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Abstract: The random interval response and probabilistic interval reliability of
structures with a mixture of random and interval properties are studied in this paper.
Structural stiffness matrix is a random interval matrix if some structural parameters
and loads are modeled as random variables and the others are considered as interval
variables. The perturbation-based stochastic finite element method and random
interval moment method are employed to develop the expressions for the mean
value and standard deviation of random interval structural displacement and stress
responses. The lower bound and upper bound of the mean value and standard
deviation of random interval structural responses are then determined by the quasi-
Monte Carlo method. The structural reliability is not a deterministic value but an
interval as the structural stress responses are random interval variables. Using a
combination of the first order reliability method and interval approach, the lower
and upper bounds of reliability for structural elements, series, parallel, parallel-
series and series-parallel systems are investigated. Three numerical examples are
used to demonstrate the effectiveness and efficiency of the proposed method.

Keywords: Hybrid probabilistic interval analysis, perturbation-based stochastic
finite element method, quasi-Monte Carlo method, random interval response, prob-
abilistic interval reliability.

1 Introduction

Non-deterministic analysis of structures with uncertainty has been received con-
siderable attention over the past two decades [Zhang, Chen, Liu, and Liu (1996);
Rao and Berke (1997); Chen and Yang (2000); Chen, Lian, and Yang (2003); Ma,
Chen, and Gao (2006); Gao and Kessissoglou (2007); Hua, Ni, Chen, and Ko
(2008); Zhai and Stewart (2010); Zhang, Chandrangsu and Rasmussen (2010)].
Generally, uncertainties are involved in most of structural analysis and design. For
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example, the material properties of a real structure may vary considerably from the
design values due to construction or manufacturing tolerances. Over the lifetime
of a structure, the damaging effects associated with attacks from aggressive envi-
ronmental agents, such as progressive deterioration of concrete and corrosion of
steel, usually lead to significant variations of system parameters. Stochastic meth-
ods are most popular for analysis of structures with uncertainties. In stochastic
methods, uncertainties in system parameters and inputs are quantified by random
functions (process/fields). These methods can provide numerical characteristics in-
cluding mean value and standard deviation, even probability density for structural
responses. Monte-Carlo method [Papadrakakis and Kotsopulos (1999); Spanos and
Kontsos (2008); Pellissetti and Schueller (2009)], perturbation-based stochastic fi-
nite element method [Zhang, Chen, Liu, and Liu (1996); Hua, Ni, Chen, and Ko
(2008); Papadrakakis and Kotsopulos (1999); Pandit, Singh, and Sheikh (2009);
Cavdar, Bayraktar, Cavdar, and Adanur (2008)], spectral stochastic finite element
method [Verhoosel, Gutierrez, and Hulshoff (2006); Nagh and Young (2007); Chen
and Soares (2008); Nouy (2008)] and other stochastic methods [Gao and Kessis-
soglou (2007); Chen and Li (2007, 2009); Fraccone, Volovoi, and Ruzzene (2010)]
have been widely used to analyze structures and engineering systems having ran-
dom parameters.

For probabilistic approaches, however, it is important to obtain appropriate mea-
surement data and sufficient statistical information to justify the probability den-
sities of the random variables. In some instances, however, the available data of
such measurements and statistical information are too limited and scarce to per-
mit a probabilistic analysis. Alternatively, a discipline, called interval analysis,
has been developed for structural analyses and for applied mechanics problems to
account for these uncertainties. In the interval analysis, the uncertain input vari-
ables, vectors and matrices are defined in closed bounded intervals. The bounds
on system response are sought through various interval analytical and numerical
approaches. Over the past decade, significant progresses in interval analysis of
structures with bounded parameters have been achieved. Combined with interval
operations, anti-optimization method [Qiu and Elishakoff (1998)], evolutionary op-
timization method [Yuan, He, and Leng (2008)], perturbation method [Chen, Lian,
and Yang (2003)], convex method [Elishakoff, Elisseeff, and Glegg (1994); Hu
and Qiu (2010)], Monte-Carlo simulation method [Gao, Di, Song, Tin-Loi, and
Li (2011)], interval finite element method [Degrauwe, Lombaert, and De Roeck
(2010); Lee, Park, and Shin (2008)] and affine arithmetic [Zhu and Chen (2009);
Degrauwe, Lombaert, and De Roeck (2010)] have been adopted to analyze struc-
tures with interval parameters.

Structural reliability analysis assesses the structural safety considering possible un-
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certainties in structural parameters and loads. It is vital in the analysis and design
of structures because a structural designer must verify, within a prescribed safety
level, the serviceability and ultimate conditions. The first-order reliability method
(FORM) is considered to be one of the most reliable computational methods. Nu-
merous studies have contributed to the development of reliability methods based
on FORM [Zhao and Ono (1999); Yang, Gang, and Cheng (2006); Low and Tang
(2007)]. Consequently, FORM becomes a basic method for analysis of structural
reliability. Second-order reliability theory [Zhao, Ono, and Kato (2002)], higher
order moment method [Zhao and Lu (2007)] and response surface method [Gavin
and Yau (2008)], Monte-Carlo simulation method [Melchers and Ahammed (2004);
Puatatsananon and Saouma (2006)] and other methods have been also used for re-
liability analysis. For a structural system with pure random properties, its failure
probability and reliability index are deterministic values. However, structural re-
liability becomes an interval number having the lower and upper bounds if both
random variables and interval variables are included in the structural system. Re-
cently, a few of researchers have conducted research on probabilistic interval relia-
bility analysis [Du and Guo (2009); Guo and Du (2010)].

In a structural system, it is desirable to model structural parameters/loads as random
variables if sufficient statistical data of them can be obtained, but some of them are
best considered as interval variables if only their change ranges can be determined.
To the authors’ knowledge, there is very little research has been done for analysis
of structural systems with a mixture of random and interval structural parameters.
Recently, the authors have proposed the random interval perturbation method [Gao,
Song, and Tin-Loi (2010)] and mixed perturbation Monte Carlo method [Gao, Di,
Song, Tin-Loi, and Li (2011)] to analyze structures with random and interval prop-
erties. However, the random interval perturbation method may yield conservative
intervals of the mean value and standard deviation of the structural responses if an
interval parameter is used more than the necessary times or multiplication/division
is involved. The mixed perturbation Monte Carlo method requires huge computa-
tional work to determine the exact bounds of random interval structural responses
because the Monte Carlo method is used as a random search method to solve inter-
val problems. In addition, only the expressions for reliability of series and paral-
lel systems have been developed, other typical systems such as series-parallel and
parallel-series are not investigated.

In this paper, a hybrid perturbation-based stochastic finite element method and
quasi-Monte Carlo method is proposed to investigate the static response of struc-
tures with a mixture of random and interval properties. In contrast to traditional
Monte Carlo methods using pseudo random numbers, the quasi-Monte Carlo method
produces deterministic sequences of well-chosen points that provide the best-possible
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spread in the change ranges of variables [Lei (2002)]. These deterministic se-
quences are often referred to as low discrepancy sequences filling the sample area
efficiently and uniformly [Morokoff and Caflisch (1995)]. Using the same num-
ber of simulations, therefore, quasi-Monte Carlo methods has better accuracy than
Monte Carlo methods in uncertain analysis [Singhee and Rutenbar (2010)]. Quasi-
Monte Carlo methods have been also successfully used to solve optimal problems
[Lei (2002); Wang (2002); Alessandri, Cervellera, Maccio, and Sanguineti (2010)]
as they can generate samplings from the feasible solution areas effectively. In this
study, the expressions for the first- and second-order moments of random interval
structural response are developed by using the perturbation-based stochastic finite
element method and random interval moment method. The lower bound (minimum
value) and upper bound (maximum value) of the mean value and standard deviation
of structural response are determined by the quasi-Monte Carlo method which is
considered as an optimization method. The probabilistic reliability analysis for a
structural element and different types of structural systems is then implemented by
using the first order reliability method and interval operations.

2 Probabilistic interval static analysis

2.1 Mean value and standard deviation of random interval structural response

Consider a structural system having random and interval parameters and loads. Let
random vector ~aR = (aR

1 ,aR
2 , · · · ,aR

n ) represent all random variables of the struc-
tural system and~bI = (bI

1,b
I
2, · · · ,bI

m) represent all interval variables. The structural
stiffness matrix [K] and load vector { f} are a random interval matrix and vector
respectively as they are functions of ~aR and~bI . Apparently structural displacement
vector {U} is also a random interval vector. Then, the finite element governing
equations of the structural system can be expressed as[
K(~aR,~bI)

] {
U(~aR,~bI)

}
=
{

f (~aR,~bI)
}

(1)

Using Taylor expansion, structural stiffness matrix and load vector can be expressed
as[
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where ~̄a = (ā1, ā2, · · · , ān) and~bc = (bc
1,b

c
2, · · · ,bc

m) are the deterministic value of
~aR and~bI , respectively. ∆bI

j is also an interval variable which represent the interval
width of bI

j.

Substituting Eqs. (2) and (3) into Eq. (1), we can get the first three equations
corresponding to zero, first and second-order perturbations.

The zero-order perturbation equation is[
K(~aR,~bI)

]0 {
U(~aR,~bI)

} 0
=
{

f (~aR,~bI)
} 0

(4)

where[
K(~aR,~bI)

]0
=
[
K(~̄a,~bc)

]
= KD (5){
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}0

=
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The first-order perturbation equation is[
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+
[
K(~aR,~bI)

]1 {
U(~aR,~bI)
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∂
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The second-order perturbation equation is[
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The solutions of Eqs. (4), (7) and (10) are respectively given as follows

{
U(~aR,~bI)

} 0
=
([

K(~aR,~bI)
]0
)−1{

f (~aR,~bI)
} 0

(13)

{
U(~aR,~bI)

} 1
=([

K(~aR,~bI)
]0
)−1({

f (~aR,~bI)
} 1
−
[
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]1 {
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} 0
)

(14)

{
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} 2
=
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]0
)−1
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f (~aR,~bI)

}2
−
[
K(~aR,~bI)

]1 {
U(~aR,~bI)

} 1
−
[
K(~aR,~bI)

]2 {
U(~aR,~bI)

}0
)

(15)

Eqs. (13) to (15) consist of a system of recursive equations. Substituting Eqs. (5)
and (6) into Eq. (13) yields{

U(~aR,~bI)
} 0

= K−1
D fD (16)

From Eqs. (8), (9), (14) and (16), we get{
U(~aR,~bI)

} 1
= K−1

D

(
f I
b−KI

bK−1
D fD + f I

aib
(
aR

i − āi
)
−KI

aib
(
aR

i − āi
)

K−1
D fD

)
(17)

Substituting Eqs. (5), (8), (11), (12), (16) and (17) into Eq. (15), we have{
U(~aR,~bI)

} 2
= K−1

D

(
f I
aialb(a

R
i − āi)(aR

l − āl)−
(
KI

b +KI
aib
(
aR

i − āi
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·
(
K−1

D

(
f I
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(
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i − āi
)
−KI
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(
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i − āi
)

K−1
D fD

))
−KI

aialb(a
R
i − āi)(aR

l − āl)K−1
D fD

)
(18)

The random interval structural displacement based on the first-order perturbation
can be obtained as

U RI−1 =
{

U(~aR,~bI)
} 0

+
{

U(~aR,~bI)
} 1

(19)

Substituting Eqs. (16) and (17) into Eq. (19) yields

U RI−1 = K−1
D fD +K−1

D

(
f I
b−KI

bK−1
D fD + f I

aib
(
aR

i − āi
)
−KI

aib
(
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i − āi
)

K−1
D fD

)
(20)

The structural displacement based on the second-order perturbation can be calcu-
lated by

U RI−2 =
{

U(~aR,~bI)
} 0

+
{

U(~aR,~bI)
} 1

+
{

U(~aR,~bI)
} 2

(21)

Substituting Eqs. (16) - (18) into Eq. (21), we obtain

U RI−2 = K−1
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D
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b−KI
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(
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)
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+K−1
D

(
f I
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R
i − āi)(aR

l − āl)−
(
KI

b +KI
aib
(
aR

i − āi
))

·
(
K−1

D
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f I
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D fD

))
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R
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l − āl)K−1
D fD

)
(22)

From Eq. (20), using the random interval moment method [Gao, Di, Song, Tin-
Loi, and Li (2011)], the mean value and variance of the random interval structural
displacement based on the first-order perturbation can be obtained as

E(U RI−1) = K−1
D fD +K−1

D

(
f I
b−KI

bK−1
D fD

)
(23)

Var(U RI−1) = E
(
U RI−1−E(U RI−1)

) 2

= (K−1
D f I

aib−K−1
D KI

aibK−1
D fD)(K−1

D f I
alb−K−1

D KI
albK−1

D fD)Cov
(
aR

i ,aR
l
)

(24)

From Eq. (24), the standard deviation of the random interval displacement can be
expressed as

Std(U RI−1) ={
(K−1

D f I
aib−K−1

D KI
aibK−1

D fD)(K−1
D f I

alb−K−1
D KI

albK−1
D fD)Cov

(
aR

i ,aR
l
)}1/2

(25)

From Eqs. (23) and (25), it can be observed that the mean value and standard
deviation of random interval structural displacement response are not deterministic
values but interval variables.

Similarly, from Eq. (22), the mean value and standard deviation of the random in-
terval structural displacement based on the second-order perturbation can be com-
puted from

E(U RI−2) = K−1
D fD +K−1
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b−K−1

D KI
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D AI
b +BI
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)
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i − āi)(aR
l − āl)(aR

k − āk)(aR
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where

AI
b = f I
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f I
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CI
aib = K−1

D
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f I
aib−KI
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D

(
f I
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−KI
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b
)

(30)

Obviously, the second-order perturbation method constitutes much more complex
computation than the first-order perturbation method. The third and fourth-order
probabilistic information of random variables are required in addition to the mean
values, variances and covariance of them. For analysis of structures with uncer-
tainty, the first and second-order moments (mean value, variance and covariance)
of the random system parameters are much more important than higher-order mo-
ments. Furthermore, in most of engineering problems, only the first and second-
order moments of structural responses are of interest. In this paper, only the mean
value and standard deviation of random interval structural responses are investi-
gated.

Using the relationship between the node displacement and element stress, the stress
response of the i-th element in the structure

{
σi

(−→a R,
−→
b I
)}

can be expressed as{
σi

(−→a R,
−→
b I
)}

=
[
D
(−→a R,

−→
b I
)]{

U
(−→a R,

−→
b I
)}

(31)

where
{

U
(−→a R,

−→
b I
)}

is the displacement of the nodal points of the i-th element

and
[
D
(−→a R,

−→
b I
)]

is the elastic matrix.

In the following, only the first-order perturbation displacements are used to demon-
strate how to calculate the numerical characteristics of the random interval stress re-
sponse. The first-order Taylor series of the random interval matrix
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∂
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Substituting Eqs. (20) and (32) into Eq.(31), we have

σ
RI−1 =

(
DD +DI

b +DI
aib
(
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i − āi
))

·
(
K−1
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)

K−1
D fD

))
(33)
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The mean value and standard deviation of σRI−1 are obtained as

E(σ RI−1) =
(
DD +DI

b
)(

K−1
D fD +K−1

D

(
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)
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D

(
f I
alb−KI
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)
(36)
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(
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(
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D fD
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Eq. (35) is concisely rewritten as

Std(U RI−2) =
{
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aibHI

albCov
(
aR

i,l
)
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aibGI
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(
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))2
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(38)

2.2 Bounded numerical characteristics of random interval structural responses

The lower and upper bounds of the mean value and standard deviation of the ran-
dom interval displacement response can be computed by using optimization meth-
ods. The lower and upper bounds of the mean value and standard deviation of the
displacement response based on the first-order perturbation can be expressed in the
following optimization form

E(U RI−1) = min
{

K−1
D fD +K−1

D

(
f I
b−KI

bK−1
D fD

)}
(39)

E(U RI−1) = max
{

K−1
D fD +K−1

D

(
f I
b−KI

bK−1
D fD

)}
(40)

Std(U RI−1) =
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min
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l
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(41)

Std(U RI−1) =
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(42)

Similarly, the lower and upper bounds of mean value and standard deviation of
structural stress response can be computed by

E(σ RI−1) =

min
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b
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Std(σ RI−1) =
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)
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In this study, the quasi-Monte Carlo method is adopted as a so-called random search
method to determine the lower and upper bounds of the mean value and standard
deviation of structural responses. As the quasi-Monte Carlo method has the capa-
bility to generate values distributed within the given ranges uniformly, this method
is suitable for interval analysis.
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3 Probabilistic interval reliability analysis

Structural reliability analysis is to estimate the probability of exceeding the struc-
tural limit states imposed on structural components. The structural reliability prob-
lem is defined by the integral

Pf =
∫

g(X)≤0
fX(X)dX (47)

where Pf is the probability of failure, X is the vector of random variables, fX(X) is
the joint probability density function, and g(X) is the limit state function such that
g(X)≤ 0 defines the failure domain.

Normally, a structure can be considered as a series, parallel, series-parallel or
parallel-series system in reliability analysis. In the following reliability analysis, we
assume that each typical system and its individual elements have only two states:
working or failure.

3.1 Elements/components

The limit state function of the i-th element of a structure is defined as

gi(W ) = Ri−σi (48)

where Ri and σi are the resistance (strength) and stress response of the i-th element,
respectively.

Using the first-order second-moment reliability method, the element (component)
failure probability can be expressed as

Pfi = φ(−βi) (49)

where φ is the standard normal cumulative distribution function. βi is the reliability
index and can be calculated by

βi =
µRi−µσi√
σ2

Ri
+σ2

σi

(50)

where µRi and µσi are the mean values of Ri and σi, σRi and σσi are standard devi-
ations of Ri and σi, respectively.

The reliability index of the i-th element βi is an interval variable because the struc-
tural stress response σi is a random interval variable and µσi and σσi are interval
variables, even if µRi and σRi are deterministic values. Let us assume that µRi and
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σRi are also interval variables, the lower and upper bounds of the interval reliability
index β I

i can be obtained as

βi =
µRi−µσi√

(σRi)2 +(σσi)2
, βi =

µRi−µσi√
(σRi)2 +(σσi)2

(51)

The upper and lower bounds of the failure probability can be computed by

Pfi = φ(−βi) = 1−φ(
µRi−µσi√

(σRi)2 +(σσi)2
),

Pfi = φ(−βi) = 1−φ(
µRi−µσi√

(σRi)2 +(σσi)2
) (52)

The midpoint and maximum width of the failure probability can be easily obtained
as

Pc
fi

=
Pfi +Pfi

2
, ∆Pfi =

Pfi−Pfi

2
(53)

As Pri = 1−Pfidenote the reliability (probability of survival) of the i-th element,
the lower bound (worst possible value) and upper bound (best possible value) of
the reliability can be expressed as

Pri = 1−Pfi = φ(βi) = φ(
µRi−µσi√

(σRi)2 +(σσi)2
), (54)

Pri = 1−Pfi = φ(βi) = φ(
µRi−µσi√

(σRi)2 +(σσi)2
)

The midpoint and maximum width of the reliability are

Pc
ri

=
Pri +Pri

2
, ∆Pri =

Pri−Pri

2
(55)

3.2 Series system

If the structure is considered as a series system shown in Figure 1, the reliability of
this structure is

Pr = 1−Pf =
n

∏
i=1

(1−Pfi) =
n

∏
i=1

Pri (56)
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The lower and upper bounds of the structural reliability (series system) can be ex-
pressed as

Pr =
n

∏
i=1

Pri , Pr =
n

∏
i=1

Pri (57)
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The midpoint and maximum width of the reliability are 
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The lower and upper bounds of the structural reliability (series system) can be expressed 
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3.3 Parallel system

If the structure is considered as a parallel system shown in Figure 2, the reliability
of this structure is given by

Pr = 1−Pf = 1−
n

∏
i=1

(1−Pri) (58)

The lower and upper bounds of the structural reliability (parallel system) can be
expressed as
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Figure 2:  Parallel system 

3.4  Series-parallel system 

For the series parallel system shown in Figure 3, its reliability is calculated by 

∏ ∏
= =

−−=
m

i

n

j
ijrr PP

1 1

)1(1                                                                                                         (59) 

The lower and upper bounds of the structural reliability (series-parallel system) can be 
expressed as 

∏ ∏
= =

−−=
m

i

n

j
ijrr PP

1 1

)1(1 , ∏ ∏
= =

−−=
m

i

n

j
ijrr PP

1 1

)1(1                                                                       (60) 

 
Figure 3:  Series-parallel system 

11 12 1n 

21 22 2n 

m1 m2 mn 

1 

2 

n 

Figure 2: Parallel system



Non-Deterministic Structural Response and Reliability Analysis 33

3.4 Series-parallel system

For the series parallel system shown in Figure 3, its reliability is calculated by

Pr = 1−
m

∏
i=1

(1−
n

∏
j=1

Pri j) (60)

The lower and upper bounds of the structural reliability (series-parallel system) can
be expressed as
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3.5  Parallel-series system 

If the structure is considered as a parallel series system shown in Figure 4, the reliability 
of this structure is 
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Figure 4:  Parallel-series system 

4 Examples 

4.1  Portal frame 

To demonstrate the efficiency of the approach presented in this paper for static response 
analysis, a planar portal frame shown in Figure 5 is used as an example. Suppose that 
there are no preload stresses in the structure and all elements have a circle cross section. 
The deterministic values of structural parameters for all members are Young’s 
modulus 211 /101.2 mNE ×=  and the diameter md 2100.4 −×= , respectively. A load acts on 
the node 15 along the negative Y-direction with the deterministic value Nf 4106 ×= . 
Consider that the Young’s modulus and load are random variables, and the diameter is an 
interval variable. These uncertain values of structural parameters and load are taken as 
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traditional Monte Carlo (MC) simulations and the Hybrid Perturbation-based Stochastic 
Finite Element and Quasi-Monte Carlo method (HPSFE-QMC) presented in this paper 
are used to calculate the lower and upper bounds of mean value and standard deviation of 
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3.5 Parallel-series system

If the structure is considered as a parallel series system shown in Figure 4, the
reliability of this structure is

Pr =
n

∏
j=1

(
1−

m

∏
i=1

(1−Pri j)

)
(62)

The lower and upper bounds of the structural reliability (parallel-series system) can
be expressed as

Pr =
n

∏
j=1

(
1−

m

∏
i=1

(1−Pri j)

)
, Pr =

n

∏
j=1

(
1−

m

∏
i=1

(1−Pri j)

)
(63)

4 Examples

4.1 Portal frame

To demonstrate the efficiency of the approach presented in this paper for static re-
sponse analysis, a planar portal frame shown in Figure 5 is used as an example.
Suppose that there are no preload stresses in the structure and all elements have a
circle cross section. The deterministic values of structural parameters for all mem-
bers are Young’s modulusE = 2.1×1011N/m2 and the diameterd = 4.0×10−2m,
respectively. A load acts on the node 15 along the negative Y-direction with the
deterministic value f = 6×104N. Consider that the Young’s modulus and load are
random variables, and the diameter is an interval variable. These uncertain values
of structural parameters and load are taken as σE = 4.2× 109N/m2, σF = 600N
and dI = [3.9, 4.1]×10−2m. In the following, 20000 times traditional Monte Carlo
(MC) simulations and the Hybrid Perturbation-based Stochastic Finite Element and
Quasi-Monte Carlo method (HPSFE-QMC) presented in this paper are used to cal-
culate the lower and upper bounds of mean value and standard deviation of struc-
tural displacement response.

In every traditional Monte-Carlo simulation, the first step is to arbitrarily generate
values within the given intervals for all interval variables by assuming all inter-
val variables obey uniform distributions in their own intervals. The second step
is using 20000 times Monte-Carlo simulations to determine the mean value and
standard deviation of structural response. After repeat the whole procedure 20000
times, 20000 mean values and 20000 standard deviations can be obtained. Then
the lower and upper bounds of them can be determined respectively. More simu-
lation times can be used for the two steps to improve the accuracy of the results.
In HPSFE-QMC, 3000, 5000, 10000 and 20000 simulations are used respectively
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Figure 5:  22 elements portal frame structure (unit: mm) 

In every traditional Monte-Carlo simulation, the first step is to arbitrarily generate values 
within the given intervals for all interval variables by assuming all interval variables obey 
uniform distributions in their own intervals. The second step is using 20000 times Monte-
Carlo simulations to determine the mean value and standard deviation of structural 
response. After repeat the whole procedure 20000 times, 20000 mean values and 20000 
standard deviations can be obtained. Then the lower and upper bounds of them can be 
determined respectively. More simulation times can be used for the two steps to improve 
the accuracy of the results. In HPSFE-QMC, 3000, 5000, 10000 and 20000 simulations 
are used respectively to get the lower and upper bounds of the mean value (LBMV and 
UBMV) and standard deviation (LBSTD and UBSTD) of the structural displacement 
response. The computational results of the displacement response of node 15 in the 
negative Y-direction are listed in Table 1. 

Table 1: Mean value and standard deviation of vertical displacement                               
at node 15 (unit: 10-3 mm) 

 
LBMV UBMV LBSTD UBSTD 

HPSFE-QMC (3000 simulations) 216.4188 239.1734 4.8393 5.3481 

HPSFE-QMC (5000 simulations) 216.4137 239.1734 4.8392 5.3481 

HPSFE-QMC (10000 simulations) 216.4111 239.1734 4.8391 5.3481 

HPSFE-QMC (20000 simulations) 216.4098 239.1734 4.8391 5.3481 

MC (20000 simulations) 216.4265 239.2763 4.8311 5.3543 
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Figure 5: 22 elements portal frame structure (unit: mm)

to get the lower and upper bounds of the mean value (LBMV and UBMV) and
standard deviation (LBSTD and UBSTD) of the structural displacement response.
The computational results of the displacement response of node 15 in the negative
Y-direction are listed in Table 1.

Generally, computational results obtained by HPSFE-QMC are in very good agree-
ment with those computed by the traditional Monte-Carlo method. The intervals
of mean value calculated by these two methods are quite close to each other. The
accuracy of results can be improved if the second-order perturbation method is
adopted. However, it requires more computational work. From Table 1, it can
be also observed that the intervals of numerical characteristics of structural re-
sponses obtained by 3000, 5000, 10000 and 20000 quasi-Monte Carlo simulations
are almost same. In other words, 3000 quasi-Monte Carlo simulations can pro-
vide reliable/accurate results in this example. In interval analysis, quasi-Monte
Carlo method can greatly reduce the computational effort compared with the tra-
ditional Monte Carlo method. The traditional Monte-Carlo simulation method is
time-consuming as the two different types of variables, random variables and in-
terval variables must be treated separately. The total simulation times are20000×
20000 = 4×108. The HPSFE-QMC is much more time saving due to much lesser
simulation times. It should be noted that the accuracy of the results of these two
methods can be improved if more simulations are used.
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Table 1: Mean value and standard deviation of vertical displacement at node 15
(unit: 10−3 mm)

LBMV UBMV LBSTD UBSTD
HPSFE-QMC (3000 simula-
tions)

216.4188 239.1734 4.8393 5.3481

HPSFE-QMC (5000 simula-
tions)

216.4137 239.1734 4.8392 5.3481

HPSFE-QMC (10000 simula-
tions)

216.4111 239.1734 4.8391 5.3481

HPSFE-QMC (20000 simula-
tions)

216.4098 239.1734 4.8391 5.3481

MC (20000 simulations) 216.4265 239.2763 4.8311 5.3543
Relative error (20000 simula-
tions)
|(HPSFEQMC−MC)/MC|

0.0077% 0.0430% 0.8000% 0.1158%

Generally, computational results obtained by HPSFE-QMC are in very good agreement 
with those computed by the traditional Monte-Carlo method. The intervals of mean value 
calculated by these two methods are quite close to each other. The accuracy of results can 
be improved if the second-order perturbation method is adopted. However, it requires 
more computational work. From Table 1, it can be also observed that the intervals of 
numerical characteristics of structural responses obtained by 3000, 5000, 10000 and 
20000 quasi-Monte Carlo simulations are almost same. In other words, 3000 quasi-Monte 
Carlo simulations can provide reliable/accurate results in this example. In interval 
analysis, quasi-Monte Carlo method can greatly reduce the computational effort 
compared with the traditional Monte Carlo method. The traditional Monte-Carlo 
simulation method is time-consuming as the two different types of variables, random 
variables and interval variables must be treated separately. The total simulation times 
are 81042000020000 ×=× . The HPSFE-QMC is much more time saving due to much 
lesser simulation times. It should be noted that the accuracy of the results of these two 
methods can be improved if more simulations are used. 

4.2 Crane tower 

In the following, a space crane tower truss structure shown in Figure 6 is under 
consideration.  

 

Figure 6:  Crane Truss Tower (unit: mm) 
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Figure 6: Crane Truss Tower (unit: mm)

4.2 Crane tower

In the following, a space crane tower truss structure shown in Figure 6 is under
consideration.
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This crane tower has 76 nodes and 237 elements. The material of this structure is
steel. The deterministic values of the structural parameters and loads are Young’s
modulus E = 2.1× 1011N/m2, cross-sectional area A = 1.0× 10−2m2, counter-
weight W1 = W2 = 2.5× 104N and loads f = F1 = F2 = 5.0× 104N, respectively.
The cross-sectional areas are interval variables, Young’s modulus and loads are
random variables. Here, we introduce the coefficient of variation νaRfor random
variable aR and the interval change ratio ∆bF for interval variable bI = [b,b] as
follows

νaR =
σaR

ā
,∆bF =

∆b
bc (64)

The dispersal degree of a random variable or an interval variable can be better
reflected by the coefficient of variation or interval change ratio.

To investigate the differences between the effects produced by random and interval
variables on structural response, the values of coefficient of variation of random
variables, and interval change ratio of interval variables are varied from 0 to 0.1. If
DD denotes the dispersal degree of uncertain variables, then its value will vary from
0 to 0.1. The lower and upper bounds on the mean value and standard deviation of
the random interval displacement (MOD and SOD) of node 70 in vertical direction
are given in Figures 7 and 8, respectively.

Figures 7(b) and (c) show that the random variables do not affect the mean value of
the random interval structural response. In other words, the mean value of structural
response is not an interval but a deterministic value if all structural parameters and
loads are random variables. However, the mean value of structural response is an
interval if the structure has interval parameters or loads as shown in Figures 7(a)
and (d). The interval width of structural response depends on the dispersal degree
of the interval parameter.

Figure 8(a) shows that the standard deviation of structural response is zero if the
structure has interval variables only. Structural response is an interval variable
(not a random interval variable) if all structural parameters and loads are interval
variables. Figures 8(b) and (c) show that standard deviation of structural response
is a deterministic value rather than interval number if structural parameters and
loads are random variables and its values depend on the randomness of random
structural parameters/loads. Figure 8(d) shows that the standard deviation of the
structural response is bigger, compared with figures 8(b) and 8(c), if more random
variables are considered, and the standard deviation of structural response is an
interval variable when the structural system has a mixture of random and interval
parameters/loads. The interval width is dependent on both the dispersal degrees of
random and interval variables.



38 Copyright © 2011 Tech Science Press CMC, vol.25, no.1, pp.19-46, 2011

and loads NFFf 4
21 100.5 ×=== , respectively. The cross-sectional areas are interval 

variables, Young’s modulus and loads are random variables. Here, we introduce the 
coefficient of variation Ra

ν for random variable Ra  and the interval change ratio FbΔ  for 

interval variable ],[ bbbI =  as follows 

a

Ra
Ra

σ
ν = ,

cF b

b
b

Δ=Δ                                                                                                        (63) 

The dispersal degree of a random variable or an interval variable can be better reflected 
by the coefficient of variation or interval change ratio. 

To investigate the differences between the effects produced by random and interval 
variables on structural response, the values of coefficient of variation of random variables, 
and interval change ratio of interval variables are varied from 0 to 0.1. If DD  denotes the 
dispersal degree of uncertain variables, then its value will vary from 0 to 0.1. The lower 
and upper bounds on the mean value and standard deviation of the random interval 
displacement (MOD and SOD) of node 70 in vertical direction are given in Figures 7 and 
8, respectively. 
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Figure 7:  Mean value of random interval displacement of node 70                                   
in vertical direction (unit: mm) 

Figures 7(b) and (c) show that the random variables do not affect the mean value of the 
random interval structural response. In other words, the mean value of structural response 
is not an interval but a deterministic value if all structural parameters and loads are 
random variables. However, the mean value of structural response is an interval if the 
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Figure 7: Mean value of random interval displacement of node 70 in vertical direc-
tion (unit: mm)

4.3 Planar truss

An 11-bar 2D statically determinate truss structure shown in Figure 9 is considered
in this example. The Young’s modulus and cross-sectional areas for all elements are
same. Their deterministic values are E = 2.1×1011N/m2 and A = 4.0×10−4m2.
The deterministic values of the forces are~f = [ f1, f2, f3]

T = [1.2, 2.0, 1.5]T×104N.
Cross-sectional areas are interval variables, Young’s modulus and loads are random
variables. The mean value and standard deviation of the resistance (strength) Ri are
taken as µRi

= 300 MPa and σRi
= 30 MPa i = (1,2, · · · ,11), respectively. The

failure probability (FP) and reliability (R) of element 11 are respectively shown in
Figure 10 and Figure 11 while the dispersal degree of structural parameters, loads
and resistance are varied from 0 to 0.1.

From Figures 10(a) and Figure 11(a), it can be observed that the system parame-
ters produce different effects on both the failure probability and reliability of el-
ement 11. The failure probability and reliability are very sensitive to the change
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structure has interval parameters or loads as shown in Figures 7(a) and (d). The interval 
width of structural response depends on the dispersal degree of the interval parameter.  
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Figure 8: Standard deviation of random interval displacement of node 70                                   
in vertical direction (unit: mm) 

Figure 8(a) shows that the standard deviation of structural response is zero if the structure 
has interval variables only. Structural response is an interval variable (not a random 
interval variable) if all structural parameters and loads are interval variables. Figures 8(b) 
and (c) show that standard deviation of structural response is a deterministic value rather 
than interval number if structural parameters and loads are random variables and its 
values depend on the randomness of random structural parameters/loads. Figure 8(d) 
shows that the standard deviation of the structural response is bigger, compared with 
figures 8(b) and 8(c), if more random variables are considered, and the standard deviation 
of structural response is an interval variable when the structural system has a mixture of 
random and interval parameters/loads. The interval width is dependent on both the 
dispersal degrees of random and interval variables. 

4.3  Planar truss 

An 11-bar 2D statically determinate truss structure shown in Figure 9 is considered in this 
example. The Young’s modulus and cross-sectional areas for all elements are same. Their 
deterministic values are 211 /101.2 mNE ×=  and 24100.4 mA −×= . The deterministic values 

of the forces are [ ] [ ] Nffff TT 4
321 105.1,0.2,2.1,, ×==


. Cross-sectional areas are interval 

variables, Young’s modulus and loads are random variables. The mean value and 
standard deviation of the resistance (strength) iR  are taken as MPa

iR
300=μ  and 

FADD Δ=  

fDD ν=  fEFADD νν ==Δ=

EDD ν=

Figure 8: Standard deviation of random interval displacement of node 70 in vertical
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Figure 9:  Statically determinate truss structure 

From Figures 10(a) and Figure 11(a), it can be observed that the system parameters 
produce different effects on both the failure probability and reliability of element 11. The 
failure probability and reliability are very sensitive to the change of the mean value of 
resistance and cross-sectional areas. The failure probability or reliability is not an interval 
variable when a structural system has pure random variables as shown in Figures 10(b) 
and 11(b). Figures 10(c) and 11(c) show that the maximum width of the reliability or 
failure probability is the biggest, when the uncertainties of all structural parameters and 
loads and resistance are considered simultaneously. 

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D D

F
   

P

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D D

F
   

P

 
 

f1 

6 m 6 m 

1 
2

4 

f2 f3 

3

5 6 7

6 m 

4 m 

(1) (2) (3) 

(4) (5) (6) (7) (8) (9) 

(10) (11) 

FRDD σΔ= (black line) 
fDD ν= (red line)

EDD ν=  (black line)

FRDD μΔ= (red line) 
FADD Δ= (blue line) 

(b) (a) 

Figure 9: Statically determinate truss structure

of the mean value of resistance and cross-sectional areas. The failure probability
or reliability is not an interval variable when a structural system has pure random
variables as shown in Figures 10(b) and 11(b). Figures 10(c) and 11(c) show that
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Figure 10:  Failure probability of element 11 
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Figure 11: Reliability of element 11 

The statically determinate truss structure shown in Figure 9 can be considered as a series 
system. The structural reliability is given in Figure 12. It can be seen that the lower bound 
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Figure 10: Failure probability of element 11

the maximum width of the reliability or failure probability is the biggest, when the
uncertainties of all structural parameters and loads and resistance are considered
simultaneously.

The statically determinate truss structure shown in Figure 9 can be considered as a
series system. The structural reliability is given in Figure 12. It can be seen that the
lower bound of the structural reliability, that is the worst possible value of structural
reliability, decreases quickly as it is the product of the lower bounds of the relia-
bility of all structural elements. For a series system, the reliability of all elements
should be improved greatly if we want to improve the structural reliability. Figure
12 also shows that the midpoint of the structural reliability is not a constant and
will drop down if the dispersal degree of structural parameters and load increases.
Meanwhile, the interval width of structural reliability is getting bigger and bigger.
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Figure 10:  Failure probability of element 11 

0 0.02 0.04 0.06 0.08 0.1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

D D

R

0 0.02 0.04 0.06 0.08 0.1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

D D

R

 
 

     
0 0.02 0.04 0.06 0.08 0.1

0.4

0.5

0.6

0.7

0.8

0.9

1

D D

R

 

Figure 11: Reliability of element 11 

The statically determinate truss structure shown in Figure 9 can be considered as a series 
system. The structural reliability is given in Figure 12. It can be seen that the lower bound 
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Figure 11: Reliability of element 11

5 Conclusions

A hybrid perturbation-based stochastic finite element and quasi-Monte Carlo method
is proposed in this paper to investigate the static response of structures having both
random and interval parameters/loads. Then the reliability analysis is implemented
by a combination of first-order reliability method and interval approach. The ex-
pressions for calculating the mean value and standard deviation of random interval
structural responses are developed. The effects of random and interval parame-
ters/loads on structural response are also studied. The expressions of reliability
of structural elements, and other typical systems, including series, parallel, series-
parallel and parallel-series systems, are given in terms of intervals. The effective-
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of the structural reliability, that is the worst possible value of structural reliability, 
decreases quickly as it is the product of the lower bounds of the reliability of all structural 
elements. For a series system, the reliability of all elements should be improved greatly if 
we want to improve the structural reliability. Figure 12 also shows that the midpoint of 
the structural reliability is not a constant and will drop down if the dispersal degree of 
structural parameters and load increases. Meanwhile, the interval width of structural 
reliability is getting bigger and bigger.   
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Figure 12: Reliability of the whole structure 

5 Conclusions 

A hybrid perturbation-based stochastic finite element and quasi-Monte Carlo method is 
proposed in this paper to investigate the static response of structures having both random 
and interval parameters/loads. Then the reliability analysis is implemented by a 
combination of first-order reliability method and interval approach.  The expressions for 
calculating the mean value and standard deviation of random interval structural responses 
are developed. The effects of random and interval parameters/loads on structural response 
are also studied. The expressions of reliability of structural elements, and other typical 
systems, including series, parallel, series-parallel and parallel-series systems, are given in 
terms of intervals. The effectiveness and efficiency of the method has been demonstrated 
by the numerical examples. The proposed method can be applied to analyze complex 
structures.  
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ness and efficiency of the method has been demonstrated by the numerical exam-
ples. The proposed method can be applied to analyze complex structures.
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