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A Highly Accurate Multi-Scale Full/Half-Order
Polynomial Interpolation

Chein-Shan Liu1

Abstract: For the computational applications in several areas, we propose a single-
scale and a multi-scale diagonal preconditioners to reduce the condition number of
Vandermonde matrix. Then a new algorithm is given to solve the inversion of the
resulting coefficient matrix after multiplying by a preconditioner to the Vander-
monde matrix. We apply the new techniques to the interpolation of data by using
very high-order polynomials, where the Runge phenomenon disappears even the
equidistant nodes are used. In addition, we derive a new technique by employ-
ing an m-order polynomial with a multi-scale technique to interpolate 2m+1 data.
Numerical results confirm the validity of present polynomial interpolation method,
where only a constant parameter R0 needs to be specified in the multi-scale expan-
sion. For the Differential Quadrature (DQ), the present method provides a very
accurate numerical differential. Then, by a combination of this DQ and the Fic-
titious Time Integration Method (FTIM), we can solve nonlinear boundary value
problems effectively.

Keywords: Multi-scale polynomial interpolation, Half-order polynomial inter-
polation, Differential quadratures, Vandermonde matrices

1 Introduction

The Vandermonde matrices arise in a variety of mathematical applications in poly-
nomial interpolation, numerical differentiation, approximation of linear functional,
rational Chebyshev approximation, and differential quadrature (DQ). In these ap-
plications, finding the solution of a linear system with the Vandermonde matrix as
a coefficient matrix, and the inversion of the Vandermonde matrix are required. So
an efficient method to find the inversions of Vandermonde matrices is desirable.
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The condition number of Vandermonde matrix may be quite large [Gautschi (1975)],
causing a large error when one computes the inversion of Vandermonde matrix
appeared in a large scale linear system. Vandermonde matrices are notoriously
ill-conditioned. Previously, Liu, Hong and Atluri (2010) have developed a natural
regularization method to solve those ill-posed linear problems for the Vandermonde
system. Beckermann (2000) and Li (2006) gave what the optimal condition num-
ber of Vandermonde matrix could be expected. Several authors have therefore pro-
posed algorithms which exploit the structure of Vandermonde matrix in operations
to compute numerically stable solutions, instead of that required by the Gaussian
elimination [Higham (1987); Higham (1988); Björck and Pereyra (1970); Calvetti
and Reichel (1993)]. These methods mainly rely on constructing first a Newton
interpolation of the polynomial and then converting it to the monomial form.

Wertz (1965) has suggested a simple numerical procedure, which can greatly fa-
cilitate the computation of the inverse of Vandermonde matrix. Neagoe (1996) has
found an analytic formula to calculate the inverse of Vandermonde matrix. How-
ever, a direct application of Neagoe’s formula will result in a tedious algorithm with
O(n3) flops. Some discussions about the numerical algorithms for the inversions of
Vandermonde matrices are summarized by Gohberg and Olshevsky (1997).

Since the works pioneered by Bellman and Casti (1971), and Bellman, Kashef
and Casti (1972), Differential Quadrature (DQ) has been developed by many re-
searchers. However, due to its ill-conditioned property, this method is limited to the
small scale engineering problems. Shu (2000) has developed a systematic method
to compute the weighting coefficients, under the analysis of a high-order polyno-
mial approximation and the analysis in a linear vector space. Recently, Shen and
Liu (2011) have employed a least-square method to determine the weighting coef-
ficients, such that the burden in solving the ill-conditioned Vandermonde problem
can be alleviated.

Interpolation is a process of using known data values to estimate unknown data
values. Various interpolation techniques have been used in engineering sciences.
It is by now a commonplace observation that the needs of automatic digital com-
putation have spurred an enormous revival of interest in methods of interpolating
data or continuous functions by functions which depend only on a finite number
of parameters. Apart from its applications approximation theory is a lively branch
of mathematical analysis. Although the Weierstrass theorem guarantees that a con-
tinuous function defined on a finite interval can be approximated uniformly within
any preassigned error bound by polynomials, in a practical numerical computation
there appeared a counterexample due to Runge. Of course, the Runge phenomenon
is a computational problem and is not a mathematical problem, causing by the use
of uniform nodes in the interpolation. If right nodes are picked, the Runge’s phe-
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nomenon cannot occur. Unfortunately, for most cases in application we have to
interpolate the data with an equidistant sample.

Indeed, the polynomial interpolation is an ill-posed problem and it makes the inter-
polation by higher-order polynomials not being easy to numerical implementation.
In order to overcome these difficulties, Liu and Atluri (2009a) have introduced
a characteristic length into the high-order polynomials expansion, which improved
the numerical accuracy for the applications to solve some ill-posed linear problems.
At the same time, Liu, Yeih and Atluri (2009) have developed a multi-scale Trefftz-
collocation Laplacian conditioner to deal with the ill-conditioned linear systems.
This concept of multi-scale Trefftz-collocation method has been later employed by
Chen, Yeih, Liu and Chang (2012) to solve the sloshing wave problem. In this pa-
per we extend the work by Liu and Atluri (2009a), and propose a new multi-scale
interpolation technique by high-order polynomials of full and half orders, which
can overcome the above-mentioned ill-conditioned behavior. This paper is orga-
nized as follows. The new preconditioners are introduced in Section 2, where a
single characteristic length and a multi-scale characteristic length are developed.
In Section 3, based-on the single characteristic length we develop a fast algorithm
to find the inversion of Vandemonde matrix. Some numerical tests and applications
to polynomial interpolations and differential quadratures are reported in Section 4.
Section 5 is a major contribution by introducing a multi-scale and half-order poly-
nomial interpolation technique, where we use m-order polynomial to interpolate
2m+1 data. Finally, the conclusions are drawn in Section 6.

2 New preconditioning techniques for the Vandermonde matrices

Polynomial interpolation as its name is the interpolation of a given set of data by
a polynomial. In other words, given some data points as available by sampling a
measurement, the aim is to find a polynomial which goes exactly through these
points of data.

Given a set of n data points (xi,yi) where no two xi are the same, one is looking for
a polynomial p(x) of order at most n−1 with the following property:

p(xi) = yi, i = 1, . . . ,n, (1)

where xi ∈ [a,b], and [a,b] is a spatial interval of our problem domain.

The unisolvence theorem states that such a polynomial p(x) exists and is unique,
and can be proved by using the Vandermonde matrix:

p(x) =
n

∑
i=1

aixi−1, (2)
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where {xi, i = 0,1, . . .} constitute a monomial basis.

2.1 Transforming the Vandermonde matrix into another one

The statement that p(x) interpolates the data points means that Eq. (1) must hold.
If we substitute Eq. (2) into Eq. (1), we can obtain a system of linear equations to
determine the coefficients ai, which in a matrix-vector form reads as

1 x1 x2
1 . . . xn−2

1 xn−1
1

1 x2 x2
2 . . . xn−2

2 xn−1
2

...
...

... . . .
...

...
1 xn−1 x2

n−1 . . . xn−2
n−1 xn−1

n−1
1 xn x2

n . . . xn−2
n xn−1

n




a1
a2
...

an−1
an

=


y1
y2
...

yn−1
yn

 . (3)

We have to solve the above system for ai to construct the interpolant p(x) expressed
in Eq. (2). The transpose of the coefficient matrix on the left-side is commonly
referred to as a Vandermonde matrix, denoted by V:

V =



1 1 . . . 1 1
x1 x2 . . . xn−1 xn

x2
1 x2

2 . . . x2
n−1 x2

n
...

... . . .
...

...
xn−2

1 xn−2
2 . . . xn−2

n−1 xn−2
n

xn−1
1 xn−1

2 . . . xn−1
n−1 xn−1

n


, (4)

where the real numbers {x1, . . . ,xn} are called nodes. The determinant of V is
nonzero, which proves the unisolvence theorem: there exists a unique interpolating
polynomial in Eq. (2) to interpolate n data.

Although the above theorem is theoretically feasible, in a practical computation
by solving Eq. (3) for the polynomial interpolation the problem is ill-posed and it
makes the interpolation by using higher-order polynomials not being easy to nu-
merical implementation. Our strategy to solve this ill-conditioned problem of the
inversion of the Vandermonde matrix V is achieved by considering a precondition-
ing matrix:

R =



1 0 . . . 0 0
0 1

R0
. . . 0 0

...
... . . .

...
...

0 0 . . . 1
Rn−2

0
0

0 0 . . . 0 1
Rn−1

0

 , (5)
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where R0 is a characteristic length of the problem domain with a requirement that
all the nodes xi ∈ [−R0,R0], i = 1, . . . ,n.

Let

A = RV =



1 1 . . . 1 1
x1
R0

x2
R0

. . . xn−1
R0

xn
R0(

x1
R0

)2 (
x2
R0

)2
. . .

(
xn−1
R0

)2 (
xn
R0

)2

...
... . . .

...
...(

x1
R0

)n−2 (
x2
R0

)n−2
. . .

(
xn−1
R0

)n−2 (
xn
R0

)n−2

(
x1
R0

)n−1 (
x2
R0

)n−1
. . .

(
xn−1
R0

)n−1 (
xn
R0

)n−1


. (6)

Hence, from Eqs. (4) and (6) we can find the inverse of V by

V−1 = A−1R. (7)

In order to overcome the difficulties appeared in the conventional collocation Tr-
efftz method to solve the Laplace equation, Liu (2007a, 2007b, 2007c, 2008a),
Chen, Liu and Chang (2009), and Chen, Liu, Chang and Chang (2010) have pro-
posed a modified Trefftz method, refined this method by taking the characteristic
length into the T-complete functions, such that the condition number of the result-
ing linear equations system can be greatly reduced. The same idea is employed
here to reduce the ill-condition of the original Vandermonde matrix by including a
characteristic length R0 into the matrix equation.

2.2 Transforming the Vandermonde matrix into a non-Vandermonde matrix

The previous technique may be not effective for some Vandermonde matrices. In
order to derive another well-conditioned matrix from the Vandermonde matrix in
Eq. (4), let us consider a new set of coefficients:

ā1 = a1, āi = Ri−1
i−1ai, i = 2, . . . ,n, (8)

where Ri, i = 1, . . . ,n−1 is a sequence of numbers, and Ri−1
i−1 is the (i−1)th power

of Ri−1.

Inserting Eq. (8) for ai into Eq. (2) we can obtain a new polynomial interpolant:

p(x) = ā1 +
n

∑
i=2

āi

(
x

Ri−1

)i−1

. (9)
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If we substitute Eq. (9) into Eq. (1), we have a new system of linear equations in
the coefficients āi:

1 x1
R1

(
x1
R2

)2
. . .

(
x1

Rn−2

)n−2 (
x1

Rn−1

)n−1

1 x2
R1

(
x2
R2

)2
. . .

(
x2

Rn−2

)n−2 (
x2

Rn−1

)n−1

...
...

... . . .
...

...

1 xn−1
R1

(
xn−1
R2

)2
. . .

(
xn−1
Rn−2

)n−2 (
xn−1
Rn−1

)n−1

1 xn
R1

(
xn
R2

)2
. . .

(
xn

Rn−2

)n−2 (
xn

Rn−1

)n−1




ā1
ā2
...

ān−1
ān

=


y1
y2
...

yn−1
yn

 .

(10)

Let B be the transpose of the above system matrix, i.e.,

B =



1 1 . . . 1 1
x1
R1

x2
R1

. . . xn−1
R1

xn
R1(

x1
R2

)2 (
x2
R2

)2
. . .

(
xn−1
R2

)2 (
xn
R2

)2

...
... . . .

...
...(

x1
Rn−2

)n−2 (
x2

Rn−2

)n−2
. . .

(
xn−1
Rn−2

)n−2 (
xn

Rn−2

)n−2

(
x1

Rn−1

)n−1 (
x2

Rn−1

)n−1
. . .

(
xn−1
Rn−1

)n−1 (
xn

Rn−1

)n−1


. (11)

Upon defining a new diagonal matrix by

D =



1 0 . . . 0 0
0 1

R1
. . . 0 0

...
... . . .

...
...

0 0 . . . 1
Rn−2

n−2
0

0 0 . . . 0 1
Rn−1

n−1

 , (12)

we have

B = DV. (13)

But B is not a Vandermonde matrix. However, by suitably choosing the numbers of
Ri, B is a well-conditioned matrix, and we can apply the conjugate gradient method
(CGM) to calculate the inverse of B [Liu, Hong and Atluri (2010)]. Hence, we have

V−1 = B−1D. (14)
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In Section 4.2 we will give a highly ill-conditioned matrix of V to test the perfor-
mance for the reduction of the condition number by B.

The above problems are now searching a suitable diagonal matrix to reduce as much
as possible the condition number of a real Vandermonde matrix V by a multi-scale
row-scaling. Theoretically, there are theories of optimal scaling proposed by Bauer
(1963) and van der Sluis (1969). A matrix is equilibrated if all its rows have the
same norm. Generally speaking, choosing D such that DV is equilibrated min-
imizes the condition number of V. Usually, the optimally scaled Vandermonde
matrices are still rather ill-conditioned. In Section 5 we will propose a better half-
order polynomial interpolation and still with a multi-scaling technique.

3 A new algorithm

Instead of directly finding the inverse of V in Eq. (4), we develop a new algorithm
to find the inverse of A in Eq. (6), and then applying Eq. (7) to find the inverse of
V. Let ai = xi/R0, i = 1, . . . ,n be the new nodes, and define the master polynomial
by

Pn(x) =
n

∏
k=1

(x−ak) = xn +
n

∑
k=1

Akxn−k, (15)

whose zeros are the nodes of A. The coefficients Ak are functions of the roots ak.

To express Ai in terms of ai as suggested by Wertz (1965), we can obtain polyno-
mials with increasing degree. For k = 1 we have

P1(x) = x−a1, A(1)
1 =−a1,

where the superscript (k) of A(k)
m , m = 1, . . . ,k indicates the degree of the source

polynomial.

For k = 2 we have

P2(x) = x2− (a1 +a2)x+a1a2, A(2)
1 = A(1)

1 −a2, A(2)
2 =−a2A(1)

1 .

For k = 3,4, . . . ,n it can be verified that

A(k)
k =−akA(k−1)

k−1 ,

A(k)
m = A(k−1)

m −akA(k−1)
m−1 , m = k−1,k−2, . . . ,2,

A(k)
1 = A(k−1)

1 −ak. (16)
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The ( j,k)-element of A−1 is given by Neagoe (1996) as

A(n−1)
j,n−k/D j, D j =

j−1

∏
k=1

(a j−ak)
n

∏
k= j+1

(a j−ak), (17)

where A(n−1)
j,n−k can be calculated by

A(n−1)
j,1 = An

1 +a j,

A(n−1)
j,m = A(n)

m +a jA
(n−1)
j,m−1, m = 2,3, . . . ,n−1. (18)

After all elements of A−1 are obtained, we can insert them into Eq. (7) to calculate
V−1. The present algorithm requires only O(n2) flops.

4 Numerical tests

4.1 Comparing the condition numbers of V and A

We compare the condition numbers of the coefficient matrices in Eqs. (4) and (6)
for different n and R0. The condition number of a non-singular square matrix A is
defined by

Cond(A) = ‖A‖‖A−1‖. (19)

The norm for A is the Frobenius norm.

The interval of [a,b] = [0,4] is fixed, and the nodal points are given by xi = (i−
1)∆x = (i−1)(b−a)/(n−1). Fixing n = 51, we apply the CGM to find the inverse
matrix under a convergence criterion 10−10. The condition number is calculated by
Eq. (19), which is plotted with respect to R0 in Fig. 1(a). It can be seen that when
R0 is smaller than 3 and up to R0 = 1 the condition number increases very fast to
a very large value over 1031, which is the condition number of the Vandermonde
matrix in Eq. (4). Conversely, when R0 > 3 the condition number tends to a stable
value smaller than 109.

In Fig. 1(b) we plot the condition number with respect to n in the range of 30≤ n≤
60 for R0 = 1 and R0 = 4. It can be seen that without taking the characteristic length
into account, the condition number of the Vandermonde matrix increases exponen-
tially with respect to n [Gautschi and Inglese (1988); Skrzipek (2004)], and with a
huge value up to 1038 when n = 60. Conversely, when the characteristic length is
taken to be R0 = 4 in Eq. (6), the condition number can be controlled almost in the
order of 109.
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Figure 1: Comparing the condition numbers in (a) for different R0, and (b) for 

different n with R0=1 and R0=4. 

 

 

Figure 1: Comparing the condition numbers in (a) for different R0, and (b) for
different n with R0 = 1 and R0 = 4.

4.2 The integer nodes

We can assess the accuracy of the inversion of V by

e1 = |‖V−1V‖−
√

n|, (20)

where n is the dimension of V.

Let xi = i, i = 1, . . . ,n be the integer nodes of V. We consider two cases with
R0 = 1 and R0 = n, and apply the algorithm in Section 3 to calculate V−1. From
Fig. 2 it can be seen that both the computations with R0 = 1 and R0 = n have the
same accuracy as n≤ 14. However, when n > 14 the case which does not consider
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the characteristic length with R0 = 1 leads to a large error, growing exponentially
with n.

 

 

 

 

 

 

 

 

 

 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9

1E+10

1E+11

1E+12

1E+13

1E+14

1E+15

1E+16

1E+17

1E+18

e1

R0=1

R0=n

 

 

Figure 2: Plotting the error of e1 with respect to n for R0=1 and R0=n. 

 

 

 

 

 

 

 

Figure 2: Plotting the error of e1 with respect to n for R0 = 1 and R0 = n.

4.3 Equidistant nodes in the interval (0,1)

The nodes used in this test case are given by xi = i/(n + 1), i = 1, . . . ,n. Go-
hberg and Olshevsky (1997) have demonstrated the ill-condition of this case that
Cond(V) = 6× 107 when n = 10, and Cond(V) = 4× 1018 when n = 30. We in-
vestigate the condition numbers of B by using Ri = xi+1 +R0, where R0 = 0.01 and
R0 = 0.1 are used. In Fig. 3(a) we plot the condition numbers of B versus n, where
we use the CGM to calculate B−1 under a convergence criterion 10−9. The condi-
tion numbers for both cases are smaller than 109, which are much smaller than the
condition number of V given above.

Corresponding to Eq. (20), we can also assess the accuracy of the inversion of V
by

e2 = |‖VV−1‖−
√

n|. (21)

Theoretically, V and V−1 are commutative, i.e., VV−1 = V−1V = In, and e1 =
e2 = 0. But numerically, it is usually not true. For ill-conditioned matrices, in
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Figure 3: Under different cases: (a) plotting the condition numbers, (b) plotting the 

error of e1, and (c) plotting the error of e2. 

 

 

 

 

Figure 3: Under different cases: (a) plotting the condition numbers, (b) plotting the
error of e1, and (c) plotting the error of e2.

the inversions by numerical method the rounding errors will be enlarged greatly.
Jog (2004) has developed a new technique to suppress e2 for lower-dimensional
Vandermonde matrices.

How to effectively select the numbers Ri to suppress the errors of e1 and e2 is inter-
esting. In Figs. 3(b) and 3(c) we consider three cases: case 1 with Ri = xi+1 +0.01,
case 2 with Ri = xi+1 +0.1, and case 3 with Ri = |R0 +(i−1)[1−(n−1)R0]/(n−2)|
where R0 = 6.

The solid line shows case 2 by considering the reduction technique in Section 2.2
with Ri = xi+1 +0.1, while the dashed-dotted line for case 1 with Ri = xi+1 +0.01.
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They show that the numerical errors grow with n, and the numerical errors may
be large up to 109 for e1 and 108 for e2 when n = 50. Conversely, for case 3, the
numerical errors do not grow with n, and the numerical errors can be much smaller
than the above two cases. It can be seen that by a suitable choice of Ri the errors
can be greatly reduced when n is large.

4.4 The Runge phenomenon

The Runge phenomenon illustrates that a visible error can occur when we numeri-
cally construct a higher-order polynomial interpolant [Quarteroni, Sacco and Saleri
(2000)]. The function to be interpolated is

f (x) =
1

1+25x2 , x ∈ [−1,1]. (22)

The nodes used in this test case are given by xi =−1+2(i−1)/(n−1), i = 1, . . . ,n.
Gohberg and Olshevsky (1997) have demonstrated the ill-condition of this case that
Cond(V) = 7× 1018 when n = 50. We investigate the condition number of B by
using Ri = |xi+1|+R0, where R0 ≥ 0. Here we fix R0 = 1.5. In Fig. 4(a) we plot the
condition number of B versus n, where we use the CGM to calculate B−1 under a
convergence criterion 10−6. The error of e2 as defined above for B are also plotted
in Fig. 4(b).

Skrzipek (2004) has computed the relative left residual rlr = ‖V−1V−In‖/Cond(V),
and the relative right residual rrr = ‖VV−1 − In‖/Cond(V). We only compare
the case with n = 50. The results of rlr = 5.35× 10−17 and rrr = 2.77× 10−12

were obtained by Skrzipek (2004), while our results are rlr = 1.20× 10−20 and
rrr = 8.96×10−22. It can be seen that our results are much better than that calcu-
lated by Skrzipek (2004).

We apply the reduction technique in Section 2.2 by solving Eq. (10) to obtain āi,
which are then inserted into the new interpolant in Eq. (7) to solve this problem.
Ri is given as above with R0 = 1.6. In Fig. 5(a) we compare the exact function
with the interpolated polynomial, and even n is large up to 101, no oscillation is
observed in the interpolant, where the interpolated error as shown in Fig. 5(b) is
smaller than 0.0137. Even under a stringent convergence criterion 2× 10−14 the
CGM is convergent within 5562 iterations. We also apply the reduction technique
in Section 2.1 to solve this problem by using R0 = 1.5. The numerical error as
shown in Fig. 5(b) by the dashed line is slightly larger than the above one, and by
applying the CGM to solve this problem, it is convergent slowly under a stringent
convergence criterion as given above, and instead of we employ 10−10 to be the
convergence criterion in the use of CGM to solve the linear equations.
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Figure 4: (a) Plotting the condition number, and (b) plotting the error of e2. 

 

 

 

Figure 4: (a) Plotting the condition number, and (b) plotting the error of e2.

This example demonstrates that even in the interval of [−1,1] the introduction of
an extra constant R0 into the polynomial interpolation has the effect to stabilize the
numerical solution for finding the coefficients in the polynomial interpolant. When
one does not consider R0 by letting R0 = 1 as in the original interpolation equation
(2), it is easy to induce numerical instability for finding the coefficients in the poly-
nomial interpolant.

4.5 Differential quadrature

Bellman and Casti (1971), and Bellman, Kashef and Casti (1972) first proposed
the Differential Quadrature (DQ), which is an approximation of the real differential
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Figure 5: Comparing the numerical and exact solutions of a numerical example. 
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of a differentiable function to mimid the integral quadrature. Here, we consider a
function f (x) defined in a closed interval x ∈ [a,b]. It is supposed that there are n
grid points with coordinates x1 = a,x2, . . . ,xn = b. The function f (x) is assumed to
be differentiable at any grid point, so that its first-order derivative f ′(x) at any grid
point xi can be approximated by

f ′(xi) =
n

∑
j=1

ai j f (x j). (23)
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Figure 6: The numerical errors of differential quadrature obtained by the reducing
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In the first approach of Bellman, Kashef and Casti (1972), the test functions are
chosen as

gk(x) = xk, k = 0,1, . . . ,n−1, (24)

such that we have the following algebraic equations to determine the weighting
coefficients ai j:

∑
n
j=1 ai j = 0,

∑
n
j=1 ai jx j = 1,

∑
n
j=1 ai jxk

j = kxk−1
i , k = 2, . . . ,n−1.

(25)
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By inspection, we can see that for each fixed i, the above system is with the Vander-
monde matrix given in Eq. (4) as the coefficient matrix. Therefore, we can apply
the technique described in Section 2.1 to solve the above system. To demonstrate
the efficiency of our technique to reduce the condition number of V, we use the
following example: f (x) = sinx, f ′(x) = cosx, x ∈ [0,2π] to test the accuracy. By
fixing n = 100 we apply the CGM to solve the reduced system with the system ma-
trix A given in Eq. (6), where the convergence criterion of the CGM is fixed to be
10−12. In Fig. 6(a) we show the numerical errors of f ′(x) = cosx at different grid
points under the given R0 = 6 and R0 = 6.5. It can be seen that the numerical errors
are smaller than 5× 10−4 when the value R0 = 6.5 is larger than 2π . Conversely,
when R0 = 6 is smaller than 2π , the numerical errors increase to the second-order.
Similarly, in Fig. 6(b) we show the numerical errors of f ′(x) = cosx at different grid
points by using the technique described in Section 2.2 under the given Ri = xi +R0
with R0 = 5.5. It can be seen that the numerical errors are smaller than 10−4, which
is slightly better than that shown in Fig. 6(a).

As mentioned by Shu (2000), n is usually chosen to be less than 13, due to the
severe ill-condition of V. Here, we can take n very large, up to n = 100. As an
application we apply the DQ and the fictitious time integration method [Liu and
Atluri (2008a] to solve the following boundary value problem [Liu (2006)]:

u′′ =
3
2

u2, (26)

u(0) = 4, u(1) = 1. (27)

The exact solution is

u(x) =
4

(1+ x)2 . (28)

After the work by Liu and Atluri (2008a), the author and his coworkers have applied
the fictitious time integration method (FTIM) to solve many engineering problems
[Liu and Atluri (2008b, 2008c, 2009b); Liu (2008b, 2008c, 2009a, 2009b, 2009c,
2009d, 2010); Chi, Yeih and Liu (2009); Ku, Yeih, Liu and Chi (2009); Chang and
Liu (2009); Tsai, Liu and Yeih (2010)].

By introducing the DQ of u′ and u′′ at the grid points we can obtain

u′i =
n

∑
j=1

ai ju j, u′′i =
n

∑
j=1

bi ju j, (29)

where u′i = u′(xi), u′′i = u′′(xi), xi = (i−1)∆x with ∆x = 1/(n−1) the grid length,
and bi j = aikak j. Thus we have to solve the following nonlinear algebraic equations



A Highly Accurate Multi-Scale Full/Half-Order Polynomial Interpolation 255 

 

 

0.0 0.2 0.4 0.6 0.8 1.0

x

1

2

3

4

5

u

0E+0

1E-4

2E-4

3E-4

4E-4

5E-4

6E-4

7E-4

N
um

er
ic

al
 E

rr
or

0.0 0.2 0.4 0.6 0.8 1.0

x

(a)

(b)

Numerical

Exact

 
 

Figure 7: Applying the DQ and FTIM to a boundary value problem: (a) comparing 
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Figure 7: Applying the DQ and FTIM to a boundary value problem: (a) comparing
numerical and exact solutions, and (b) displaying the numerical error.

for ui:

Fi =
n

∑
j=1

bi ju j−
3
2

u2
i = 0, (30)

u1 = 4, un = 1. (31)

Under the following parameters R0 = 1.5, n = 30 we compute the solution of the
above nonlinear system by the FTIM with ∆t = 0.01 and ν =−0.12, and compare
them with the exact solution in Fig. 7(a), which can be seen that the error as shown
in Fig. 7(b) is very small in the order of 10−4.
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Figure 8: (a) Plotting the condition number, (b) plotting the error of e1, and (c)
plotting the error of e2.

5 A highly accurate interpolation

In many applications one wants to interpolate the data as accurate as possible. But
this is limited by the interpolation of n data with (n−1)-order polynomials, where
the resulting Vandermonde matrices are highly ill-conditioned as measured by the
Lebesgue constant 2n/[e(n− 1) lnn]. The results of Beckermann (2000) and Li
(2006) show that in the best possible cases, the condition numbers of the Vander-
monde matrices still grow exponentially with the order of the interpolant polyno-
mial. Because of this, these days no one is interpolating a function by high-order
polynomials in the usual bases 1,x,x2, . . ., but rather in the Chebyshev polynomials.
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In this section we propose a new interpolation by an m-order polynomial to inter-
polate the n = 2m + 1 data points, where n is supposed to be an odd integer. We
begin with

pm(x) = c0 +
m

∑
k=1

ckxk. (32)

Now, suppose that

ck =
ak cos(kθk)

Rk
k

+
bk sin(kθk)

Rk
k

, (33)
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where

Rk = |x2k|+R0, θk =
2kπ

m
, k = 1, . . . ,m (34)

are the sequences of numbers with a constant number R0 determined by the user,
and

a = x0 < x1 < x2 < .. . < x2m−1 < x2m = b (35)

are the interpolated points in the problem domain [a,b].
Inserting Eq. (33) into Eq. (32) we can obtain

pm(x) = a0 +
m

∑
k=1

[
ak

(
x

Rk

)k

cos(kθk)+bk

(
x

Rk

)k

sin(kθk)

]
, (36)

where we let c0 = a0. Here, ak and bk are unknown constants. In order to obtain
them, we impose the following n interpolated conditions:

pm(xi) = yi, i = 0, . . . ,n−1. (37)

Thus, we obtain a linear equations system to determine ak and bk:

1 x0 cosθ1
R1

x0 sinθ1
R1

. . .
(

x0
Rm

)m
cosmθm

(
x0
Rm

)m
sinmθm

1 x1 cosθ1
R1

x1 sinθ1
R1

. . .
(

x1
Rm

)m
cosmθm

(
x1
Rm

)m
sinmθm

...
...

...
...

...
...

1 x2m−1 cosθ1
R1

x2m−1 sinθ1
R1

. . .
(

x2m−1
Rm

)m
cosmθm

(
x2m−1

Rm

)m
sinmθm

1 x2m cosθ1
R1

x2m sinθ1
R1

. . .
(

x2m
Rm

)m
cosmθm

(
x2m
Rm

)m
sinmθm





a0
a1
b1
...

am

bm



=



y0
y1
y2
...

y2m−1
y2m


. (38)

First we apply the CGM to calculate the condition numbers of the above system
with equidistant nodes in [0, 2], whose results together with e1 and e2 are plotted
in Fig. 8 with respect to n. It can be seen that the condition numbers are reduced to
the order of 107.
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In order to show the accuracy of the new interpolation technique we consider the
following functions:

(a) f (x) =
1

1+(x−1)2 , 0≤ x≤ 2,

(b) f (x) =
1

1+ x
, 0≤ x≤ 10. (39)

For case (a) we take m = 25 and R0 = 1.23, while m = 21 and R0 = 1 for case (b).
The absolute errors are plotted in Fig. 9. Very accurate results are obtained, where
the maximum error for case (a) is about 4.1× 10−6, and 6.9× 10−4 for case (b).
Even the errors e1 and e2 as shown in Fig. 8 are large, we have checked the residual
errors in solving Eq. (38) by the CGM, where the residual error for case (a) is about
2.53×10−10, and 1.1×10−6 for case (b).

For the purpose of comparison we also find the least-square solutions of Eq. (37)
for the above two interpolated functions. For case (a) m = 25 is used, and the max-
imum error of the least-square solution is about 3.4×10−2. When the multi-scale
numerical solution in Section 2.2 is applied to case (a), we use n = 2m + 1 = 51
and the same R0 = 1.3. It results in a very accurate numerical solution with the
maximum error 6.5×10−6. As shown in Fig. 9(a) by the solid-dashed line the half-
order and multi-scale numerical solution in Section 5 is more accurate than the
multi-scale numerical solution in Section 2.2, and is much accurate than the least-
square solution. For case (b), we find that when m > 4 the numerical solution by the
least-square is unstable, and we use m = 4 for this case, whose maximum error is
about 4.4×10−2. As shown in Fig. 9(b) the multi-scale numerical solution is much
accurate than the least-square solution. We also apply the single-scale numerical
method in Section 2.1 to case (b) with R0 = 15 and n = 50, whose numerical error
is shown in Fig. 9(b) by the solid-dashed line. It can be seen that the multi-scale
numerical solution is more accurate than the single-scale numerical solution.

6 Conclusions

In this paper we have proposed two novel diagonal preconditioners to reduce the
condition number of Vandermonde matrices, and a new algorithm is given to calcu-
late the inverse of the resulting coefficient matrix. We applied the new techniques
in the data interpolation by using very high-order polynomials, and very accurate
results were obtained. For the differential quadratures, the present approach was
able to provide very accurate results of the numerical differentials. A numerical
example of nonlinear boundary value problem was verified by using the proposed
differential quadrature together with the fictitious time integration method to solve
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the resulting nonlinear algebraic equations. A new technique by using the half-
order polynomials with a multi-scale technique to interpolate the given data was
derived. Numerical results confirmed the validity of the present approach for poly-
nomial interpolation with a multi-scaling technique, which were better than that
obtained by a single-scale polynomial interpolation, and were much better than
that obtained by the least-square method. Moreover, because we only need to spec-
ify an extra constant R0 in the multi-scale expansion, it was easily adopted in the
polynomial interpolation for significantly improving the numerical accuracy.

Acknowledgement: Taiwan’s National Science Council project NSC-100-2221-
E-002-165-MY3 granted to the author is highly appreciated.
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