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A Three-dimensional Adaptive Strategy with Uniform
Background Grid in Element-free Galerkin Method for

Extremely Large Deformation Problems
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Abstract: A novel three-dimensional adaptive element-free Galerkin method
(EFGM) based on a uniform background grid is proposed to cope with the prob-
lems with extremely large deformation. On the basis of this uniform background
grid, an interior adaptive strategy through an error estimation within the analysis
domain is developed. By this interior adaptive scheme, additional adaptive nodes
are inserted in those regions where the solution accuracy needs to be improved. As
opposed to the fixed uniform background grid, these inserted nodes can move along
with deformation to describe the particular local deformation of the structure. In
addition, a triangular surface technique is adopted to depict the geometry of the
three-dimensional structure and a new surface adaptive strategy on the surface of
the structure is also proposed. The complicated geometry of the three-dimensional
structure can be thus analyzed precisely even under extremely large deformation.
Besides, the contact regions of the structure can be determined accurately when the
contact behavior occurs. Therefore, the present EFGM adaptive strategy not only
retains the advantage of the uniform background grid for solving the extremely de-
formed problems, but also enhances the solution accuracy in the interior and surface
of the structure.

Two three-dimensional problems, say, the upsetting of a cylinder and the embossing
process of microimprint lithography, are undertaken to demonstrate the versatility
and efficiency of this novel adaptive EFGM analysis procedure with the uniform
background grid. It is noteworthy that the present adaptive strategies can also be
generally applied to other meshless methods, such as the meshless local Petrov-
Galerkin method, etc.
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1 Introduction

The meshless methods, such as the element-free Galerkin method (Belytschko et
al. 1994; Chen and Guo, 2001; Chen and Chen, 2005; Chen et al., 2009; Lee and
Chen, 2009) and the meshless local Petrov-Galerkin method (MLPG) (Atluri and
Zhu, 1998; Atluri, 2004; Li and Atluri, 2008), have achieved outstanding success
in dealing with various scientific and engineering problems in the decade. Since
the interpolation functions of the sub-domain in the meshless methods are derived
merely by a set of scattering nodes without any element connectivity, nodes can
be simply inserted, rearranged or discarded, especially for three-dimensional prob-
lems. This merit makes the meshless methods particularly adequate for the adaptive
analysis.

Nagashima (2000) built the adaptive analysis by a node-by-node meshless method.
By this adaptive scheme, the solution accuracy of the central node within the sub-
domain is improved by an error estimation and additional nodes are inserted at the
center points between the central node and its neighboring influencing nodes, as
shown in Fig.1 (a). Similar concept was adopted by Zhang et al. (2005). Never-
theless, Rabczuk and Belytschko (2005) utilized the integration cells based error
estimation. With this error estimation, if the error of an integration cell is beyond
the predetermined tolerance, this integration cell will be divided into four sub-cells
and the new nodes are introduced at the vertexes of these sub-cells, as illustrated in
Fig.1 (b). Chung (2000), Jun and Im (2000) and Rossi and Alves (2005) also refined
the integration cells in somewhat similar ways to achieve the purpose of adaptivity.
Liu and Tu (2002) proposed their adaptive meshless method for two-dimensional
problems by introducing new nodes through the Delaunay triangular technique. By
this technique, the analysis domain to be solved is adaptively meshed by the De-
launay triangles based on the existing nodes which are located on the vertexes of
these Delaunay triangles. As drawn in Fig.1 (c), once the new nodes for adaptivity
are inserted, more Delaunay triangles with existing and inserted nodes at the ver-
texes are induced. Another adaptive meshless method which employs the Voronoi
plot scheme was proposed by Lu and Chen (2002). By this scheme, each node has
its corresponding Voronoi polygon cell. For the analysis domain discretized by n
distinct nodes, as depicted in Fig.1 (d), n Voronoi polygon cells are constructed.
The sides of the Voronoi polygon cell for a certain node perpendicularly bisect
the lines connecting this node and its adjacent neighboring nodes. Therefore, a
Voronoi polygon cell is uniquely defined to each node. If the error estimation for
a node is unsatisfied, additional nodes for adaptivity are inserted at all the vertexes
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Fig.1 Several developed adaptive schemes 
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Figure 1: Several developed adaptive schemes

of its corresponding Voronoi polygon cell. Notice that after the reconstruction of
the Voronoi polygon cells is accomplished, each node, no matter existing node or
inserted node, still possesses its corresponding Voronoi polygon cell. Moreover,
You et al. (2003), Liu et al. (2006), Yvonnet et al. (2006), Li and Lee (2006)
and Rabczuk and Belytschko (2007) also utilized the concept of the Voronoi plot to
construct their adaptive meshless methods to solve a variety of problems. Although
these above-mentioned adaptive meshless methods show their advantages in many
engineering fields, only increasing the nodal density in some particular regions is
still inadequate to deal with the extremely distorted nodal distribution resulting
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from the truly large deformation. Further, in the latter two adaptive meshless meth-
ods, the reestablishment of the Delaunay triangles or Voronoi polygon cells is nec-
essary once the new nodes are inserted within the analysis domain. Consequently,
the computational work inherently increases.

The uniform background grid has been proven its versatility in coping with the
severely distorted nodal distribution (Chen et al., 2009). Nevertheless, the solution
accuracy in some regions by the whole uniform background grid may be sometimes
unsatisfied. Although it will probably be improved by refining the whole uniform
background grid, the considerably additional degrees of freedom will significantly
increase the computational cost. However, the uniform background grid in con-
junction with an adaptive strategy may be an effective approach to achieve solution
accuracy and efficiency simultaneously. The purpose of this work is thus to de-
velop a new adaptive EFGM analysis procedure through the uniform background
grid to tackle the three-dimensional problems with extremely large deformation.
The adaptive strategy includes the interior and surface adaptivity of the analysis
domain. For the proposed interior adaptivity, new nodes can be inserted in some
regions to boost the solution accuracy within the analysis domain by an error es-
timation. As opposed to the interior nodes in the uniform background grid, the
inserted nodes within the analysis domain can move with the deformation to cap-
ture specific structural behaviors accurately. In addition, to describe the geometry
of three-dimensional structure, a surface adaptive strategy based on a triangular sur-
face scheme (Lee and Chen, 2010) is also proposed through refining the triangular
surfaces representing the surface of the structure. Hence, this proposed adaptive
EFGM analysis procedure not only retains the merit of the uniform background
grid in overcoming the difficulty resulting from the truly large deformation, but
also improves the solution accuracy in some regions which are calculated only by
the whole uniform background grid.

Finally, to display the efficiency and versatility of the adaptive EFGM analysis
procedure developed, the three-dimensional examples, including the upsetting of a
cylinder and the embossing process of microimprint lithography, are analyzed. The
present computed results well agree with those available in the literatures.

2 Incremental Formulation of Element-Free Galerkin Method

In order to accurately account for the geometrical and material nonlinear effects due
to extremely large deformation during loading process, an incremental approach of
element-free Galerkin method with uniform background grid has been successfully
established by the authors (Chen et al., 2009) and is also adopted in this work. Con-
sider a three-dimensional structure Ω(N) enclosed by the boundary Γ(N) at C(N)state
as shown in Fig.2. Based on the principle of minimum total potential energy, as well
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Fig.2 An incremental three-dimensional EFGM analysis model (Chen et al., 2009) 
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Figure 2: An incremental three-dimensional EFGM analysis model (Chen et al.,
2009)

derived in the earlier work (Chen et al., 2009), the incremental functional ∆Π from
C(N) state to C(N+1) state is quoted as follows (neglecting the body force effect):

∆Π(∆ui) =
∫

Ω(N)

(
1
2

Ei jkl∆ei j∆ekl +
1
2

τ
(N)
i j ∆uk,i∆uk, j

)
dΩ−

∫
Γ

(N)
t

∆t̄i∆ui dΓ

−
[∫

Γ
(N)
t

t̄(N)
i ∆ui dΓ−

∫
Ω(N)

τ
(N)
i j ∆ei j dΩ

]
= min .

(1)

It is assumed that all the state quantities, such as the nodal displacements, stresses
and strains from C(0) state to C(N) state, are already gained. ∆ui and ∆ei j repre-
sent the incremental displacements and linearized incremental Green-Lagrangian
strains from C(N) state to C(N+1) state, respectively. Ei jkl is the current constitu-
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tive property tensor. Besides, t̄(N)
i and ∆t̄i are defined as the prescribed surface

tractions acting on the traction boundary Γ
(N)
t at C(N) state and its corresponding

increments from C(N) state to C(N+1) state, respectively. τ
(N)
i j presents the Cauchy

(true) stresses at C(N) state. Since the piecewise linear incremental process is taken
to approximate the nonlinear behaviors, the last two terms indicated in the bracket
[ ] in Eqn. (1) are retained to serve as an equilibrium check.

Subsequently, the incremental displacements and linearized incremental Green-
Lagrangian strains from C(N) state to C(N+1) state can be discretized as incremen-
tal nodal displacements through a moving least square (MLS) approximation (Be-
lytschko et al., 1994). The incremental governing equations of the analysis domain
from C(N) state to C(N+1) in matrix form are obtained by applying the stationary
condition of ∆Π with respect to the incremental nodal displacements of all the
nodes {∆q∗} within the analysis domain from C(N) state to C(N+1) state, say,

([KM]+ [KG]){∆q∗}= {∆Q}+{∆Q∗} . (2)

As expressed in Eqn. (2), [KM] and [KG] denote the incremental stiffness matrix
of the analysis domain at C(N) state, which represent the material nonlinearity and
geometric nonlinearity due to severely large deformation, respectively. {∆Q}refers
to the incremental external load vector from C(N) state to C(N+1) state and {∆Q∗}
is the equilibrium check vector calculated at C(N) state. Without loss of generality,
the integration cells (Belytschko et al., 1994), employed in the conventional EFGM
for performing the numerical integration of respective matrix as expressed in Eqn.
(2), can also be arranged to coincide with part of the uniform background grid for
simplicity.

3 Adaptivity with Uniform Background Grid

As mentioned earlier, although the incremental EFGM analysis procedure with uni-
form background grid can deal with the three-dimensional problems with extremely
large deformation (Chen et al., 2009), an efficient adaptive scheme is still required
to improve the solution accuracy in particular regions. The novel adaptive strategy
proposed here comprises the interior and surface adaptivity of the analysis domain
with arbitrary geometric shape. The interior adaptivity is developed with the uni-
form background grid (Chen et al., 2009) for the interior of the analysis domain and
the surface adaptivity is grounded on the triangular surface scheme (Lee and Chen,
2010) for the surface of the analysis domain, both will be introduced thereafter.
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Fig.3 The interior adaptive scheme with uniform background grid 
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Figure 3: The interior adaptive scheme with uniform background grid

3.1 Interior Adaptive Strategy

As shown in Fig. 2, Chen et al. (2009) discretized the three-dimensional de-
formable analysis domain Ω(N)enclosed by its boundary Γ(N) by two kinds of
nodes, say, the moving boundary nodes staying with the boundary and the inte-
rior nodes selected from part of the uniform background grid. When an incremen-
tal loading is applied while the relative error for an interior node estimated by the
error estimation exceeds a predetermined tolerance, the interior adaptivity needs
to be done and the third kind of nodes is introduced. As displayed in Fig. 3, 6
additional adaptive nodes for an interior node are inserted on both sides of three
mutually perpendicular edges of the uniform background grid, respectively. The
distances between this interior node and the inserted nodes on the edges are taken
as quarters of the spacing of the uniform background grid. However, if the adaptiv-
ity is performed around a moving boundary node, only the adaptive nodes within
the deformable analysis domain are added. Therefore, the number of the inserted
nodes for a moving boundary node can be from 1 to 5.

Unlike the fixed fictitious nodes comprising the uniform background grid, all the
moving boundary nodes and the inserted nodes will move in the uniform back-
ground grid to describe the deformation behavior during the loading process for
adaptivity. Notice that if an inserted node for adaptivity is very close to the inte-
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rior or moving boundary node due to deformation during the loading process, it
had better be discarded to avoid possible computational illness. Similarly, if a new
inserted node is close to the adaptive node inserted within the analysis domain in
the previous states, this new inserted node will be eliminated to avert over-crowded
nodal distribution.

To achieve the interior adaptivity, an error estimation is essentially necessary. The
simple and robust error estimation proposed by Chung and Belytschko (1998) is
thus adopted. Because the derivatives of the interpolation functions may introduce
spurious oscillations in EFGM stress field in some regions (Chung and Belytschko,
1998), another smoother stress field is calculated through the stress projection tech-
nique. Based on the MLS approximation (Chen et al., 2009), the projected stresses
of a moving boundary node or interior node can be simply obtained by taking prod-
uct of the interpolation functions of its sub-domain and the neighboring influencing
nodal stresses computed from the EFGM solution within this sub-domain, say,

{σ p}= [Ψ]{σ} . (3)

In the above, {σ p} and {σ} are the projected stresses and the neighboring influ-
encing nodal stresses by the EFGM solution, respectively. [Ψ] denotes the inter-
polation functions within the sub-domain for the projected stresses {σ p}. It is
noteworthy that the differences between these projected stresses {σ p} and their
original stresses

{
σh
}

solved from the EFGM can be denoted as a measure of the
pointwise errors at this moving boundary node or interior node as follows:

{σ e}= {σ p}−
{

σ
h
}

. (4)

The pointwise errors {σ e} are generally difficult to indicate and another measure,
the so-called L2 norm, is thus utilized. For stresses, the pointwise error in L2 norm
at this moving boundary node or interior node can be expressed as

‖M‖=
[
{σ e}T {σ e}

]1/2
. (5)

The smoother projected stresses in L2 norm can be treated as the measure reference
and indicated as

‖R‖=
[
{σ p}T {σ p}

]1/2
. (6)

The relative error at this moving boundary node or interior node is thus defined as

r =
‖M‖
‖R‖

. (7)
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When the relative error r for a moving boundary node or interior node surpasses
its tolerance, the interior adaptivity needs to be executed to improve the solution
accuracy.

To estimate the error estimation, the nodal displacements/strains/stresses of the
moving boundary node and inserted node for adaptivity need to be determined in
advance. Hence, a rigorous data mapping procedure based on the MLS approxi-
mation is required and adopted in this work. By this data mapping procedure, the
undetermined nodal variables for a moving boundary node and new inserted node
can be interpolated by its neighboring influencing moving boundary/interior nodes
within its sub-domain.

3.2 Surface Adaptive Strategy

The surface of the analysis domain also needs to be defined in advance for the
structural analysis. Nevertheless, since only nodal data are provided by the mesh-
less methods, the geometric information of the analysis domain is inadequate es-
pecially for three-dimensional problems with irregular shape. As shown in Fig.4
(a), for example, Lee and Chen (2010) proposed a triangular surface scheme for the
meshless methods to represent the surface of three-dimensional irregular geometry.
It is worth noting that these triangular surfaces can not only define the geometry,
but also serve as an efficient check mechanism. Although the three-dimensional
irregular-shaped analysis domain can be successfully described by this scheme, the
triangular surfaces on the surface of the analysis domain may be severely distorted
when the analysis domain is deformed extremely.

A novel surface adaptivity based on this triangular surface scheme is thus pro-
posed in this work. As illustrated in Fig.4 (b), if the lengths of any two edges of
a deformed triangular surface are beyond their respective initial length by a prede-
termined percentage, say, 50% for all the analyzed problems in the study, 3 new
nodes will be inserted at the midpoint of each edge of this triangular surface. This
triangular surface to be adapted will be divided into 4 smaller triangular surfaces.
To maintain all the existing moving boundary nodes and inserted nodes, the ex-
isting triangular surfaces adjacent to the adapted triangular surfaces also need to
be divided into 2 smaller ones, as illustrated in Fig.4 (b). Thus, the surface of the
analysis domain through this surface adaptive strategy becomes more accurate to
represent its deformation and the three-dimensional irregular-shaped analysis do-
main can be precisely displayed. In addition, the nodal variables of these newly
inserted nodes, such as nodal displacements, strains and stresses, can also be ob-
tained through the above-mentioned MLS approximation (Chen et al., 2009) with-
out additional effort.

Besides providing the geometry information of the analysis domain, this triangu-
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Fig.4 The surface adaptive scheme with triangular surfaces 
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Figure 4: The surface adaptive scheme with triangular surfaces

lar surface scheme can also be treated as an assistant instrument for determining
whether the fictitious nodes or quadrature points are inside the analysis domain
or not (Lee and Chen, 2010). Hence, the proposed surface adaptive strategy can
reinforce the versatility of the triangular surface scheme (Lee and Chen, 2010) in
supplying the precious geometry information for the meshless methods. Conse-
quently, the complex contact behaviors occurred in various engineering problems
can be studied rigorously by the proposed surface adaptive strategy.
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4 Results and Discussions

To evaluate the efficiency and capability of the novel adaptive strategy with the
uniform background grid, two different sorts of three-dimensional deformed prob-
lems are sequentially examined. Example 1 is the upsetting of a cylinder between
two rigid punches, and example 2 is the simulation for the embossing process of
microimprint lithography.

4.1 Upsetting by Two Punches

Consider a cylinder compressed by two rigid punches, of which its radius and
length at undeformed state are 10mm and 30mm respectively. The material of
the cylinder analyzed is T300 series stainless steel and its mechanical properties
are known as: Young’s modulus E=200GPa, Poisson’s ratio ν=0.3 and ultimate
strength 2.14GPa. The bilinear isotropic hardening with yield strength σy=0.7GPa
and elasto-plastic tangent modulus 0.3GPa are found. Two distinct contact condi-
tions between the cylinder and two rigid punches with different sizes are analyzed.

Due to symmetry, only one-eighth of the cylinder is solved for simplicity. The
three-dimensional adaptive EFGM analysis model with the uniform background
grid as established by Chen et al. (2009) is utilized. Appropriate boundary con-
ditions and a displacement control with 4% reduction in each load increment are
applied. After convergence test, two converged ANSYS® finite element models,
324 twenty-node isoparametric elements with 1,470 nodes and another delicate
model using 594 elements with 2,840 nodes, are presented for comparison. The
total reaction force P at the interface between the cylinder and rigid punches is then
calculated.

For the case when the interface between the cylinder and rigid punches is sticking,
as shown in Fig.5, the cross-section of the rigid punches employed is much larger
than that of the cylinder. Therefore, the nodes located at the interface between
the cylinder and rigid punches are all fixed in radial direction due to the sticking
condition. The relationship between the computed total reaction force P and total
reduction δ is then drawn. As observed from Fig.5, the analysis model without
adaptivity, as built by Chen et al., 2009, can work only till the total reduction 72%
of the cylinder. However, the analysis with the present adaptive strategy can not
only improve the analysis well till the total reduction 80% of the cylinder, but also
is in better agreement with the converged ANSYS® models. In addition, as com-
pared with the ANSYS® models, there are much fewer nodes used in the proposed
adaptive EFGM model. As the total reduction δ reaches 80% of the cylinder, the
number of the moving boundary nodes, interior nodes and inserted nodes become
158, 0 and 189, respectively. This will limit the calculation. Yet, to continue the
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Fig. 5 The total reaction force versus the total reduction (sticking) 
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Figure 5: The total reaction force versus the total reduction (sticking)

calculation further, the proposed adaptive model can be executed without difficulty
by refining the nodal spacing of the uniform background grid chosen. The maxi-
mum von Mises stress computed is 1.61GPa, which is under the ultimate strength
2.14GPa.

For another case when the frictional contact at the interface between the cylinder
and rigid punches is concerned, as displayed in Fig.6, the cross-section of the rigid
punches is the same as that of the undeformed cylinder. The friction coefficient
µ is taken as 0.3. The relationship between the calculated total reaction force P
and the total reduction δ is also drawn in Fig. 6. The proposed adaptive strategy
is successfully performed till the total reduction 80% of the cylinder, as compared
with the total reduction 76% of the cylinder by Chen et al. (2009). Again, the
results by the proposed adaptive strategy are more compatible with those by the
more elaborate ANSYS® model and the inserted nodes introduced by the proposed
adaptive strategy can effectively improve the shortcomings by the whole uniform
background grid. As would be expected, the lower maximum von Mises stress
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Fig. 6 The total reaction force versus the total reduction (μ=0.3) 

frictional 
(μ=0.3) 

Figure 6: The total reaction force versus the total reduction (µ=0.3)

1.43GPa is computed as compared with that for the sticking case. When the total
reduction of the cylinder is over 80%, the nodal spacing of the uniform background
grid should be refined for further analysis such that more interior nodes can be
provided.

4.2 Embossing Process of Microimprint Lithography

Microimprint lithography is an important technique which ensures the high-throughput
patterning of microstructures. Since the patterning is periodically symmetric, as
shown in Fig.7 (a), only a unit of the patterning is chosen to solve. Consider a
three-dimensional resin, of which its length, width and height at undeformed state
are 35µm, 35µm and 10µm, respectively, as depicted in Fig.7 (b). By the emboss-
ing process, the resin is compressed by an embossing tool, containing a half spher-
ical cavity with a radius of 6µm, until the resin is deformed extremely and the half
spherical cavity is filled with the resin, as illustrated in Fig.7 (c). The mechanical
properties of this resin are: Young’s modulus E=3MPa and Poisson’s ratio ν=0.49.
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Fig. 7 The microimprint lithography: embossing tool, cavity and resin 
Figure 7: The microimprint lithography: embossing tool, cavity and resin
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Fig. 8 The total reaction force vs. the total displacement 

Figure 8: The total reaction force vs. the total displacement

Due to the periodic-symmetry of geometry and boundary conditions, it is adequate
to analyze only a quarter of the resin. There are 464 moving boundary nodes and
400 initial interior nodes employed at its initial state. Suitable fixed boundary con-
ditions in the directions perpendicular to the symmetric surfaces of the resin are
imposed. To demonstrate the validity of this proposed adaptive strategy, the re-
sults by the EFGM analysis without adaptivity are also presented. Besides, two
converged ANSYS® finite element models, using 13,104 four-node tetrahedral el-
ements with 2,687 nodes and 66,635 elements with 12,497 nodes, are displayed.
The relationship between the total reaction force and the total displacement of the
embossing tool analyzed by various models is drawn. As seen in Fig.8, the results
by the proposed adaptive strategy are in good agreement with those by the deli-



254 Copyright © 2011 Tech Science Press CMC, vol.24, no.3, pp.239-256, 2011

 29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5-20 The deformed shape of the resin after embossing by proposed EFGM 
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Fig. 9 The deformed shape of resin after embossing 
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Figure 9: The deformed shape of resin after embossing

cate ANSYS® finite element model and are about 10% improvement in calculation
as compared with those without adaptivity. The deformed shape of the resin and
the nodal distribution after embossing examined by the proposed adaptive EFGM
model are also demonstrated in Fig.9. At the final state, there are 1,173 nodes,
including 464 moving boundary nodes, 349 interior nodes and 360 inserted nodes.

5 Concluding Remarks

Based on the conventional EFGM analysis, the novel interior and surface adaptive
strategies with the uniform background grid have been successfully developed. By
the proposed interior adaptive scheme determined by the error estimation, addi-
tional adaptive nodes are inserted in the interior regions where the solution needs
to be improved. By the proposed surface adaptive strategy, however, the surface
adaptive scheme is devised by dividing the original triangular surfaces into smaller
triangular surfaces which can describe the irregular three-dimensional geometry
precisely. To demonstrate the versatility of this work, the problems of upsetting
and embossing are analyzed. It is worthwhile to mention that the proposed adap-
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tive strategies with the uniform background grid can also be easily extended to
other meshless methods.
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