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A Lie-Group Adaptive Method to Identify the Radiative
Coefficients in Parabolic Partial Differential Equations

Chein-Shan Liu1 and Chih-Wen Chang2

Abstract: We consider two inverse problems for estimating radiative coefficients
α(x) and α(x, y), respectively, in Tt(x, t) =Txx(x, t)-α(x)T (x, t), and Tt(x, y, t) =
Txx(x, y, t) +Tyy(x, y, t)-α(x, y)T (x, y, t), where α are assumed to be continuous
functions of space variables. A Lie-group adaptive method is developed, which can
be used to find α at the spatially discretized points, where we only utilize the ini-
tial condition and boundary conditions, such as those for a typical direct problem.
This point is quite different from other methods, which need the overspecified final
time data. Three-fold advantages can be gained by the present Lie-group adaptive
method (LGAM): (i) no a priori information of radiative coefficients is required, (ii)
no extra data are measured, and (iii) no complicated procedure is involved. The ac-
curacy and efficiency of present method are confirmed by comparing the estimated
results with some exact solutions for 1-D and 2-D cases.

Keywords: Inverse problem, Parameter identification, Lie-group adaptive method
(LGAM), Spatial-dependence radiative coefficient, Iterative method

1 Introduction

The direct problem is to deduce an effect from a cause. In contrast, the inverse
problem is to deduce a cause from an effect. An important example is the inverse
problem of thermal physics, in which we seek to investigate the thermophysical
properties of a heat conducting body by given measurements of temperature. Heat
may conduct through the body in a manner which depends on the material proper-
ties of the body. If the material properties of the body were known exactly, then we
could predict the temperature distribution from knowledge of the source. However,
since we usually cannot directly measure these properties, we seek to infer them by
observing the temperature in response to a collection of known sources.
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In formulating such problems mathematically, we typically find that this problem
amounts to that of determining one or more coefficients in a differential equation,
or system of differential equations, given partial knowledge of certain special solu-
tions of the equations. In the heat conduction problem, the conduction of heat in a
body is governed by the equations of thermophysics, a system of partial differen-
tial equations in which the material properties of the body manifest themselves as
coefficient functions in the equations. The measurements we can make amount to
the knowledge of special solutions of these equations at special points of the body.

Inverse problems in differential equations have this general character. One has a
certain definite kind of differential equation containing one or more unknown co-
efficient functions. From some limited knowledge about certain special solutions
of these equations, we seek to determine the unknown coefficient functions. Prob-
lems of this sort arise in a variety of important application areas in engineering and
sciences.

Inverse problems and their computations are presently becoming more and more
important in many fields of engineering and sciences. They inevitably result in
the mathematical models that are not well-posed in the sense of Hadamard, which
means that one or more of the following well-posed properties are lost: for all
admissible data the solution exists; for all admissible data the solution is unique;
the solution depends continuously on the data. The problems that fail to meet these
prerequisites are said to be ill-posed. The computations of ill-posed problems are
usually more difficult than the well-posed problems because they are sensitive to
the measurement errors of data.

Now, we consider an inverse problem of finding an unknown parameter α(x) in a
one-dimensional heat conduction equation, of which for

Problem P1: one needs to find the temperature distribution T (x, t), as well as the
radiative coefficient function α(x) that simultaneously satisfy

∂T (x, t)
∂ t

=
∂ 2T (x, t)

∂x2 −α(x)T (x, t), 0 < x < `, t > 0, (1)

T (0, t) = F0(t),T (`, t) = F̀ (t), (2)

T (x,0) = f (x), (3)

where F0(t), F̀ (t) and f (x) are, respectively, the given/measured functions of left-
boundary temperature, right-boundary temperature and initial temperature, and ` is
a length of the heat conducting rod.

Mathematically speaking, Eqs. (1)-(3) form an underdetermined nonlinear sys-
tem because both α(x) and T (x, t) are unknown functions. Usually, α(x) can be
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estimated, provided that an extra measurement of data is available. For exam-
ple, in order to estimate α(x), all the authors in the literature [e.g., Rundell (1987),
Choulli(1996), Choulli (1997), Huang (2004), Chen (2006), Yang (2008), and Deng
(2009, 2010)] required an overspecified final temperature measured at a time t = t f :

T (x, t f ) = Fm(x). (4)

Eq. (1) also appears in the optical tomography [Klibanov (1999)], of which α(x)
is named the absorption coefficient, because it is a property of material which de-
fines the amount of light absorbed by the material. In order to estimate α(x), Tadi,
Klibanov and Cai (2002), and Tadi (2007) required two overspecified boundary
data.

Yamamoto and Zou (2001) could recover both the initial temperature and radiative
coefficient by an extra observation of the temperature inside a subregion, in addi-
tion to the above final data. Furthermore, Choulli and Yamamoto (2008) proved
that the radiative coefficient, the initial temperature and a boundary coefficient can
be simultaneously determined from the final overdetermination, provided that the
radiative coefficient is a priori known in a small subdomain.

Most of the studies mainly relied on an iterative optimization formulation, and all
these methods without exception required that some extra temperature or heat flux
be measured. Most of them have a step to solve the heat conduction equation by
assuming an absorption coefficient, and then the calculated temperature or heat flux
at the selected measuring points are compared with the measured ones. The differ-
ences of these two results are thus used to determine the search step of solution for
the next iterative procedure.

In the present paper, a novel method will be developed to estimate the unknown
radiative coefficient α(x) of the above inverse problem, which merely requires
the boundary conditions and initial condition given by Eqs. (2) and (3), as these
used in the direct problem, without needing of an extra overspecified data. To the
best knowledge of authors, in the open literature of estimation of unknown spatial-
dependence parameter, there has no researchers to discuss this possibility.

We develop a novel Lie-group adaptive method (LGAM) for the inverse problem of
parameter identification of α(x) governed by Eqs. (1)-(3), which is for a possible
application in the heat conduction engineering by considering the measurement
cost for impossibly mounting sensors in the material to measure the extra data.
The LGAM has been successfully developed by Liu (2010, 2011), and Liu and
Atluri (2010) and used for the inverse estimation problems for other type inverse
problems.

We also deliberate the second inverse problem with
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Problem P2: one needing to find the temperature distribution T (x, y, t), as well as
the radiative coefficient function α(x, y) that simultaneously satisfy

∂T (x,y, t)
∂ t

=
∂ 2T (x,y, t)

∂x2 +
∂ 2T (x,y, t)

∂y2 −α(x,y)T (x,y, t),

0 < x < x0, 0 < y < y0, t > 0, (5)

T (0,y, t) = F0(y, t),T (x0,y, t) = Fx0(y, t),

T (x,0, t) = H0(x, t),T (x,y0, t) = Hy0(x, t), (6)

T (x,y,0) = f (x,y). (7)

Besides, T and α , all other functions are given.

Liu (2006a, 2006b, 2006c) has extended the group-preserving scheme (GPS) de-
veloped previously by Liu (2001) for ODEs to solve the boundary value problems
(BVPs). In the construction of the Lie group method for the calculations of BVPs,
Liu (2006a) has introduced the idea of one-step GPS by utilizing the closure prop-
erty of the Lie group, and hence, the new shooting method has been named the
Lie-group shooting method (LGSM).

After that, Liu (2006d) has used this concept to establish a one-step estimation
method to estimate the temperature-dependent heat conductivity, and then extended
the Lie-group method to estimate the thermophysical properties of heat conductiv-
ity and heat capacity [e.g., Liu (2006e), Liu (2007), Liu, Liu and Hong (2007)].
The Lie-group method possesses a greater advantage than other numerical meth-
ods due to its group structure, and it is a powerful technique to solve the inverse
problems of parameters identification. Liu (2008) has obtained very accurately es-
timated results by using the LGSM for the identification of heat conductivity. Some
recent progress of the LGSM for inverse heat conduction problems, one can refer
[e.g., Chang (2007), Liu (2009), Liu (2010a), Liu (2010b)]. For the problem gov-
erned by Eqs. (1)-(3), some estimated results about α are reported in this paper
by using a Lie-group adaptive method (LGAM). In Sections 2-4, we first describe
the Lie-group estimation theory for Problem P1. Then, in Section 5 we directly
write the required formulas for the Lie-group estimation theory for Problem P2.
Section 6 devotes to the numerical tests of 1-D and 2-D inverse problems, and the
conclusions are given in Section 7.
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2 The numerical method of line

For Eq. (1) we adopt the numerical method of line to discretize the differential term
with respect to x by

∂ 2T (x, t)
∂x2 |x=i∆x =

Ti+1(t)−2Ti(t)+Ti−1(t)
(∆x)2 , (8)

where ∆x = `/(n+1) with n the number of interior grid points, and xi = i∆x are the
discretized coordinates of x, at which the temperature is discretized as Ti(t) = T (xi,
t).

In doing so, we can obtain a system of ODEs for Ti with t as an independent vari-
able:

Ṫi(t) =
Ti+1(t)−2Ti(t)+Ti−1(t)

(∆x)2 −αiTi(t), i = 1, . . . ,n, (9)

where α i = α(xi) are the discretized quantities of α(x) at the spatial points xi.

When i = 1, the term T0(t) appeared in Eq. (9) is determined by the first boundary
condition in Eq. (2). Similarly, when i = n, the term Tn+1(t) is determined by the
second boundary condition in Eq. (2).

The known initial condition is given by

Ti(0) = f (xi), i = 1, . . . ,n, (10)

which is obtained from Eq. (3) by a discretization. In summary, we have totally n
ODEs in Eq. (9) to solve the 2n unknowns Ti(t) and α i, i = 1,. . . ,n.

Obviously, Eq. (9) alone is not enough to solve the unknowns Ti(t) and α i, i =
1,. . . ,n, and we require to derive other equations to calculate α i. After giving a
necessary mathematical background of the LGAM in the next section, we will de-
rive the linear equations in Section 4 to determine the unknown coefficients α i

through an iteration process.

3 Mathematical preliminaries

In order to explore our new method clearly, we first briefly sketch the group-
preserving scheme (GPS) for ODEs and the one-step GPS in this section.

3.1 The GPS

Let us write Eq. (9) in a vector form:

Ṫ = f(t,T), (11)
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where

T :=

T1(t)
...

Tn(t)

 , f: =



T2−2T1+T0
(∆x)2 −α1T1

T3−2T2+T1
(∆x)2 −α2T2

...
Tn−2Tn−1+Tn−2

(∆x)2 −αn−1Tn−1
Tn+1−2Tn+Tn−1

(∆x)2 −αnTn


. (12)

T represents a vector form of the discretized temperatures at the interior grid points,
and the components of f represent the right-hand side of Eq. (9). The dependence
of f on t is due to the dependence of boundary condition (2) on t, i.e., T0 = F0(t) and
Tn+1=F̀ (t).
When both the vector T and its magnitude ‖T‖ :=

√
TtT =

√
T ·T are combined

into a single augmented vector with dimension n+1:

X =
[

T
‖T‖

]
, (13)

Liu (2001) has transformed Eq. (11) into an augmented differential equations sys-
tem:

Ẋ = AX, (14)

where

A :=

[
0n×n

f(t,T)
‖T‖

ft(t,T)
‖T‖ 0

]
(15)

is an element of the Lie algebra so(n,1) satisfying

Atg+gA = 0, (16)

and

g =
[

In 0n×1
01×n −1

]
(17)

is a Minkowski metric. Here, In is the identity matrix of order n, and the superscript
t denotes the transpose.
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The augmented variable X can be viewed as a point in the Minkowski space Mn+1,
satisfying the cone condition:

XT gX = T ·T−‖T‖2 = 0. (18)

Then, Liu (2001) developed a group-preserving scheme (GPS) to guarantee that
each Xk locates on the cone:

Xk+1 = G(k)Xk, (19)

where Xk represents the numerical value of X at the discrete time tk, and G(k)∈SOo(n,1)
satisfies

GT gG = g, (20)

detG = 1, (21)

G0
0 > 0, (22)

where G0
0 is the 00th component of G.

3.2 One-step GPS

Throughout this paper we use the superscripted symbol T0 to denote the value of
T at t = 0. In order to develop the Lie-group shooting method, we also give a
parameter t f of final time, and T f denotes the value of T at t = t f .

Applying scheme (19) to Eq. (14) with a specified initial condition X(0) = X0, we
can compute the solution X(t) by the GPS. Assuming that the time stepsize used in
the GPS is ∆t= t f /K, and starting from an augmented initial condition X0 = ((T0)t ,∥∥T0

∥∥)t 6= 0, we can calculate X f = ((T f )t ,
∥∥T f

∥∥)t at a specified final time t = t f .

By applying Eq. (19) step-by-step, we can obtain

X f = GK(∆t) · · ·G1(∆t)X0, (23)

However, let us recollect that each Gi, i = 1, . . . ,K, is an element of the Lie group
SOo(n,1), and by the closure property of the Lie group, GK(∆t) . . .G1(∆t) is also a
Lie-group element denoted by G. Thus, from Eq. (23) it follows that

X f = GX0. (24)

This is a one-step transformation from X0 to X f .

The remaining problem is how to calculate G. While an exact solution of G is
impossible, we can calculate an appropriate G through a numerical method by a
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generalized mid-point rule, which is obtained from an exponential mapping of A
by taking the values of the argument variables of A at a generalized mid-point. The
Lie group generated from A∈so(n,1) by an exponential mapping is

G =

In + (a−1)

‖f̂‖2 f̂f̂t bf̂
‖f̂‖

bf̂t

‖f̂‖ a

 , (25)

where

T̂ = rT0 +(1− r)T f , (26)

f̂ = f(t̂, T̂), (27)

a = cosh

 t f

∥∥∥f̂
∥∥∥∥∥T̂
∥∥
 , b = sinh

 t f

∥∥∥f̂
∥∥∥∥∥T̂
∥∥
 . (28)

Here, we use the initial T0 and the final T f through a suitable weighting factor
r to evaluate G, where r ∈ [0, 1] is a parameter, and t̂ = (1− r)t f .To stress its
dependence on r, we denote this G by G(r).

3.3 A universal one-step GPS

Let us define a new vector

F :=
f̂∥∥T̂
∥∥ , (29)

such that Eqs. (25) and (28) can also be expressed as

G =

[
In + (a−1)

‖F‖2 FFt bF
‖F‖

bFt

‖F‖ a

]
, (30)

a = cosh(t f ‖F‖) , b = sinh(t f ‖F‖) . (31)

From Eqs. (13), (24) and (30) it follows that

T f = T0 +ηF, (32)

∥∥T f
∥∥= a

∥∥T0∥∥+b
F ·T0

‖F‖
, (33)
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where

η :=
(a−1)F ·T0 +b

∥∥T0
∥∥ ‖F‖

‖F‖2 . (34)

Eq. (32) is written as

F =
1
η

(T f −T0) , (35)

which being substituted into Eq. (33) and dividing both the sides by
∥∥T0

∥∥, we
obtain∥∥T f

∥∥
‖T0‖ = a+b

(T f −T0) ·T0

‖T f −T0‖ ‖T0‖ . (36)

After inserting Eq. (35) for F into Eq. (31), a and b are now written as

a = cosh

(
t f
∥∥T f −T0

∥∥
η

)
, b = sinh

(
t f
∥∥T f −T0

∥∥
η

)
. (37)

Let

cosθ :=
(T f −T0) ·T0

‖T f −T0‖ ‖T0‖ , (38)

S := t f
∥∥T f −T0∥∥ , (39)

and thus from Eqs. (36) and (37) it follows that∥∥T f
∥∥

‖T0‖ = cosh
(

S
η

)
+ cosθ sinh

(
S
η

)
. (40)

Upon defining

Z := exp
(

S
η

)
, (41)

From Eq. (40) we can attain a quadratic equation for Z:

(1+ cosθ)Z2−
2
∥∥T f

∥∥
‖T0‖ Z +1− cosθ = 0. (42)
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On the other hand, by inserting Eq. (35) for F into Eq. (34), we obtain∥∥T f −T0∥∥2
= (a−1)(T f −T0) ·T0 +b

∥∥T0∥∥ ∥∥T f −T0∥∥ . (43)

Dividing both sides by
∥∥T0

∥∥ ∥∥T f −T0
∥∥ and using Eqs. (37)-(39) and (41), we

acquire another quadratic equation for Z:

(1+ cosθ)Z2−2

(
cosθ +

∥∥T f −T0
∥∥

‖T0‖

)
Z + cosθ −1 = 0 . (44)

From Eqs. (42) and (44), the solution of Z is found to be

Z =
(cosθ −1)

∥∥T0
∥∥

cosθ ‖T0‖+‖T f −T0‖−‖T f ‖ . (45)

From Eqs. (39) and (41) it follows that

η =
t f
∥∥T f −T0

∥∥
lnZ

. (46)

Therefore, we come to an important result that between any two points (T0,
∥∥T0

∥∥)
and (T f ,

∥∥T f
∥∥) on the cone, there exists a Lie-group element G(t f )∈SOo(n,1)

mapping (T0,
∥∥T0

∥∥) onto (T f ,
∥∥T f

∥∥), which is given by[
T f∥∥T f
∥∥]= G(t f )

[
T0∥∥T0
∥∥] , (47)

where G(t f ) is uniquely determined by T0 and T f through the following equations:

G(t f ) =

[
In + (a−1)

‖F‖2 FFt bF
‖F‖

bFt

‖F‖ a

]
, (48)

a = cosh(t f ‖F‖) , b = sinh(t f ‖F‖) , (49)

T =
1
η

(T f −T0) =
lnZ
t f

T f −T0

‖T f −T0‖ . (50)

In view of Eqs. (38) and (45), it can be seen that G(t f ) is fully determined by T0

and T f , and is independent on the vector field f in Eq. (11).

Notice that the above G(t f ) is different from the G(r) in Eq. (25). In order to
stress its property as being a Lie-group mapping between the quantities spanned a
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whole time interval [0, t f ], we write it to be G(t f ). Conversely, G(r) is a function of
r. However, these two Lie-group elements G(r) and G(t f ) are both indispensable
in our development of the Lie-group shooting method in the next section for the
inverse problem of parameter identification.

The two Lie-group elements G(r) and G(t f ) are constructed by different manners.
When the former is obtained by using the generalized mid-point rule, the latter is a
universal mapping between (T0,

∥∥T0
∥∥) and (T f ,

∥∥T f
∥∥) independent to the vector

field f, which means that such a mapping is applicable to all ODEs systems. It
is interesting that by letting G(r) = G(t f ), we can derive the required governing
equation below. From this point of view, we may call our method the Lie-group
shooting method (LGSM).

4 A Lie-group adaptive method for 1-D problem

4.1 A two-point Lie-group equation

Letting G(r) = G(t f ) is essentially identical to letting the two F’s in Eqs. (29) and
(35) be equal, which leads to

T f = T0 +
η∥∥T̂
∥∥ f̂ , (51)

where∥∥T̂
∥∥=

∥∥rT0 +(1− r)T f
∥∥ . (52)

Up to here we have constructed a Lie-group shooting equation (51), which is a
universal algebraic equation applicable to any vector field f, and we may call it a
natural field equation of global type. This equation involves four quantities of T0,
T f , f and r, the last of which is a single parameter.

We can write f̂ explicitly,

f̂ =



T̂2−2T̂1+T̂0
(∆x)2 −α1T̂1

T̂3−2T̂2+T̂1
(∆x)2 −α2T̂2

...
T̂n−2T̂n−1+T̂n−2

(∆x)2 −αn−1T̂n−1
T̂n+1−2T̂n+T̂n−1

(∆x)2 −αnT̂n


, (53)

where T̂i = rT 0
i +(1− r)T f

i = r f (xi)+(1− r)T f
i , and T̂0 = F0(t̂) and T̂n+1 = F̀ (t̂)

with t̂ = (1− r)t f .
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From Eqs. (51) and (53), we can obtain a closed-form formula to calculate α i:

αi =
1
T̂i

[
T̂i+1−2T̂i + T̂i−1

(∆x)2 −
∥∥T̂
∥∥

η
(T f

i −T 0
i )

]
. (54)

Because we do not have a real target at t f to be shot [that is, we do not need the
information from Eq. (4)], we can take r = 1, and the above equation reduces to a
simpler form:

αi =
1

f (xi)

[
f (xi+1)−2 f (xi)+ f (xi−1)

(∆x)2 −
∥∥T0

∥∥
η

(T f
i −T 0

i )

]
, (55)

where T 0
i = f (xi) is the discretized initial condition. Eq. (55) can be used to find

α i, i = 1,. . . ,n.

4.2 An iterative procedure to estimate α(x)

Now, the numerical procedures for estimating α i are described as follows. We
assume an initial value of α i, for example, α i = 1. Substituting it into Eq. (9), we
can apply the GPS to integrate it from t = 0 to t = t f . Here t f is a parameter chosen
by the user. Then, we obtain T f

i , and inserting it into Eq. (55), we can calculate a
new α i, which is then compared with the old α i. If the difference of these two sets
of α i is smaller than a given criterion, then we stop the iteration and the final α i is
obtained. The numerical processes are summarized as follows:

(Step 1) Give an initial α i = 1.

(Step 2) For j = 1, 2. . . , we repeat the following calculations. Calculate T f
i by

using the GPS to integrate Eq. (9) from t = 0 to t = t f [e.g., Liu (2001, 2005)]:

Tk+1 = Tk +ηkfk , (56)

where

ak := cosh
(

∆t ‖fk‖
‖Tk‖

)
, bk := sinh

(
∆t ‖fk‖
‖Tk‖

)
, (57)

ηk :=
(ak−1)fk ·Tk +bk ‖Tk‖ ‖fk‖

‖fk‖2 , (58)

and f is a vector form of the right-hand side of Eq. (9).
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(Step 3) Insert the above calculated T f
i denoted by T f

i ( j) together with T 0
i = f (xi)

given by Eq. (10) into

α
j

i =
1

f (xi)

[
f (xi+1)−2 f (xi)+ f (xi−1)

(∆x)2 −
∥∥T0

∥∥
η j {T

f
i ( j)−T 0

i }

]
, (59)

where η j is calculated from Eq. (46) by inserting T f
i ( j) and T 0

i = f (xi) . If α
j

i
converges according to a given convergence criterion:

C j :=

√
n

∑
i=1

(α j+1
i −α

j
i )2 < ε, (60)

then stop; otherwise, go to (Step 2). Here, C j is a measure of the convergence.

Basically, the LGSM for the present method is used in the time direction to derive
Eq. (59) by supposing a fictitious target T f

i ( j) at a time t f . We can repeatedly
use the time direction integrator GPS for Eq. (9) by inserting the calculated α i to
obtain the new final time data, which are not obtained through the measurement,
and then we adjust α i by Eq. (59). Because we have used an iteration process of
a combination of the GPS and the LGSM to adjust α i by the governing equations
themselves, i.e., Eqs. (9) and (59), the present algorithm is quite simple, and is
drastically different from other methods for the inverse problem of heat conduction
equation, and in order to distinct it from the previous Lie-group shooting method
with a really measured T f

i as a target to adjust α i, we may call the present method
a Lie-group adaptive method (LGAM).

The philosophy of the solution methodology of the LGAM is that the local in time
equation (9) and the global in time equation (59) must self-adapt to a situation that
they are compatible.

5 A Lie-group adaptive method for 2-D problem

Eq. (5) is discretized by

Ṫi, j(t) =
Ti+1, j−2Ti, j +Ti−1, j

(∆x)2 +
Ti, j+1−2Ti, j +Ti, j−1

(∆y)2 −αi, jTi, j, i, j = 1, . . . ,n,

(61)

where ∆x = x0/(n+1), ∆y = y0/(n+1), Ti, j (t) = T (xi, y j, t), α i, j = α(xi, y j) with xi

= i∆x and y j = j∆y.

From Section 4, it can be seen that the present LGAM is easily extended to the
two-dimensional inverse problem. For saving space, we directly skip to the com-
putational formulas. Similarly, the numerical processes are summarized as follows:
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(Step 1) Give an initial α i, j = 1.

(Step 2) For k = 1, 2. . . , we repeat the following calculations. Calculate T f
i, j by

using the GPS to integrate Eq. (61) from t = 0 to t = t f by using the discretized
boundary conditions and initial condition given in Eqs. (6) and (7).

(Step 3) Insert the above calculated T f
i, j denoted by T f

i, j(k) together with T 0
i, j =

f (xi,y j) discretized from Eq. (7) into

αk
i, j = 1

fi, j

[
fi+1, j−2 fi, j+ fi−1, j

(∆x)2 + fi, j+1−2 fi, j+ fi, j−1
(∆y)2 − ‖T0‖

ηk {T
f

i, j(k)−T 0
i, j}
]

,

i = 2, . . . ,n−1, j = 2, . . . ,n−1,

αk
1, j = 1

f1, j

[
f2, j−2 f1, j+F0(y j,0)

(∆x)2 + f1, j+1−2 f1, j+ f1, j−1
(∆y)2 − ‖T0‖

ηk {T
f

1, j(k)−T 0
1, j}
]

,

j = 2, . . . ,n−1,

α
k
1,1 =

1
f1,1

[
f2,1−2 f1,1 +F0(y1,0)

(∆x)2 +
f1,2−2 f1,1 +H0(x1,0)

(∆y)2 −
∥∥T0

∥∥
ηk {T

f
1,1(k)−T 0

1,1}

]
,

α
k
1,n =

1
f1,n

[
f2,n−2 f1,n +F0(yn,0)

(∆x)2 +
Hy0(x1,0)−2 f1,n + f1,n−1

(∆y)2 −
∥∥T0

∥∥
ηk {T

f
1,n(k)−T 0

1,n}

]
,

αk
i,1 = 1

fi,1

[
fi+1,1−2 fi,1+ fi−1,1

(∆x)2 + fi,2−2 fi,1+H0(xi,0)
(∆y)2 − ‖T0‖

ηk {T
f

i,1(k)−T 0
i,1}
]

,

i = 2, . . . ,n−1,

α
k
n,1 =

1
fn,1

[
Fx0(y1,0)−2 fn,1 + fn−1,1

(∆x)2 +
fn,2−2 fn,1 +H0(xn,0)

(∆y)2 −
∥∥T0

∥∥
ηk {T

f
n,1(k)−T 0

n,1}

]
,
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αk
n, j = 1

fn, j

[
Fx0(y j,0)−2 fn, j+ fn−1, j

(∆x)2 + fn, j+1−2 fn, j+ fn, j−1
(∆y)2 − ‖T0‖

ηk {T
f

n, j(k)−T 0
n, j}
]

,

j = 2, . . . ,n−1,

α
k
n,n =

1
fn,n

[
Fx0(yn,0)−2 fn,n + fn−1,n

(∆x)2 +
Hy0(xn,0)−2 fn,n + fn,n−1

(∆y)2 −
∥∥T0

∥∥
ηk {T

f
n,n(k)−T 0

n,n}

]
,

αk
i,n = 1

fi,n

[
fi+1,n−2 fi,n+ fi−1,n

(∆x)2 + Hy0(xi,0)−2 fi,n+ fi,n−1
(∆y)2 − ‖T0‖

ηk {T
f

i,n(k)−T 0
i,n}
]

,

i = 2, . . . ,n−1,
(62)

where T 0
i, j = fi, j = f (xi,y j) , and ηk is calculated from Eq. (46) by inserting T f

i, j(k)
and T 0

i, j . If αk
i, j converges according to a given convergence criterion:

Ck :=

√
n

∑
i=1

n

∑
j=1

(αk+1
i, j −αk

i, j)2 < ε, (63)

then stop; otherwise, go to (Step 2).

6 Numerical examples

6.1 Example 1

Let us first employ the following example to demonstrate the process in Section 4.
This example is given by

α(x) = (x−3)2, x ∈ (0,1). (64)

Under the boundary conditions

T (0, t) = exp(t +4.5) ,T (1, t) = exp(t +2) , (65)

and the initial condition

T (x,0) = exp
(

(x−3)2

2

)
, (66)
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and the exact solution of T is given by

T (x, t) = exp
(

t +
(x−3)2

2

)
. (67)

We first apply the LGAM to this problem of the identification of α(x), where we
used ∆x = 1/40, and t f = 0.1. The initial guess of α(x) is αi = 1. Under the
stopping criterion with ε = 10−3, the process is convergent within 16 iterations as
shown in Fig. 1(a). Note that the convergence is very fast with an exponential
decay. This behavior is rather promising to show that the LGAM is a powerful
method. Moreover, the LGAM is insensitive to the initial guess of unknown pa-
rameter coefficients. In Fig. 1(b), we plot the tentative αi for the first iteration,
the third iteration, the fifth iteration and the seventh iteration, the last of which is
already very close to the exact solution. The numerical solution of αi is close to
the exact one with the root-mean-square-error (RMSE) about 6.34×10−4, and the
maximum relative error about 7.91×10−4 as shown in Fig. 1(c).

6.2 Example 2

Let us then use the following example [Chen and Liu (2006)] to test the perfor-
mance of LGAM:

α(x) = 3−2sin(2πx)+
cos2(2πx)

π2 , x ∈ (0,1). (68)

Under the boundary conditions

T (0, t) = T (1, t) = exp(−3t) , (69)

and the initial condition

T (x,0) = exp
(

sin(2πx)
2π2

)
, (70)

and the exact solution of T is given by

T (x, t) = exp
(

sin(2πx)
2π2 −3t

)
. (71)

We apply the LGAM to this problem of the identification of α(x), where we use
∆x = 1/50, and t f = 0.1. The initial guess of α(x) is αi = 1. Under the stopping
criterion with ε = 10−3, the process is convergent within 19 iterations. In Fig.
2(a), we compare the numerical solutions with the exact solutions. The numerical
solution of αi is close to the exact ones with the RMSE about 3.38×10−4, and the
maximum relative error about 2.64×10−3as shown in Fig. 2(b).
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Figure 1: For Example 1: (a) the convergence speed, (b) comparing numerical and exact solutions, 

and (c) the relative error. 

Figure 1: For Example 1: (a) the convergence speed, (b) comparing numerical and
exact solutions, and (c) the relative error.

6.3 Example 3

Let us consider the following example [Yang, Yu and Deng (2008)]:

α(x) =
x4−2x3 +13x2−12x+22

(x− x2)2 +20
, x ∈ (0,1). (72)



124 Copyright © 2011 Tech Science Press CMC, vol.25, no.2, pp.107-134, 2011

 32

0.0 0.2 0.4 0.6 0.8 1.0

x

0E+0

1E-3

2E-3

3E-3 (b)

0

1

2

3

4

5

A
bs

or
pt

io
n 

co
ef

fi
ci

en
t

0.0 0.2 0.4 0.6 0.8 1.0

(a)

R
el

at
iv

e 
er

ro
r

1

3

5

7

 

Figure 2: For Example 2 the first few iterative results of absorption coefficient are plotted in (a) by 

using the LGAM, and (b) displaying the relative error. 

Figure 2: For Example 2 the first few iterative results of absorption coefficient are
plotted in (a) by using the LGAM, and (b) displaying the relative error.

Under the boundary conditions

T (0, t) = T (1, t) = 20exp(−t) , (73)

and the initial condition

T (x,0) = (x− x2)2 +20, (74)

and the exact solution of T is given by

T (x, t) = exp(−t)[(x− x2)2 +20]. (75)
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Figure 3: For Example 3 the first few iterative results of absorption coefficient are plotted in (a) by 

using the LGAM, and (b) displaying the relative error. 

Figure 3: For Example 3 the first few iterative results of absorption coefficient are
plotted in (a) by using the LGAM, and (b) displaying the relative error.

For the LGAM applied to this problem, we use ∆x = 1/50 and t f = 0.1. The
initial guess of α(x) is αi = 1. Under the stopping criterion with ε = 10−3, the
process is convergent within 10 iterations. In Fig. 3(a), we compare the numerical
solutions with the exact solutions. The numerical solution of αi is close to the
exact one with the RMES about 7.61×10−4, and the maximum relative error about
4.93×10−4as shown in Fig. 3(b). Besides, our results are better than that obtained
by Yang, Yu and Deng (2008) as shown in Table 1, although we do not use the extra
data measured at a final time. Furthermore, the numerical process as presented in
Section 4.2 is much saving than those used by Yang, Yu and Deng (2008).
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Table
1:

For
E

xam
ple

3
com

paring
exactand

the
num

ericalsolutions
of

presentpaper
and

thatobtained
by

Y
ang,Y

u
and

D
eng

(2008).x
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

E
xact

α
(x)

1.0460
1.0040

0.9741
0.9561

0.9502
0.9561

0.9741
1.0040

1.0460
Presentpaper

1.0462
1.0043

0.9744
0.9566

0.9506
0.9566

0.9744
1.0043

1.0462
Y

ang,Y
u

and
D

eng
(2008)

1.0462
1.0058

0.9756
0.9586

0.9542
0.9596

0.9761
1.0055

1.0457
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Figure 4: The numerical errors of LGAM solution for Example 4 plotted in (a) with respect to x by 

the errors projected along the y-axis, and in (b) with respect to y by the errors projected along the 

x-axis. 

Figure 4: The numerical errors of LGAM solution for Example 4 plotted in (a) with
respect to x by the errors projected along the y-axis, and in (b) with respect to y by
the errors projected along the x-axis.

6.4 Example 4

Let us deliberate the following 2-D example:

α(x,y) = 4(x2 + y2), (x,y) ∈ (0,1)× (0,1). (76)

The exact solution of T is

T (x,y, t) = exp
(
x2 + y2 +4t

)
. (77)

The required boundary conditions and initial condition are easily deduced from the
above equation.
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Figure 5: The exact and LGAM solutions for Example 4 of 2-D inverse problem are shown in (a) 

and (b). 

Figure 5: The exact and LGAM solutions for Example 4 of 2-D inverse problem
are shown in (a) and (b).
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Figure 6: The numerical errors of LGAM solution for Example 5 plotted in (a) with respect to x by 

the errors projected along the y-axis, and in (b) with respect to y by the errors projected along the 

x-axis. 

Figure 6: The numerical errors of LGAM solution for Example 5 plotted in (a) with
respect to x by the errors projected along the y-axis, and in (b) with respect to y by
the errors projected along the x-axis.

We apply the LGAM to this problem of the identification of α(x,y), where we use
∆x = ∆y = 1/50, and t f = 0.01. The initial guess of α(x,y) is αi, j = 1. Under the
stopping criterion with ε = 10−2, the process is convergent within 61 iterations.
The RMSE is about 1.87× 10−3. The numerical error is plotted with respect to x
by projecting the errors along the y-axis as shown in Fig. 4(a), and the numerical
error is plotted with respect to y by projecting the errors along the x-axis as shown
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Figure 7: The exact and LGAM solutions for Example 5 of 2-D inverse problem are shown in (a) 

and (b). 

Figure 7: The exact and LGAM solutions for Example 5 of 2-D inverse problem
are shown in (a) and (b).
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in Fig. 4(b). The exact solution and numerical solution of α are plotted in Figs.
5(a) and 5(b) sequentially.

6.5 Example 5

Let us ponder another 2-D example as follows:

α(x,y) =−2[sin(2πx)+ sin(2πy)]+
1

π2 [cos2(2πx)+ cos2(2πy)]+8,

(x,y) ∈ (0,1)× (0,1). (78)

The exact solution of T is

T (x,y, t) = exp
[

sin(2πx)+ sin(2πy)
2π2 −8t

]
. (79)

The required boundary conditions and initial condition are easily deduced from the
above equation.

By applying the LGAM to this problem, we utilize ∆x = ∆y = 1/40 and t f = 0.01.
The initial guess of α(x,y) is αi, j = 1. Under the stopping criterion with ε = 10−2,
the process is convergent within 74 iterations. The RMSE is about 6.08× 10−4.
The numerical error is plotted with respect to x by projecting the errors along the
y-axis as shown in Fig. 6(a), and the numerical error is plotted with respect to y by
projecting the errors along the x-axis as shown in Fig. 6(b). The exact solution and
numerical solution of α are plotted in Figs. 7(a) and 7(b) sequentially.

7 Conclusions

A Lie-group adaptive method (LGAM) has been developed for the identification of
the radiative coefficients in 1-D and 2-D parabolic inverse problems. The major ad-
vantages of the present method are that no a priori information about the functional
form of radiative coefficients is necessary, and no extra measurement of data is
required. In addition, the present method is easily extended to higher-dimensional
and nonlinear problems, and also requires much less computational costs than other
methods. The accuracy and efficiency of the present algorithm are confirmed by
comparing the estimated results with exact solutions through five numerical exam-
ples. It is highly recommended this LGAM being used in the estimation of radia-
tive coefficients, when there are no extra data available. The present methodology
is quite simple and straightforward, which may provide an alternative option about
the inverse problem of parameter identification of parabolic type PDEs. The Lie-
group shooting equation supplemented an inherent equation to solve the unknown
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parameter, with a self-adapted manner. The philosophy of the LGAM is that the
local in time differential equation (9) and the global in time algebraic equation (59)
must self-adapt to a situation that they are compatible. This condition is also appli-
cable to the 2-D inverse problem, where the local in time differential equation (61)
and the global in time algebraic equation (62) must be compatible and in harmony
by a self-adaptation.
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