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A Modified Prandtl-Ishlinskii Model and its Applications
to Inverse Control of Piezoelectric Actuators

J. H. Qiu1,2, H. Jiang1, H. L. Ji1 and N. Hu3

Abstract: Piezoelectric actuators based motion-producing devices are widely used
in precision machining, deformable mirrors, micropumps and piezoelectric injec-
tion systems. However, because of their hysteresis nonlinear property, the piezo-
electric actuators can not provide absolutely precise displacements. To solve this
problem, researchers applied inverse control method to compensate the nonlinear-
ity of piezoelectric actuators, and the inverse models are mainly based on tradi-
tional hysteresis models such as the Preiasch model or Prandtl-Ishlinskii model.
In this paper, a new approach for inverse control of piezoelectric actuators is pre-
sented. The new method utilize a modified Prandtl-Ishlinskii model which is based
on a combination of two asymmetric hysteresis operators, and the two operators
can independently model ascending branches and descending branches of hystere-
sis loops. Based on the inversion of the proposed model, an open-loop inverse
controller and an adaptive inverse controller are designed and implemented in a
real-time control system. The performances of the two controllers are tested and
assessed. The experimental results show that the open-loop inverse controller can
suppress the hysteresis nonlinearity to 2.31% and the adaptive inverse controller
can reduce the hysteresis nonlinearity to 2.02%.

Keywords: piezoelectric actuators, inverse control, modified Prandtl-Ishlinskii
model

1 Introduction

Piezoelectric actuators are widely used in micro-positioning devices as they can
generate displacement with sub-nanometer level resolution. However, due to the
intrinsic ferroelectricity of piezoceramics, hysteretic nonlinearities are present in
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piezoelectric actuators and their positioning accuracy is greatly affected. In order
to compensate the hysteresis nonlinearity of piezoelectric actuators, a lot of meth-
ods have been developed and they can be briefly classified into three categories:
electric charge control, closed-loop control and open-loop inverse control [New-
comb and Flinn (1982); Furutani et al. (1998); Barrett and Quate (1991); Croft
et al. (1999)]. The open-loop inverse control utilizes an inverse hysteresis model
to compensate the nonlinearity of a piezoelectric actuator. This scheme requires
precise mathematical model that closely describes hysteresis behavior of actuators
but doesn’t need any position sensor, and the control system is immune to insta-
bility problem. Therefore, inverse model based compensation has become a more
attractive option in some tracking control applications.

The Preisach model [Ge and Jouaneh (1995); Ge and Jouanen (1996); Hughes and
Wen (1997); Hu and Mrad (2002)] is a well-known hysteresis model that has been
proposed and developed for hysteresis modeling and compensation. Besides, the
Generalized Maxwell Slip (GMS) model [Goldfarb and Celanovic (1997); Badel et
al. (2007)] and the Prandtl-Ishlinskii model [Janocha and Kuhnen (2000); Janaideh
et al. (2008)] have also been used in hysteresis modeling of piezoelectric actuators.
The Preisach model can model various types of hysteresis loops, but it requires
plenty of parameters and costs a lot of computation to identify those parameters. In
contrast, the Prandtl-Ishlinskii model and GMS model are analytically invertible,
much simpler than the Preisach model, and can easily be used to design inverse con-
troller. Both of the two models have an odd symmetry property so that they can only
model centrally symmetric hysteresis loops. However, the hysteresis loops of most
piezoelectric actuators are not centrally symmetric [Miller and Savage (1959)]. To
overcome the odd symmetry property, the Prandtl-Ishlinskii operator is combined
with a saturation operator in series and nonsymmetrical nonlinearity is added to the
classical Prandtl-Ishlinskii operator. This approach allows modeling of asymmetric
hysteresis loops, but it also features twice transformation of input signals therefore
increases the complexity and computation cost of parameter identification [Kuhnen
(2003); Ang et al. (2007)].

In the former study a modified Prandtl-Ishlinskii model is proposed for model-
ing nonsymmetrical hysteresis nonlinearity of piezoelectric actuators [Jiang et al.
(2009)]. This approach overcomes the odd symmetry restrictive by combining two
asymmetric operators in parallel, and the two asymmetric operators respectively
correspond to the ascending branch and the descend branch of a complete hystere-
sis loop. It was proved that the proposed model satisfies wiping-out property but
does not satisfy congruency property. The identification of the proposed model
was based on an recursive least-square method, and this is a main advantage of the
proposed model because the identification procedure is faster and simpler than the
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identification procedures of other classical hysteresis models. The proposed model
also exhibited a very high accuracy in characterizing the hysteresis nonlinearity of
piezoelectric actuators.

In this study, the modified Prandtl-Ishlinskii model is applied to the inverse control
of hysteresis of a piezoelectric actuator to validate its effectiveness. Two controllers
based on the inverse model of the modified Prandtl-Ishlinskii model, one feedfor-
ward inverse controller and the other an adaptive inverse controller, are developed.
Both the two controllers are implemented in real-time control tasks and experimen-
tal results show that the inverse modified Prandtl-Ishlinskii model-based controller
is effective for hysteresis compensation of piezoelectric actuators.

2 The Inverse Modified Prandtl-Ishlinskii Model

Because the classical Prandtl-Ishlinskii model can not characterize the asymmetric
hysteresis of piezoelectric actuators, a modified Prandtl-Ishlinskii model for asym-
metric hysteretic nonlinearity of piezoelectric actuators was proposed in the former
study [Jiang et al. (2009)]. The proposed asymmetric play operator consists of two
parts, which are called the right-side play operator (RSPO) and the left-side play
operator (LSPO). They respectively represent the right-side hysteretic nonlinearity
and the left-side hysteretic nonlinearity of a system with hysteresis. The Prandtl-
Ishlinskii inverse model is based on the inverse operator of RSPO and LSPO. In or-
der to drive the inverse model, the modified Prandtl-Ishlinskii model is introduced
first.

2.1 The modified Prandtl-Ishlinskii model

If a threshold 0 < r < 1 is given, the right-side play operator w = Fr
r [v](t) for

any piecewise monotone input function v : [0, tE ]→ [0,1] is define as [Jiang et al.
(2009)]

w(0) = Fr
r [v](0) = f r

r (v(0),0,1,0),
w(t) = Fr

r [v](t) = f r
r (v(t),w(ti),κ(t),λ (t)), for ti < t < ti+1, 0≤ i < N,

(1)

where

f r
r (v,w,κ,λ ) = max{ v− r

1− r
,min{κv+λ ,w}}, (2)

κ(t) =
wM(t)−wm(t)
vM(t)− vm(t)

, λ (t) =
vM(t)wm(t)− vm(t)wM(t)

vM(t)− vm(t)
, (3)

and vM(t),vm(t),wM(t) and wm(t) are values related to the latest dominant extrema
of v(t) and w(t). The dominant extrema of an input or an output string are such ex-
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trema that have influences on the memory of hysteresis, and they can be generated
by Madelung deletion rule [Brokate and Kenmochi (1996)].

When the threshold 0 < r < 1 is given, the left side play operator w = F l
r [v](t) for

any piecewise monotone input function v : [0, tE ]→ R is define as

w(0) = F l
r [v](0) = f l

r (v(0),0,1,0),

w(t) = F l
r [v](t) = f l

r (v(t),w(ti),κ(t),λ (t)), for ti < t < ti+1, 0≤ i≤ N−1,

(4)

where

f l
r (v,w,κ,λ ) = max{ v

1− r
,min{κv+λ ,w}}, (5)

and κ(t) and λ (t) are defined using the definitions given in Eq. (3). The transfer
characteristics of the above two operators are shown in Figure 1, and it can be
clearly seen that both RSPO and LSPO have an asymmetric transfer characteristic.
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The modified Prandtl-Ishlinskii model is define as

x(t) = H[v](t) = pv(t)+
∫ R

0
qr(r)Fr

r [v](t)dr +
∫ R

0
ql(r)F l

r [v](t)dr (6)

where qr(r) and ql(r) are density functions and R is the upper limit of r. p is a
constant that satisfies

p =
(

1−
∫ R

0
qr(r)dr−

∫ R

0
ql(r)dr

)
. (7)
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Substitution of Eq. (10) into Eq. (9) gives

x(t) = H[v](t) = v(t)+
∫ R

0
qr(r)(Fr

r [v](t)− v(t))dr+
∫ R

0
ql(r)

(
F l

r [v](t)− v(t)
)

dr.

(8)

The discrete form of the modified Prandtl-Ishlinskii model is given by

x(t) = H[v](t) = v(t)+
M

∑
j=1

qr
j

(
Fr

r j
[v](t)− v(t)

)
+

M

∑
j=1

ql
j

(
F l

r j
[v](t)− v(t)

)
. (9)

where M is the number of LSPOs or RSPOs used in the discrete modified Prandtl-
Ishlinskii model.

2.2 The inverse modified Prandtl-Ishlinskii model

The inversion of the play operator-based Prandtl-Ishlinskii model is usually ex-
pressed by summation of stop operators, which are complementary of play op-
erators. The modified Prandtl-Ishlinskii model proposed in the former study is
based on RSPOs and LSPOs. In order to construct the inversion of the modified
Prandtl-Ishlinskii model, right-side stop operators (RSSOs) and left-side stop oper-
ators (LSSOs) are defined as follows:

w(t) = Er
r [v](t)

=
v(t)

r
− F l

r [v](t)(1− r)
r

=
v(t)

r
−min

{
v(t)

r
,
1− r

r
min{κv(t)+λ ,w(ti)}

}
(ti < t ≤ ti+1)

(10)

and

w(t) = E l
r[v](t)

=
v(t)

r
− Fr

r [v](t)(1− r)
r

=
v(t)

r
− 1− r

r
min

{
v(t)− r

1− r
,min{κv(t)+λ ,w(ti)}

}
(ti < t ≤ ti+1)

(11)

The relationship between LSSO and RSPO, and that between RSSO and LSPO are
illustrated in Figure 2. Obviously, as the input varies periodically between 0 and 1,
the point of input and output pair, (v, w), moves in the counterclockwise direction
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on the RSPOs and LSPOs, but it moves in the clockwise direction on the RSSOs
and LSSOs. They are related by the following complementary expressions:

rE l
r[v](t)+(1− r)F l

r [v](t) = v(t), (12)

and

rE l
r[v](t)+(1− r)F l

r [v](t) = v(t). (13)

  - 5 -
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The definition of the inverse modified Prandtl-Ishlinskii model is given by

z(t) = H−1[x](t) = gv(t)+
∫ R′

0
ar(r′)E ′rr[x](t)dr′+

∫ R′

0
al(r′)E ′lr[x](t)dr′, (14)

where r′ is the threshold of the RSSOs and LSSOs, ar(r′) and al(r′) are density
functions, and R′ is the upper limit of r′. g is a constant that satisfies

g =
(

1−
∫ R′

0
ar(r′)dr′−

∫ R′

0
al(r′)dr′

)
(15)

For fast implementation of the inverse modified Prandtl-Ishlinskii model in real-
time controllers, an appropriate discrete form is necessary and it can be obtained
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by translating the integrations in Eq. (14) to summations, given by

z(t) = H−1[x](t) =

(
1−

N

∑
j=1

ar
j−

N

∑
j=1

al
j

)
x(t)+

N

∑
j=1

ar
jE

r
r′j
[x](t)+

N

∑
j=1

al
jE

l
r′j
[x](t)

= x(t)+
N

∑
j=1

ar
j

(
Er

r′j
[x](t)− x(t)

)
+

N

∑
j=1

al
j

(
E l

r′j
[x](t)− x(t)

)
(16)

Eq. (16) refers to the discrete expression of the inverse modified Prandtl-Ishlinskii
model, which relates the desired displacement x to the compensated voltage z. In
order to implement inverse control the parameters ar

j and al
j must be determined

from experimental data.

There are two approaches to determine the parameters ar
j and al

j. The first is to
caculate the parameters ar

j and al
j from the direct inversion of Eq. (19) by letting

N = M, the parameters of which can be calculated using a recursive method intro-
duced in [Jiang et al. (2009)]. The second is to identify ar

j and al
j directly from

experimental data using a recursive method introduced in the next section. The
direct inversion of Eq. (19) is introduced in this section.

First, the ascending branch, in which both the normalized input voltage and the
normalized output displacement vary from 0 to 1, is considered. Obiously the
asceding branch in the direct modified Prandtl- Ishlinskii model and the inverse
modified Prandtl- Ishlinskii model can be expressed by

x(t) = H[v](t) = v(t)+
M

∑
j=1

qr
j

(
Fr

r j
[v](t)− v(t)

)
, (17)

z(t) = H−1[x](t) = x(t)+
M

∑
j=1

al
j

(
E l

r′j
[x](t)− x(t)

)
, (18)

because
M
∑
j=1

ar
j

(
Er

r′j
[x](t)− x(t)

)
and

M
∑
j=1

ql
j

(
F l

r j
[v](t)− v(t)

)
are zero on the asced-

ing branch. The corresponding values of the threshold r j are supposed to be r′j.
Obviousy,

r′j = r j +
M

∑
j=1

qr
j

(
f r
r j
(r j,0,1,0)− r j

)
, (19)

Corresponding to Eqs. (20) and (21), two functions ϕ(v) and ψ(x) are defined as
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follows:

ϕ(v) = v+
M

∑
j=1

qr
j

(
f r
r j

(v,0,1,0)− v
)
, (20)

ψ(x) = x+
M

∑
j=1

al
j
1− r′j

r′j

(
x− f r

r′j
(x,0,1,0)

)
. (21)

Obviously, ψ(x) is the inverse function of ϕ(v). Their derivatives, ϕ ′(v) and ψ ′(x),
are

ϕ
′(v) = 1−

M

∑
j=J

qr
j, (22)

ψ
′(x) = 1−

M

∑
j=J

al
j
1− r′j

r′j
, (23)

for r j−1 < v < r j and r′j−1 < x < r′j( j = 1, · · · ,M). It is assumed that r0 = r′0 = 0 and
rM+1 = r′M+1 = 1. Obviously, ϕ ′(v) and ψ ′(x)are piece-wise constant functions.
Since ψ(x) is the inverse function of ϕ(v), there exists

ψ
′(x) =

(
ϕ
′(v)
)−1

. (24)

The ar
j can be solved from Eqs. (22)-(23) by changing j from M to 1. In the same

way, the parameters al
j can also be obtained.

2.3 The parameter identification of inverse model

The parameters ar
j and al

j can also be identified directly from experimental using a
recursive approach. Suppose the measurement data in the physical system are

{(ṽ1, x̃1),(ṽ2, x̃2), · · · ,(ṽk, x̃k), · · · ,(ṽK , x̃K)} . (25)

The measurement data can not be used directly for model identification as the input
and output variables associated with the model are constrained to the unity range,
so that the measurement data should be transformed to that range through a normal-
ization process. Assume corresponding input and output data in the model space
are

{(v1,x1 = H[v1]),(v2,x2 = H[v2]), · · · ,(vk,xk = H[vk]), · · · ,(vK ,xK = H[vK ])} ,
(26)
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the transformation rule of data from physical space to the model space is given by

vk =
ṽk− ṽmin

ṽmax− ṽmin
, xk =

x̃k− x̃min

x̃max− x̃min
, (27)

where

ṽmax = max{ṽ1, ṽ2, · · · , ṽK}, ṽmin = min{ṽ1, ṽ2, · · · , ṽK},
x̃max = max{x̃1, x̃2, · · · , x̃K}, x̃min = min{x̃1, x̃2, · · · , x̃K}.

(28)

The approach for parameter identification is basically a recursive least-square algo-
rithm and the updating expressions are given by

ar(k +1) = ar(k)+2γe(k) [Er[x(k)]−x(k)] ,

al(k +1) = al(k)+2γe(k)
[
El[x(k)]−x(k)

]
,

(29)

where

e(k) = ek = Vck−

(
xk +

M

∑
j=1

ar
j

(
Er

r j
[xk]− xk

)
+

M

∑
j=1

al
j

(
E l

r j
[xk]− xk

))
ar = [ar

1,a
r
2, · · · ,ar

M], al = [al
1,a

l
2, · · · ,al

M],

Er[x(k)] = Er[xk] =
[
Er

r′1
[xk],Er

r′2
[xk], · · · ,Er

r′M
[xk]
]
,

El[x(k)] = El[xk] =
[
E l

r′1
[xk],E l

r′2
[xk], · · · ,E l

r′M
[xk]
]
,

x(k) = xk = [xk,xk, · · · ,xk]1×M.

(30)

Here k is the number of iteration, Vck = Vc(k) is compensated command voltage as
discussed later, xk is the measured displacement, and γ is the iteration gain which
determines the learning rate of the identification. The recursion law shown in Eq.
(30) guarantees that the normalized error tends to zero asymptotically [Narendra
and Annaswamy (1989)]. In real-time control applications, the value 0.1 for γ

is enough to guarantee the inverse hysteresis model converges rapidly. The con-
vergence criterion of the inverse hysteresis model is defined as that |ek− ek−1| is
smaller than a certain value.

The parameters ar and al have initial values for the first recursion. Theoretically
the initial values can be arbitrary, but normally zero vectors were used as their
initial value. Using one experimental data set, the identification procedure shown
in Eq. (30) can be repeated for several times until satisfactory results are obtained.
However, the identified values of ar and al in the previous experiment can be used
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as the initial value in the next experiment. The parameter identification procedure
can be also expressed in signal flow chart form, which is shown in Fig. 3.

As soon as the model identification is completed, the model can be implemented
to generate output data from input data, and input and output data obtained in the
model space should be re-transfered to their original physical space. The transfor-
mation rules from model space to the physical space are given by

ṽk = vk(ṽmax− ṽmin)+ ṽmin (31)

x̃k = yk(x̃max− x̃min)+ x̃min (32)

3 Inverse Controllers and Experimental System

In this study, hysteresis compensation of the piezoelectric actuator is performed
with an inverse control system. The system block diagram is given by Fig. 4,
where x̃r is the command displacement, and xr is the normalized command dis-
placement. Ṽr is uncompensated driving voltage corresponding to x̃r and Vr is its
normalized form. x̃r and Ṽrare proportional with their ratio equal to the sensitiv-
ity of the piezoelectric actuator, but due to normalization, xr = Vr. The inverse
controller transfers the driving voltage from xr or Vr to a compensated voltage Vc,
which is then amplified to drive the piezoelectric actuator. The inverse controller
utilizes the proposed inverse model shown in Eq. (16) for the inverse compensation
of Vr. The uncompensated voltage Vr and the compensated voltage Vc correspond
to the input x(t) and output z(t) of the inverse operator in Eq. (16), respectively.
The hysteresis identifier is used to generate parameters for the inverse model of
piezoelectric actuators. The thresholds r′j of the RSSOs and LSSOs in the inverse
model are determined by r′j = j/(M +1) ( j = 1, · · · ,M). The number of RSSOs
and LSSOs, M, was set to 19 in the control experiments.

The switch in Fig. 4 can change the operation mode of the control system. When
it is turned off, the parameters in the inverse controller are fixed and the controller
is just a feedforward inverse controller; but when it is turned on, the parameters
in the inverse controller is updated in each time step by the hysteresis identifier
and the controller becomes an adaptive inverse controller. In the turned-off mode,
the identified parameters are copied to the inverse controller from the hysteresis
identifier once the inverse hysteresis model converged, and the driving voltage is
compensated to guarantee that the output displacement of the piezoelectric actuator
is equal to the command displacement xr or proportional to the uncompensated
driving voltage Vr.
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Figure 3: The signal flow chart of the hysteresis identifier

The experimental setup is shown in figure 5. The setup includes a dSPACE board
hosted by a personal computer, a power amplifier, a fiber sensor and a piezoelectric
stack actuator. The host computer was used to generate the control codes, which
were downloaded and implemented in dSPACE control board. The power amplifier
was used to amplify the voltage to the piezoelectric stack actuators. The displace-
ments of the actuator were measured with a fiber sensor. All measurement data
were sent to the host computer and saved.
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Figure 4: The block diagram of the inverse control system

Figure 5: The experimental setup

4 Experimental Results and Discussion

The first experiment performs feedforward inverse control to the piezoelectric ac-
tuator in tracking 0.5Hz sinusoidal driving voltage with varying amplitudes. Figure
6(a) illustrates the uncompensated voltage and the compensated voltage signals.
Figure 6(b) shows the measured displacement and Fig. 6(c) shows the measured
displacement versus uncompensated driving voltage. Figures 7 and 8 show the ex-
perimental results where the driving voltage waveforms are different. It’s clear that
in the above three conditions the measured displacement is almost exactly propor-
tional to the uncompensated driving voltage, and further analysis indicates that hys-
teresis nonlinear errors between the uncompensated driving voltage and the mea-
sured displacement in the three conditions are reduced to lower than 1.87%, 2.17%
and 2.31% of the total displacement range respectively.

The second experiment performs adaptive inverse control to the piezoelectric ac-
tuator under the same driving voltage conditions as used in the first experiment.
The graphical results are shown in Figs. 9-11 respectively. The presence of adap-
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Figure 7. Hysteresis compensation with feedforward inverse controller: the second case 
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tive inverse controller can slightly raise the performance of the control system.
The hysteresis nonlinear errors between the uncompensated driving voltage and
the measured displacement are depressed to lower than 1.49%, 1.86% and 2.02%
of the total displacement range respectively.
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and the measured displacement are depressed to lower than 1.49%, 1.86% and 2.02% of the total 
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Figure 9. Hysteresis compensation with adaptive inverse controller: the first case 
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Figure 10. Hysteresis compensation with adaptive inverse controller: the second case 
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In the above two experiments, the control system operated in two different modes.
The main difference between the two modes is association of the adapting ability.
The feedforward inverse controller utilizes a fixed inverse model so that the system
is highly stable and immune to any disturbance, but in conditions that the hystere-
sis characteristics are changing with time, the feedforward inverse controller can
not adapt to the changes of hysteresis property. The adaptive inverse controller can
adapt itself to the changing behavior of the piezoelectric actuators and has exhibited
better control performances in the experiment of this study. However, the system
is not as stable as the former one. The stability of adaptive control system can be
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and the measured displacement are depressed to lower than 1.49%, 1.86% and 2.02% of the total 
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improved by adjusting the convergence coefficient γ online. In real-time control
conditions, as disturbances and noise always exist and the hysteresis characteris-
tics of piezoelectric actuators are normally time-invariant, the feedforward inverse
controller is more suitable for industry applications.

5 Conclusions

In this study, right-side stop operators (RSSOs) and left-side stop operators (LSSOs)
were defined and the inverse modified Prandtl-Ishlinskii model were constructed
from the RSSOs and LSSOs for the inverse control of a piezoelectric hysteresis.
The proposed inverse model successfully simulated the inverse asymmetric hys-
teresis loops of the studied piezoelectric actuator. Control system based on the
proposed inverse model was designed to operate at two modes: feedforward in-
verse controller mode and adaptive inverse controller mode. The main advantage
of the proposed control system is that the parameters identification procedure can
be processed automatically, so it doesn’t need to identify the model parameters
beforehand. Experiments have been performed on the studied piezoelectric actua-
tor and the results have shown that the control system can significantly reduce the
hysteresis nonlinear error of the studied piezoelectric actuator.
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