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On the Energy Release Rate at the Crack Tips in a Finite
Pre-Strained Strip

Surkay D. Akbarov1,2 and Arzu Turan3

Abstract: The influence of the initial finite stretching or compressing of the strip
containing a single crack on the Energy Release Rate (ERR) and on the SIF of mode
I at the crack tips is studied by the use of the Three-Dimensional Linearized Theory
of Elasticity. It is assumed that the edges of the crack are parallel to the face planes
of the strip and the ends of the strip are simply supported. The initial finite strain
state arises by the uniformly distributed normal forces acting at the ends of the strip.
The additional normal forces act on the edges of the crack. The elasticity relations
for the strip material are given by the harmonic type potential. The corresponding
boundary-value problem is solved by employing FEM. The numerical results on
the influence of the initial finite strain state the values of the ERR and of the SIF of
mode I are presented. In particular, it is established that the values of the ERR and
of the SIF of mode I decrease (increase) monotonically with an increase (decrease)
in the initial stretching (compression).

Keywords: Crack, Energy Release Rate, finite initial strain, harmonic type po-
tential, Stress Intensity Factor of mode I, strip.

1 Introduction

A typical problem of fracture mechanics is the determination of the Energy Release
Rate (ERR) or of the Stress Intensity Factors (SIF) at the tips of cracks occurring in
structural members. A large number of investigations have been carried out in this
field, and the corresponding results are tabulated in many reference books, such as
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Sih (1973). At present, numerical methods based on the domain-integral formu-
lation for ERR and SIF computations are being developed intensively. A review
of these investigations is given in Gosz, Dolbow and Moran (1998). It should be
noted that the above-mentioned studies for brittle and quasi-brittle materials have
been performed within the framework of the linear theory of elasticity, accord-
ing to which the uniformly distributed normal stresses acting along the cracks do
not influence the ERR and SIF. However, the experimental investigations listed in
Guz (2008a, 2008b) show that these stresses act on the failure of the structural
members containing cracks. In recent years in Kaminskii and Galatenko (2005),
Kaminskii and Bogdanova (2009) and others within the framework of the linear
and quasi-linear fracture mechanics a two-parameter model has been developed for
computing the above-mentioned influence. Note that for this purpose in these in-
vestigations besides SIF the additional fracture parameter (T-stress) is introduced.
Consequently, two-parameter models cannot take into account the influence of the
uniformly distributed normal stress acting along the cracks on the SIF at the crack
tips. This influence can be taken into account by the use of the Three-Dimensional
Linearized Theory of Elasticity (TDLTE), which is detailed in Guz (1999). The
TDLTE for problems of brittle fracture was developed in Guz (2008 a, 2008b). A
review of investigations on the mechanics of brittle fracture of pre-stressed materi-
als is given in Bogdanov, Guz and Nazarenko (2009), Guz (2009).

It follows from Guz (2008a, 2008b, 2009), Bogdanov, Guz and Nazarenko (2009)
that, up to now, results on the influence of initial stresses on the SIF are obtained
for an infinite body and studies on the effect of initial tension or compression along
cracks located in finite regions on the SIF are absent. The importance and of such
an inquiry is evident and it deserves to be a topic.

The first attempts in this field was made in the papers Akbarov, Yahnioglu and Tu-
ran (2004), Akbarov and Turan (2009a) and the investigations were carried out for
a simply supported and initially stretched (compressed) strip containing a crack on
whose edges some additional uniformly distributed normal forces operate. A plane-
strain state is considered and the material of the strip was assumed orthotropic with
normalized mechanical properties. In the paper Akbarov and Turan(2009b) the in-
vestigations Akbarov, Yahnioglu and Turan (2004), Akbarov and Turan (2009a)
was developed for sandwich plate with interface cracks. However, it was assumed
in Akbarov, Yahnioglu and Turan (2004), Akbarov and Turan (2009a, 2009b) that
the initial strain state in the strip is small and is determined within the framework
of the classical linear theory of elasticity. Consequently, the results obtained in
Akbarov, Yahnioglu and Turan (2004), Akbarov and Turan (2009a, 2009b) regard
the strip fabricated from the rigid or moderately rigid materials and are not appli-
cable for the strip fabricated from the various elastomers which are suitable for the
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finite initial stretching or compression of the strip. Therefore, in the present paper
the investigations carried out in Akbarov, Yahnioglu and Turan (2004), Akbarov
and Turan (2009a, 2009b) are developed for a finite initially stretched (or com-
pressed) simply supported strip containing the crack. The values of the ERR and
the influence of the initial stretching (compressing) on these values are analysed. In
particular cases, the SIF of mode I is also analysed within the foregoing contents.

Throughout the paper, by repeated indices which are used only in the right side of
the relations and equations are summed over their ranges.

 
Figure 1: The geometry of the considered strip

2 Formulation of the problem

We consider a strip which in the natural state occupies the region Ω ={0≤ x1 ≤ ` ,
0≤ x2 ≤ h}, in Ox1x2 plane and−∞ < x3 < +∞ for that, where x1,x2 and x3 are the
Lagrangian coordinates of the strip points in the Cartesian system of coordinates
Ox1x2x3. This system of coordinates is associated with the strip shown in Fig. 1.
Assume that the strip contains a crack which is in a plane x2 = ha in the natural state.
The length of the crack is equal to `0 and the location of that is symmetric with
respect to x1 = `/2. It is supposed that the strip material is isotropic, homogeneous,
compressible hyperelastic one with the elastic potential of the harmonic type.

Assume that uniformly distributed normal forces of intensity q operate at the strip
ends and cause the initial strain state which is determined as follows:

u0
m = (λm−1)xm, λm = constm (1)
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where u0
m is a displacement and λm is the elongation along the Oxm axis. As we

consider the plane strain state, therefore we assume that

λ3 = 1, u0
3 ≡ 0. (2)

At the same time, the positions of the points of the strip are determined by the
Lagrangian coordinates yi in the Cartesian system of coordinates Oy1y2y3 which is
associated with the initial state of the strip. The relation between the coordinates yi

and xi can be written as follows:

yi = λixi. (3)

Below we will use the equations and relations of TDLTE written in the system of
coordinates Oy1y2y3 and the values regarding this system will be denoted by upper
prime.

Now we assume that after the appearance of the foregoing initial state additional
normal forces of intensity p (p�q) are applied to the edges of the crack. We inves-
tigate the influence of the initial tension (or compression) of the strip on the ERR
at the crack tips caused by the action of additional normal forces p. For this pur-
pose we write the equilibrium equations and corresponding boundary conditions of
TDLTE for the considered case.

The equilibrium equations:

∂Q′11
∂y1

+
∂Q′21
∂y2

= 0;
∂Q′12
∂y1

+
∂Q′22
∂y2

= 0; (4)

The mechanical relations:

Q′i j = ω
′
i j11

∂ ′u1

∂y1
+ω

′
i j12

∂ ′u1

∂y2
+ω

′
i j21

∂ ′u2

∂y1
+ω

′
i j22

∂ ′u2

∂y2
. (5)

The equations (4) and (5) are satisfied in

Ω
′
1 = Ω

′− (L′+∪L′−) (6)

where

Ω
′ =
{

0≤ y1 ≤ `′,0≤ y2 ≤ h′
}

,

L′± =
{

y2 = h′a±0, `
′/2− `′0/2 < y1 < `′/2+ `′0/2

}
. (7)

According to (3), in (7) the following notation is used

h′ = λ2h, `′0 = λ1`0, h′u = λ2hu, h′a = λ2ha. (8)
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In (4) and (5) through Q′i j the perturbations of the components of Kirchoff stress
tensor are denoted. The notation u′α (α = 1,2) shows the perturbations of the com-
ponents of the displacement vector. The values of ω ′i jαβ

( i; j;α;β = 1,2) in (5) are
determined through the mechanical constant of the strip material and through the
initial state (1). According to Guz (2008a, 2008b), consider the determinationω ′i jαβ

.

As it has been noted above, we assume that the elasticity relations of the strip
material are given by harmonic type potential. This potential is given as follows:

Φ =
1
2

λ s2
1 + µs2 (9)

where λ and µ are the mechanical constants, s1 and s2 are invariants of the Green’s
strain tensor and are determined by the following formulae:

s1 = (λ1−1)+(λ2−1)+(λ3−1),

s2 = (λ1−1)2 +(λ2−1)2 +(λ3−1)2 (10)

where

λi =
√

1+2εi. (11)

In (11), εi are the principal values of the Green’s strain tensor εi j which are deter-
mined through the components of the displacement vector by the following expres-
sions:

εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi
+

∂uα

∂xi

∂uα

∂x j

)
. (12)

In this case, the determination of the components of the Lagrange stress tensor Si j

through the potential Φ and the expression of the Kirchoff stress tensor Qi j through
the Si j are given as follows:

Si j =
1
2

(
∂

∂εi j
+

∂

∂ε ji

)
Φ, Qi j = Sin

(
δ

j
n +

∂u j

∂xn

)
. (13)

Note that the expressions (9)-(12) are written in the arbitrary system of Cartesian
coordinate system without any restriction related to the association of this system
to the natural or initial state of the considered strip.

According to (13) for the considered case the relations between the perturbation of
the Kirchoff stress tensor and the perturbation of the components of the Lagrange
stress tensor can be written as follows:

Q′nm =
λn

λ1λ2

(
λmSnm +S0

ni
∂u′m
∂yi

)
(14)
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According to (13) the following notation is used.

S0
ni =

1
2

(
∂

∂ε0
ni

+
∂

∂ε0
in

)
Φ

0, (15)

Snm = λnmi j
∂ui

∂x j
(16)

where

λnmi j =
1
4

(
δ

i
k +

∂u0
i

∂xk

)(
∂

∂ε0
k j

+
∂

∂ε0
jk

)(
∂

∂ε0
nm

+
∂

∂ε0
mn

)
Φ

0. (17)

Taking into account the expressions (9)-(11), from (15) we obtain that

S0
11 = [λ (λ1 +λ2−2)+2µ(λ1−1)] ; S0

12 = 0,

S0
22 = [λ (λ1 +λ2−2)+2µ(λ2−1)] ; S0

33 = 2µ(1−λ2) (18)

According to the problem statement, we can write S0
11 = q and S0

22 = 0 from which
we obtain

λ2 =
2(λ + µ)−λλ1

λ +2µ
. (19)

So, for fixed values of the material constants λ and µ the initial stretching or com-
pression of the strip can be estimated through the parameter λ1 only.

Thus taking into account (16)-(18), from (14) and (5) we obtain the following ex-
pressions for the componentsω ′i jnm:

ω
′
1111 =

λ1

λ2
(λ +2µ), ω

′
2222 =

λ2

λ3
(λ +2µ)

ω
′
1122 = λ , ω

′
2112 = ω

′
1212 =

2µλ2

λ1 +λ2
,

ω
′
1221 =

2µλ 2
1

λ2(λ1 +λ2)
, (20)

ω
′
1112 = ω

′
1121 = ω

′
1211 = ω

′
1222 = ω

′
2111 = ω

′
2121 = ω

′
2122 = 0,

ω
′
2211 = λ , ω

′
2121 =

2µλ2

λ1 +λ2
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Consider the boundary conditions for the perturbation state. We assume that the
following conditions are satisfied.

u′2
∣∣
y1=0;`′ = 0; Q′11

∣∣
y1=0;`′ = 0; Q′22

∣∣
y2=0;h′ = 0

Q′21
∣∣
y2=0;h′ = 0; Q′22

∣∣
L′± =−p; Q′21

∣∣
L′± = 0 (21)

Thus, the investigation of the stress-strain state in the considered strip is reduced to
the solution to boundary value problem (4)-(21). After determination of the stress-
strain state we can calculate ERR (denoted by γ) by the use of the expression

γ =−1
2

δU(`0)
δ`0

(22)

where

U(`0) =
1
2

∫∫
Ω′1

(
Q′11

∂u′1
∂y1

+Q′12
∂u′2
∂y1

+Q′21
∂u′1
∂y2

+Q′22
∂u′2
∂y2

)
dy1dy2. (23)

3 Method of Solution: FEM modelling

As an analytical solution to problem (4)-(21) cannot be obtained, we will inves-
tigate this problem by employing the FEM. For this purpose, we introduce the
functional

Π =
1
2

∫∫
Ω′1

(
Q′11

∂u′1
∂y1

+Q′12
∂u′2
∂y1

+Q′21
∂u′1
∂y2

+Q′22
∂u′2
∂y2

)
dy1dy2

−
∫

L′+

pu′+2 dy1 +
∫

L′−

pu′−2 dy1 (24)

Taking into account the relations (5) the functional (24) can be written as follows:

Π =
1
2

∫∫
Ω′1

ω
′
i jαβ

∂ ′uα

∂yβ

∂u′j
∂yi

dy1dy2−
∫

L′+

pu′+2 dy1 +
∫

L′−

pu′−2 dy1 (25)

According to expressions (5), (14), (16), (17) and (20), it is easy to verify that
ω ′i jαβ

= ω ′
βα ji. According to Guz (2009), by using these relations, it is proven that

the equations (4) and the boundary conditions (21) (except the conditions written
for u′2) are Euler equations of the functional (25). Consequently from the relations
δΠ = 0 we obtain the equations (4) and the conditions (21). Thus, in this way
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the validity of the functional (25) for FEM modelling of the considered problem is
proven.

Since the problem is symmetric with respect to y′1 = `′/2 under FEM modelling
we consider only half the region Ω′1. In this case, the part around the crack tip is
modelled by singular finite elements (Tan and Gao (1990), Zienkiewicz and Taylor
(1989)). For the remaining part of the region, the standard quadratic Lagrange-
family rectangular finite elements are used (Fig. 2).

 
Figure 2: Finite element modelling at the crack tip.

According to (22), under calculation of the ERR we use the approximate expression

γ ≈−1
2

U(`′0 +∆`′0)−U(`′0)
∆`′0

. (26)

the values of the increment ∆`′0 are determined from the convergence requirement
of the values γ for each combination of the problem parameters ha, `0/2`, h/`,
λ/µ and λ1. The influence of the initial stretching (or compressing) of the strip the
values of ERR (i. e. γ) will be estimated through the parameter λ1.

Under ha = h/2 (Fig. 1) for the considered problem mode I takes place and in this
case we can calculate the values of SIF (KI) through γ . But in the cases for which
ha 6= h/2 the mixed mode arises and in such cases we will analyse the influence of
the initial tension or compression of the strip on the values of ERR, (i.e. γ).

According to Guz (2008b, 2009) and the expressions (20) for calculating KI we use
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the following relations.[
K2

I (γ ′(1)
2 + γ

′(2)
2 )µ

′
1γ
′(1)
21 − γ

′(1)
2 γ

′(2)
21

]
= 4γi−1(µ

′
1γ
′(1)
21 γ

′(2)
22 −γ

′(2)
21 ), i =

√
−1 (27)

where

µ
′
1,2 = i

√
A′±

√
A′2−A′1,

2γ
(1)
21 =−

(
ω
′
2112ω

′
1122µ

′2
1−ω

′
1111ω

′
1212

)
B′−1

1

−
(

ω
′
2222ω

′
2112µ

′2
1 +ω

′
2112ω

′
1221−ω

′
1212

(
ω
′
1122 +ω

′
1212
))

B′−1
2 ,

γ
′(2)
22 =−2

(
ω
′
2222ω

′
2112B−1

1 µ
′4
1 +ω

′
1122ω

′
1221B′−1

2

)
,

2µ
′−1
1 γ

′(2)
21 =

(
ω
′
2112ω

′
1122µ

′2
1 +3ω

′
1111ω

′
1212

)
B′−1

1 , (28)

2µ
′−1
1 γ

′(1)
2 =

(
ω
′
1111 +ω

′
2112µ

′2
1

)
B′−1

1 +
(
ω
′
1122 +ω

′
1212
)

B′−1
2 +(

3ω
′
2222ω

′
2112µ

′2
1−ω

′
2112ω

′
1221 +ω

′
1212(ω

′
1122 +ω

′
1212

)
B′−1

2 ,

γ
′(2)
2 = µ

′
1

(
ω
′
1111−ω

′
2112µ

′2
1

)
B′−1

1

In (28) the constants A′, A′1, B′1 and B′2 are calculated by the use of the following
formulae:

A′ =
1

2ω ′2222ω ′2112

[
ω
′
1111ω

′
2222 +ω

′
2112ω

′
1221− (ω ′2211 +ω

′
1212)

2] , (29)

A′1 = ω
′
1111ω

′
1221(ω

′
2222ω

′
2112)

−1,

B′1 = µ
2
1

(
ω
′2
1212 +ω

′
1212ω

′
1122 +ω

′
1221ω

′
2112

)
−ω

′
1111ω

′
1221,

B′2 = ω
′
2222ω

′
1212µ

2
1 −ω

′
1122ω

′
1221.
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4 Numerical Results and Discussions

First we consider the validity of the algorithm and programmes which are com-
posed by the authors and are used in the present numerical investigations. For this
purpose consider the case where the initial strains (or stresses) are absent in the
strip, i.e. λ1 = 1.0 and λ/µ = 1.0. It is evident that in this case the obtained results
must coincide with the corresponding ones obtained within the framework of the
classical linear theory of elasticity. Assume that ha = h/2 and analyse the values of
KI obtained for various problem parameters. Tab. 1 shows the values of K(s)

I /KI∞,
K( f )

I /KI∞ and K(E)
I /KI∞ where KI∞ = p

√
π`0, K(s)

I and K( f )
I are the values of the

SIF for mode I calculated by using the exact solution for an infinite plane, the ap-
proximate series given in Sih (1973), and the present approach, from the values of
the nodal displacements of the singular triangular finite elements shown in Fig. 2
respectively. Moreover, in Tab. 1, K(E)

I shows the values of SIF for mode I calcu-
lated from the values ∂U/∂`0. The agreements of the corresponding results given
in Tab. 1 provide support for the numerical approach used and proposed. Moreover,
the results given in Tab. 1 agree with the mechanical consideration, according to
which, the values of K(s)

I /KI∞, K( f )
I /KI∞ and K(E)

I /KI∞ must simultaneously tend
to unity with decreasing `0/` and `0/h.

Table 1: The values of SIF for λ1 = 1.0, h/` = 0.20, hu/` = hA/` = h/2`.

`0/` `0/h K(s)
I /KI∞ K( f )

I /KI∞ K(E)
I /KI∞

0.080 0.80 1.2406 1.2406 1.1930
0.075 0.75 1.2009 1.2009 1.1716
0.060 0.60 1.1444 1.1444 1.1108
0.050 0.50 1.0936 1.0931 1.0729
0.040 0.40 1.0473 1.0473 1.0409

Now we turn to consideration of the results which characterize the influence of
the initial stretching and compression of the strip on the values of ERR and, in
particular cases, on the values of KI . Assume that λ/µ = 1.0 and consider the
graphs given in Figs. 3 and 4. Note that the graphs given in Fig. 3 show the
dependencies between KI/KI ∞ and λ1 in the case where hu = ha = h/2, for various
values of h/` and `0/2`, but the graphs given in Fig. 4 show the dependencies
between γµ/KI∞ and λ1 in the case where `0/2` = 0.15 for various values of hu/`
and h/`.

Note that in these figures the graphs separated by the letters a, b and c corresponding
to the cases where h/` = 0.10; 0.15; 0.20, respectively. Moreover note that points
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Figure 3: The graphs of the dependencies between KI/KI ∞ and λ1 for the values of
`0/2`: (a) h/` = 0.10; (b) h/` = 0.15; (c) h/` = 0.20.

on these graphs which are indicated by circles show the values of KI/KI ∞ (in Fig.
3) and γµ/KI∞ (in Fig. 4) for the case where λ1 = 1.0, i.e. for the case where the
initial strain in the strip is absent.

The analyses of the graphs given in Figs. 3 and 4 show that the values of γµ/KI∞

and KI/KI ∞ decrease (increase) monotonically with increasing (decreasing) of the
values of λ1. Moreover, it follows from these graphs that γµ/KI∞ and KI/KI ∞→∞

as λ1→ λ1cr., where λ1cr. is the critical values of λ1 which correspond to the loss
of the stability of the considered strip with the crack. Consequently, for the critical
values of λ1 the uniqueness of the considered boundary-value problem (4)-(21) is
violated. Therefore the results regarding the ERR have the physical meaning in
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Figure 4: The graphs of the dependencies between γµ/KI∞ and λ1 for the values of
hu/`: (a) h/` = 0.10; (b) h/` = 0.15; (c) h/` = 0.20.

the cases where the initial compression of the strip is limited by the above-noted
critical values of λ1. Note firstly that, a similar result for infinite plane containing a
crack was obtained in Guz (2008b) and it was established that λ1cr. for the infinite
plane corresponds to the surface stability loss of the plane material.

The analyses of the obtained numerical results also show that in the quantitative
sense the influence of the initial strain on the ERR depends significantly on the
problem parameters hu/` and `0/2`. The character of this dependence is formulated
in the conclusions part of the paper.
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5 Conclusions

In the present paper, within the framework of the TDLTE the influence of the finite
initial tension and compression of the simply-supported strip containing a crack
on the values of the Energy Release Rate (ERR) and on the SIF of mode I at the
crack tips has been investigated. It was assumed that the initial stresses operated
along the crack whose edges are parallel to the free face planes of the strip. The
investigations were carried out by employing the FEM and the elasticity relations
of the strip material are described by the harmonic potential.

The following concrete conclusions follow from the numerical analyses:

1. The values of the ERR and of the SIF of mode I decrease (increase) mono-
tonically with finite initial tension (compression);

2. The influence of initial strains on the ERR and on the SIF of mode I increase
monotonically with crack length; i.e. this influence becomes more significant
with `0/2`;

3. The influence of the finite initial strains on the ERR and on the SIF of mode
I increase monotonically with crack location approaching the free face plane
of the strip;

4. There exist such values of the initial compression strain under which a “reso-
nance” type phenomenon takes place. These values of the initial compression
strain correspond to the stability loss of the strip which contains the crack.
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