

}
,(

s(1)
)2

< 0

α13 = 0, α14 = 0,

α21 =

J1

(
s(1)kλ

(1)
2 R

(
1+h(1)/R

))
,

(
s(1)
)2

> 0

−I1

(∣∣s(1)
∣∣kλ

(1)
2 R

(
1+h(1)/R

))
,
(
s(1)
)2

< 0
,

α22 =

Y1

(
s(1)kλ

(1)
2 R

(
1+h(1)/R

))
,

(
s(1)
)2

> 0

−K1

(∣∣s(1)
∣∣kλ

(1)
2 R

(
1+h(1)/R

))
,
(
s(1)
)2

< 0
,
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α23 =

−
s(2)

s(1) J1

(
s(2)kλ

(1)
2 R

(
1+h(1)/R

))
,

(
s(2)
)2

> 0
|s(2)|
|s(1)| I1

(∣∣s(2)
∣∣kλ

(1)
2 R

(
1+h(1)/R

))
,
(
s(2)
)2

< 0
,

α24 =

−
s(2)

s(1) Y1

(
s(2)kλ

(1)
2 R

(
1+h(1)/R

))
,

(
s(2)
)2

> 0
|s(2)|
|s(1)|K1

(∣∣s(2)
∣∣kλ

(1)
2 R

(
1+h(1)/R

))
,
(
s(2)
)2

< 0
,

α31 =



µ(1)

λ
(1)
3

{
1
2

[
J0

(
s(1)kλ

(1)
2 R

(
1+h(1)/R

))
− J2

(
s(1)kλ

(1)
2 R

(
1+h(1)/R

))]
−

J1

(
s(1)kλ

(1)
2 R(1+h(1)/R)

)
s(1)kλ

(1)
2 R(1+h(1)/R)

}
,
(
s(1)
)2

> 0

µ(1)

λ
(1)
3

{
−1

2

[
I0

(∣∣s(1)
∣∣kλ

(1)
2 R

(
1+h(1)/R

))
+ I2

(∣∣s(1)
∣∣kλ

(1)
2 R

(
1+h(1)/R

))]
+

I1

(
|s(1)|kλ

(1)
2 R(1+h(1)/R)

)
|s(1)|kλ

(1)
2 R(1+h(1)/R)

}
,
(
s(1)
)2

< 0

α32 =



µ(1)

λ
(1)
3

{
1
2

[
Y0

(
s(1)kλ

(1)
2 R

(
1+h(1)/R

))
−Y2

(
s(1)kλ

(1)
2 R

(
1+h(1)/R

))]
−

Y1

(
s(1)kλ

(1)
2 R(1+h(1)/R)

)
s(1)kλ

(1)
2 R(1+h(1)/R)

}
,
(
s(1)
)2

> 0

µ(1)

λ
(1)
3

{
−1

2

[
K0

(∣∣s(1)
∣∣kλ

(1)
2 R

(
1+h(1)/R

))
+K2

(∣∣s(1)
∣∣kλ

(1)
2 R

(
1+h(1)/R

))]
+

K1

(
|s(1)|kλ

(1)
2 R(1+h(1)/R)

)
|s(1)|kλ

(1)
2 R(1+h(1)/R)

}
,
(
s(1)
)2

< 0

α33 =



− µ(2)

λ
(2)
3

{
1
2

[
J0

(
s(2)kλ

(1)
2 R

(
1+h(1)/R

))
− J2

(
s(2)kλ

(1)
2 R

(
1+h(1)/R

))]
−

J1

(
s(2)kλ

(1)
2 R(1+h(1)/R)

)
s(2)kλ

(1)
2 R(1+h(1)/R)

}
,
(
s(2)
)2

> 0

− µ(2)

λ
(2)
3

{
−1

2

[
I0

(∣∣s(2)
∣∣kλ

(1)
2 R

(
1+h(1)/R

))
+ I2

(∣∣s(2)
∣∣λ (1)

2 kR
(
1+h(1)/R

))]
+

I1

(
|s(2)|kλ

(1)
2 R(1+h(1)/R)

)
|s(2)|kλ

(1)
2 R(1+h(1)/R)

}
,
(
s(2)
)2

< 0
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α34 =



− µ(2)

λ
(2)
3

{
1
2

[
Y0

(
s(2)kλ

(1)
2 R

(
1+h(1)/R

))
−Y2

(
s(2)kλ

(1)
2 R

(
1+h(1)/R

))]
−

Y1

(
s(2)kλ

(1)
2 R(1+h(1)/R)

)
s(2)kλ

(1)
2 R(1+h(1)/R)

} (
s(2)
)2

> 0

− µ(2)

λ
(2)
3

{
−1

2

[
K0

(∣∣s(2)
∣∣kλ

(1)
2 R

(
1+h(1)/R

))
+K2

(∣∣s(2)
∣∣λ (1)

2 kR
(
1+h(1)/R

))]
+

K1

(
|s(2)|kλ

(1)
2 R(1+h(1)/R)

)
|s(2)|kλ

(1)
2 R(1+h(1)/R)

}
,
(
s(2)
)2

< 0

α41 = 0, α42 = 0,

α43 =



µ(2)

λ
(2)
3

{
1
2

[
J0

(
s(2)kλ

(1)
2 R

(
1+h(1)/R+λ

(2)
2 h(2)/

(
Rλ

(1)
2

)))
−

J2

(
s(2)kλ

(1)
2 R

(
1+h(1)/R+λ

(2)
2 h(2)/

(
Rλ

(1)
2

)))]
−

J1

(
s(2)kλ

(1)
2 R

(
1+h(1)/R+λ

(2)
2 h(2)/

(
Rλ

(1)
2

)))
s(2)kλ

(1)
2 R

(
1+h(1)/R+λ

(2)
2 h(2)/

(
Rλ

(1)
2

))
}

,
(
s(2)
)2

> 0

µ(2)

λ
(2)
3

{
−1

2

[
I0

(∣∣s(2)
∣∣kλ

(1)
2 R

(
1+h(1)/R+λ

(2)
2 h(2)/

(
Rλ

(1)
2

)))
+

I2

(∣∣s(2)
∣∣λ (1)

2 kR
(

1+h(1)/R+λ
(2)
2 h(2)/

(
Rλ

(1)
2

)))]
+

I1

(
|s(2)|kλ

(1)
2 R

(
1+h(1)/R+λ

(2)
2 h(2)/

(
Rλ

(1)
2

)))
|s(2)|kλ

(1)
2 R

(
1+h(1)/R+λ

(2)
2 h(2)/

(
Rλ

(1)
2

))
}

,
(
s(2)
)2

< 0

α44 =



µ(2)

λ
(2)
3

{
1
2

[
Y0

(
s(2)kλ

(1)
2 R

(
1+h(1)/R+λ

(2)
2 h(2)/Rλ

(1)
2

))
−

Y2

(
s(2)kλ

(1)
2 R

(
1+h(1)/R+λ

(2)
2 h(2)/Rλ

(1)
2

))]
+

Y1

(
s(2)kλ

(1)
2 R

(
1+h(1)/R+λ

(2)
2 h(2)/Rλ

(1)
2

))
s(2)kλ

(1)
2 R

(
1+h(1)/R+λ

(2)
2 h(2)/Rλ

(1)
2

)
}

,
(
s(2)
)2

> 0

µ(2)

λ
(2)
3

{
−1

2

[
K0

(∣∣s(2)
∣∣kλ

(1)
2 R

(
1+h(1)/R+λ

(2)
2 h(2)/Rλ

(1)
2

))
+

K2

(∣∣s(2)
∣∣λ (1)

2 kR
(

1+h(1)/R+λ
(2)
2 h(2)/Rλ

(1)
2

))]
+

K1

(
|s(2)|kλ

(1)
2 R

(
1+h(1)/R+λ

(2)
2 h(2)/Rλ

(1)
2

))
|s(2)|kλ

(1)
2 R

(
1+h(1)/R+λ

(2)
2 h(2)/Rλ

(1)
2

)
}

,
(
s(2)
)2

< 0

(23)

Thus, the dispersion equation for the considered torsional wave propagation prob-
lem has been derived in the form presented in (22) and (23).
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4 Numerical Results and Discussions

We have found that the first lowest mode which is non-dispersive homogenous
hollow cylinder, becomes dispersive for a compound one. The limiting value of
the torsional wave speed for the case considered is determined from dispersion
equation (22), (23) by using power series expansions of Bessel functions, retaining
only the dominant term as kR→ 0:

c

c(1)
2

=


µ(1)

λ
(1)
3

(
ξ ′ (1)

)2
+ µ(2)

λ
(2)
3

α
(
ξ ′ (2)

)2

µ(1) + µ(2)α

(
c(1)

2

c(2)
2

)


1
2

, α =
η4

2 −η4
1

η4
1 −1

, (24)

where

η2 = 1+
h(1)

R
+

λ
(2)
2 h(2)

λ
(1)
2 R

, η1 = 1+
h(1)

R
, c(1)

2 =

√
µ(1)

ρ(1) , c(2)
2 =

√
µ(2)

ρ(2) (25)

In equation (24) the values of ξ ′ (1) and ξ ′ (2) are determined through the expression
(16).

In the case where λ
(m)
3 = λ

(m)
2 = 1.0, the expression (24) transforms to the following

one.(
c

c(1)
2

)2

=
µ(1) + µ(2)α

µ(1) + µ(2)α

(
c(1)

2

c(2)
2

) . (26)

The expression (26) coincides with the corresponding one attained in the paper
Armenakas (1971). Moreover, the expression (24) is a generalization of the corre-
sponding one attained in the paper Ozturk and Akbarov (2008) for the finite initial
strain state. Note that in the paper Ozturk and Akbarov (2008) this type expression
was obtained for the small initial strain state.

It follows from the expression (24) and (16) that the limit values of c/c(1)
2 , where

c(1)
2 =

√
µ(1)/ρ(1) decrease with µ(1)/µ(2) and increase with λ

(
= λ

(1)
3 = λ

(2)
3

)
.

Consequently, the initial stretching (compression) of the compound cylinder along
the torsional wave propagation direction causes to increase (to decrease) of the limit
velocity of this wave as κR→ 0. According to the known physical-mechanical
consideration, the other limit value of the velocity of the considered wave, i.e. the
limit velocity as κR→ ∞ must be equal to min

{
c(1)

2

(
λ

(1)
3

)
,c(2)

2

(
λ

(2)
3

)}
, i.e. the
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following relation must be hold.

c→min
{

c(1)
2

(
λ

(1)
3

)
,c(2)

2

(
λ

(2)
3

)}
as κR→ ∞ (27)

where

c(κ)
2

(
λ

(κ)
3

)
=

{
2µ(κ)

ρ(κ)

(
λ

(κ)
1

)−2(
λ

(κ)
3

)2(
λ

(κ)
3 +λ

(κ)
3

)−1
}−1/2

. (28)

The expression (28) is called the accusto-elastic relation for initially stressed elastic
body and is attained from the equation:

(
c(κ)

2

(
λ

(κ)
3

))2
=
[

ρ
′(κ)/

((
ξ
′(κ)
)2

ω
′(κ)
1221

)]−1/2

, ρ
′(κ) = ρ

(κ)
λ

(κ)
1 λ

(κ)
2 λ

(κ)
3

(29)

where ω
′(κ)
1221 and

(
ξ ′(κ)

)2
are determined through the expressions (12) and (16),

respectively.

It follows from the foregoing results that the limit values of the torsional wave
propagation velocity depend not only on the initial strain state and not only the
ratio µ(κ)/ρ(κ) (κ = 1,2), but also depend on the rate λ (κ)/µ(κ). Because, the
expression (11) through which the values of λ

(κ)
2

(
= λ

(κ)
1

)
are determined, contains

this rate.

Now we consider the results obtained by the numerical solution to the dispersion
equation (22) under ρ(2)/ρ(1) = 1. This solution is made by employing the “bi-
section method” algorithm by the use of PC. We verify the validation of this al-
gorithm. For this purpose, as in the paper Armenakas (1971), we assume that
µ(1)/µ(2) = 1, ρ(2)/ρ(1) = 0.5,h(1)/R = 0.2, h(2)/R = 0.2 and consider the de-
pendence between ωh(2)/

(
πc(2)

2

)
and 2h(2)/Λ, where Λ is the wavelength. Thus,

within the framework of the foregoing assumptions, the graphs of these dependen-
cies for the lowest three modes are given in Fig.2 for various values of λ

(
= λ

(1)
3 = λ

(2)
3

)
.

Note that the graphs constructed in the case where λ
(2)
3 = 1.0 coincide with the cor-

responding ones given in paper Armenakas (1971). At the same time, it can be seen
from Fig.2 that the initial stretching (compression) of the compounded bi-material
hollow cylinder causes an increase (a decrease) in the torsional wave propagation
velocity.

The results discussed above indicate that the analytical and numerical solution
method used in the present investigation is correct. Now we consider the numerical



104 Copyright © 2011 Tech Science Press CMC, vol.26, no.2, pp.91-109, 2011

results regarding the dependence between c/c(1)
2 and κRfor various values of the

problem parameters.

 15

numerical results regarding the dependence between (1)
2c c  and Rκ for various 

values of the problem parameters.  

 
     Figure 2: The dispersion diagram for the lowest three modes for various values of 
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Fig 3. shows the graphs of the dependencies between (1)
2c c and Rκ for 

various values (2)h R  under (1) (2) 5μ μ = , (1) 0.1h R = .  
But the graphs of the same dependencies constructed for values of the ratio 

(1)h R  under (1) (2) 5μ μ = , (2) 0.1h R =  are given in Fig.4.  

The influence of the ratio (1) (2)μ μ  on the behavior of the considered 
dispersion curves is illustrated by the results given in Fig.5, which are obtained 
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The conclusions followed from these numerical results are given in the 

following section. 
 

Figure 2: The dispersion diagram for the lowest three modes for various values of
λ

(1)
3

(
= λ

(2)
3

)
.

Fig 3. shows the graphs of the dependencies between c/c(1)
2 and κRfor various

values h(2)/R under µ(1)/µ(2) = 5, h(1)/R = 0.1.

But the graphs of the same dependencies constructed for values of the ratio h(1)/R
under µ(1)/µ(2) = 5, h(2)/R = 0.1 are given in Fig.4.

The influence of the ratio µ(1)/µ(2) on the behavior of the considered dispersion
curves is illustrated by the results given in Fig.5, which are obtained under h(1)/R =
h(2)/R = 0.1.

The conclusions followed from these numerical results are given in the following
section.

5 Conclusions

Within the framework of the piecewise homogenous body model with the use of
the TLTEWISB, the torsional wave dispersion in the finite pre-strained bi-material
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               Figure 3: The influence of the initial strains on the dispersion curves constructed for 

the various values of Rh /)2( under  ,5/ )2()1( =μμ (1) / 0.1;h R =   

                     (2) / 0.1;h R =                     (2) / 0.5;h R =                     (2) / 1.0h R =  
 
 
 

 

Figure 3: The influence of the initial strains on the dispersion curves constructed
for the various values of h(2)/R under µ(1)/µ(2) = 5, h(1)/R = 0.1; h(2)/R =
0.1;h(2)/R = 0.5;h(2)/R = 1.0

compounded hollow cylinder made from high elastic materials was investigated. In
this case, it was assumed that the mechanical relations for the components of the
cylinder are described through the harmonic potential.

The corresponding dispersion equation was derived and analytical expressions (24)
and (27) are found for the limiting value of the velocity of the lowest dispersive
mode from this dispersion equation.

The algorithm was developed for doing numerical investigations and this algorithm,
first, was tested on the known problem which had been investigated by the other
authors. The basic numerical investigations were made for the case where the ma-
terial of the inner hollow cylinder is stiffer than that of the external

hollow cylinder, i.e. for the case where µ(1)/µ(2) > 1. Concrete numerical results
are presented for the case where the initial strains in the cylinders are equal to
each other, i.e. λ

(1)
3 = λ

(2)
3 . According to these results the following concrete

conclusions are indicated.
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               Figure 4: The influence of the initial strains on the dispersion curves constructed for 

the various values of (1) /h R  under  ,5/ )2()1( =μμ (2) / 0.1;h R =   

                (1) / 0.1;h R =                  (1) / 0.5;h R =                   (1) / 1.0h R =  
 
5. Conclusions 
 
Within the framework of the piecewise homogenous body model with the use 

of the TLTEWISB, the torsional wave dispersion in the finite pre-strained bi-
material compounded hollow cylinder made from high elastic materials was 
investigated. In this case, it was assumed that the mechanical relations for the 
components of the cylinder are described through the harmonic potential. 

The corresponding dispersion equation was derived and analytical expressions 
(24) and (27) are found for the limiting value of the velocity of the lowest 
dispersive mode from this dispersion equation. 

Figure 4: The influence of the initial strains on the dispersion curves constructed
for the various values of h(1)/R under µ(1)/µ(2) = 5, h(2)/R = 0.1; h(1)/R =
0.1;h(1)/R = 0.5h(1)/R = 1.0

The velocity of the torsional wave propagation µ(1)/µ(2), i.e. with decreasing of
the stiffness of the outer hollow cylinder material in the considered body decrease
with i.e. the values of c/c(1)

2 (c(1)
2 =

√
µ(1)/ρ(1))

The values of c/c(1)
2 increase (decrease) with initial stretching (compression) of the

cylinder;

The influence of the initial strains of the cylinders on the torsional wave propagation
velocity in that decrease (increase) h(2)/R

(
h(1)/R

)
. Because the material of the

inner hollow cylinder is stiffer than that of the outer hollow cylinder.

Moreover, the foregoing results agree qualitatively with the results attained in the
paper Ozturk and Akbarov (2008).

The results and the method of the present investigation can be used for determina-
tion and controlling of the noise of the bi-layered polymer pipes which are used for
transmitting of various type liquids. Because the initial strains in these tubes may
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The algorithm was developed for doing numerical investigations and this 

algorithm, first, was tested on the known problem which had been investigated 
by the other authors. The basic numerical investigations were made for the case 
where the material of the inner hollow cylinder is stiffer than that of the external 

hollow cylinder, i.e. for the case where (1) (2) 1μ μ > . Concrete numerical 
results are presented for the case where the initial strains in the cylinders are 

equal to each other, i.e. (1) (2)
3 3λ λ= . According to these results the following 

concrete conclusions are indicated. 
 
 
 

Figure 5: The dispersion curves constructed for various values of µ(1)/µ(2) under
h(1)/R = h(2)/R = 0.1, h(1)/R = 0.1; µ(1)/µ(2) = 2; µ(1)/µ(2) = 5; µ(1)/µ(2) = 10

be arise as a result of corresponding manufacturing procedures, as well as, as a re-
sult of the change of the environmental temperature. Consequently, the knowledge
on the influence of the considered initial strains on the wave propagation velocity
can be used, for example, for decaying of the noises which arise under fluid flowing
in the bi-layered pipes. At the same time, the results of these investigations can be
used for the determination of the residual and applied stress in the bi-layered high
elastic materials under non-destructive stress analyses Guz and Makhort (2000),
Guz (2004), Rose (2004). In this reason, the results obtained in the present pa-
per can be also taken as a little contribution to the theoretical bases of the non-
destructive stress analyses of the many-layered polymer (high-elastic) materials. In
addition, the expression (24) obtained in the present paper for asymptotic values
of the torsional wave propagation velocity can be directly used for determination
of the influence of the considered initial strains on the values of the effective shear
modulus of the composite material consisting of the layers of the bi-layered hollow
cylinder.
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