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A New Quasi-Boundary Scheme for Three-Dimensional
Backward Heat Conduction Problems

Chih-Wen Chang1

Abstract: In this study, we employ a semi-analytical scheme to resolve the three-
dimensional backward heat conduction problem (BHCP) by utilizing a quasi-bound-
ary concept. First, the Fourier series expansion method is used to estimate the
temperature field u(x, y, z, t) at any time t < T . Second, we ponder a direct regular-
ization by adding an extra term α(x, y, z, 0) to transform a second-kind Fredholm
integral equation for u(x, y, z, 0). The termwise separable property of the kernel
function allows us to acquire a closed-form regularized solution. In addition, a
tactic to determine the regularization parameter is recommended. We find that the
proposed method is robust and applicable to the three-dimensional BHCP when
several numerical experiments are examined.

Keywords: Backward heat conduction problem, Ill-posed problem, Regularized
solution, Fourier series, Fredholm integral equation

1 Introduction

General speaking, the direct problem means an effect from a cause. On the con-
trary, the inverse problem denotes a cause from an effect. In many engineering
application domains such as archeology and heat destruction of materials, it re-
quires to reveal the temperature history from the given final data. This is the com-
monly named backward heat conduction problem (BHCP), which is a seriously
ill-posed problem because the solution is unstable for the known final data. For the
two-dimensional (2-D) and three-dimensional (3-D) homogeneous BHCPs, many
schemes have been studied. Liu (2002) proposed the regularized successive over-
relaxation (SOR) inversion approach and the direct SOR inversion method to solve
the ill-posed BHCPs. He remarked that the regularized SOR approach is stable even
under the influence of high noise level, but its retrieved time is merely 5×10−3. On
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the contrary, the direct SOR inversion approach is unstable for small disturbances.
Iijima (2004) constructed a high order lattice-free finite difference approach by em-
ploying the Taylor expansion and the Fourier transform; however, this study did not
discuss its robustness when the final time data were disturbed with noises. Apart
from this, Mera (2005) commented that the method of fundamental solutions is
an accurate and efficient approach for tackling the BHCP in one-dimensional and
2-D domains; however, the standard Tikhonov regularization technique with the
L-curve method are still needed for the numerical stability problem. Later, Liu
(2004) and Liu, Chang and Chang (2006) have employed the group preserving
scheme (GPS) and the backward group preserving scheme to resolve the BHCP,
respectively. Without a priori regularization in use makes these two schemes more
appealing for ill-posed problems with a final value problem. Another useful algo-
rism, on the basis of the GPS [Liu (2001)], so-called the Lie-group shooting method
(LGSM), was further proposed to deal with boundary-value problems (BVPs). Be-
cause adding a quasi-boundary regularization at the final time condition, the BHCP,
originally a final value problem, can be converted into a BVP; therefore, the LGSM
[Chang, Liu and Chang (2007, 2008)] is utilized to solve the BHCP and acquires a
good result. Recently, Tsai, Young and Kolibal proposed the time evolution method
of fundamental solutions to resolve 3-D BHCPs with good results; however, their
recovery time is small.

Through this article, a direct regularization technique is adopted to transform the
3-D BHCP into a second-kind Fredholm integral equation by utilizing the quasi-
boundary method. By using the separating kernel function and eigenfunctions ex-
pansion tactics, we can derive a closed-form solution of the second-kind Fredholm
integral equation, which is a major contribution of this paper. Another one is the
application of the Fredholm integral equation to develop an effective numerical
algorism, whose accuracy is much better than that of other numerical schemes.

This sort approach of second-kind Fredholm integral equation regularization was
first employed by Liu (2007a) to tackle a direct problem of elastic torsion in an ar-
bitrary plane domain, where it was called a meshless regularized integral equation
method. Then, Liu (2007b, 2007c) extended it to resolve the Laplace direct prob-
lem in arbitrary plane domains. A similar second-kind Fredholm integral equation
regularization method was utilized to address the inverse problems; Liu, Chang
and Chiang (2008) have applied the new scheme to select the geometrical shape
of a constant temperature curve, Liu (2009a) has used this new algorism to resolve
the Robin problem in the Laplace equation, and Liu (2009b) has employed it to
tackle the backward heat conduction problem. Furthermore, we have utilized this
approach to solve the backward in time advection-dispersion equation [Liu, Chang
and Chang (2009)]. Especially, the proposed method is easy to implement and time
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saving.

In the following, Section 2 delineates the BHCP with a quasi-boundary regular-
ization of its final time condition, and then we derive the second-kind Fredholm
integral equation by a direct regularization in Section 3. In Section 4, we derive
a closed-form solution of the second-kind Fredholm integral equation. Section 5
offers a choice principle of the regularization parameter. Numerical experiments
are also utilized to validate the new scheme. A summary with some conclusions is
presented in Section 6.

2 Backward heat conduction problems

We contemplate a homogeneous body of length a, width b and height c. In many
practical engineering applications we would like to recover all the past temperature
distribution u(x, y, z, t), for t < T, when the temperature is presumed to be known at
a given final time T . Here, we set the following problem:

∂u
∂ t

=
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 , 0 < x < a, 0 < y < b, 0 < z < c, 0 < t < T , (1)

u(0, y, z, t) = u(a, y, z, t) = u(x, 0, z, t) = u(x, b, z, t) = u(x, y, z, 0)
= u(x, y, c, t) = 0, 0 ≤ t ≤ T, (2)

u(x, y, z, T ) = f (x, y, z), 0≤ x≤ a, 0≤ y≤ b, 0≤ z≤ c. (3)

This is the so-called a three-dimensional BHCP, which is known to be highly ill-
posed, that is, the solution does not count continuously on the input data u(x, y, z,
T ). In fact, the rapid decay of temperature with time results in fast fading memory
of initial conditions. Hence, the numerical recovery of initial temperature from the
data measured at time T is a rather difficult issue owing to the influence of the noise
and computational error.

One way to tackle an ill-posed problem is by a disturbance of it into a well-posed
one. Many perturbing techniques have been proposed, including a biharmonic regu-
larization developed by Lattés and Lions (1969), a pseudo-parabolic regularization
proposed by Showalter and Ting (1970), a stabilized quasi-reversibility proposed
by Miller (1973), the method of quasi-reversibility proposed by Mel’nikova (1997),
a hyperbolic regularization proposed by Ames and Cobb (1997), the Gajewski
and Zacharias quasi-reversibility proposed by Huang and Zheng (2005), a quasi-
boundary value method by Denche and Bessila (2005), and an optimal regulariza-
tion proposed by Boussetila and Rebbani (2006). We extend the regularization of
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the one-dimensional BHCP of Showalter (1983) by pondering a quasi-boundary-
value approximation to the final value problem, that is, to supplant Eq. (3) by

αu(x, y, z, 0)+u(x, y, z, T ) = f (x, y, z). (4)

The problems (1), (2) and (4) can be tendered to be well-posed for each α> 0.

3 The Fredholm integral equation

By employing the technique for separation of variables, we can easily write a series
expansion of u(x, y, z, t) satisfying Eqs. (1) and (2):

u(x, y, z, t) =
∞

∑
k=1

∞

∑
j=1

∞

∑
i=1

di jk exp[−(i2/a2 + j2/b2 + k2/c2)π2t]sin
iπx
a

sin
jπy
b

sin
kπz

c
, (5)

where di jk are coefficients to be chosen. By imposing the two-point boundary con-
dition (4) on the above equation, we acquire

u(x, y, z, T ) =

∞

∑
k=1

∞

∑
j=1

∞

∑
i=1

di jk exp[−(i2/a2 + j2/b2 + k2/c2)π2T ]sin
iπx
a

sin
jπy
b

sin
kπz

c

= f (x, y, z)−αu(x, y, z, 0). (6)

Fixing any t < T and applying the eigenfunctions expansion to Eq. (5), we have

di jk =
8exp[−(i2/a2 + j2/b2 + k2/c2)π2t]

abc∫ c

0

∫ b

0

∫ a

0
sin

iπξ

a
sin

jπϕ

b
sin

kπρ

c
u(ξ , ϕ, ρ, t)dξ dϕdρ. (7)

Substituting Eq. (7) for di jk into Eq. (6) and assuming that the order of summation
and integral can be interchanged, it follows that(
KT−t

xyz u(·, ·, ·, t)
)

(x, y, z) :=

∫ c

0

∫ b

0

∫ a

0
K(x, ξ ; y, ϕ; z, ρ;T − t)u(ξ , ϕ, ρ, t)dξ dϕdρ

= f (x, y, z)−αu(x, y,z ,0), (8)
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where

K(x, ξ ; y, ϕ; z, ρ; t) =
8

abc

∞

∑
k=1

∞

∑
j=1

∞

∑
i=1

exp[−(i2/a2 + j2/b2 + k2/c2)π2t]

×sin
iπx
a

sin
iπξ

a
sin

jπy
b

sin
jπϕ

b
sin

kπz
c

sin
kπρ

c
(9)

is a kernel function, α is a regularization parameter, and KT−t
xyz is an integral operator

generated from K(x, ξ ; y, ϕ; z, ρ;T−t). Corresponding to the kernel K(x,ξ ;y,ϕ;z,ρ; t),
the operator is indicated by Kt

xyz.

To recover the initial temperature u(x, y, z, 0), we have to resolve the three-dimensional
second-kind Fredholm integral equation:

αu(x, y, z, 0)+
∫ c

0

∫ b

0

∫ a

0
K(x, ξ ; y, ϕ; z, ρ;T )u(ξ , ϕ, ρ, 0)dξ dϕdρ

= f (x, y, z), (10)

which is obtained from Eq. (8) by taking t = 0. Taking x = η , y = ω and z = τ in
Eq. (10), we can acquire

αu(η , ω, τ, 0)+
∫ c

0

∫ b

0

∫ a

0
K(η , ξ ; ω, ϕ; τ, ρ;T )u(ξ , ϕ, ρ, 0)dξ dϕdρ

= f (η , ω, τ), (11)

and applying the operator Kt
xyz on the above equation and noting that(

Kt
xyzu(·, ·, ·, 0)

)
(x, y, z) =∫ c

0

∫ b

0

∫ a

0
K(x,η ; y,ω; z,τ; t)u(η , ω, τ, 0)dηdωdτ = u(x, y, z, t),(

Kt
xyzK

T
ηωτu(·, ·, ·, 0)

)
(x, y, z) =

(
KT

xyzK
t
ηωτu(·, ·, ·, 0)

)
(x, y, z),

we have

αu(x, y, z, t)+
∫ c

0

∫ b

0

∫ a

0
K(x, ξ ; y, ϕ; z, ρ; T )u(ξ , ϕ, ρ, t)dξ dϕdρ

= F(x, y, z, t)

=
∫ c

0

∫ b

0

∫ a

0
K(x, ξ ; y, ϕ; z, ρ; t) f (ξ , ϕ, ρ)dξ dϕdρ. (12)

This equation was extended from Ames, Clark, Epperson and Oppenheimer (1998)
to the three-dimensional case, and the numerical implementation has been carried
out merely for the one-dimensional case.
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4 A closed-form solution

However, we start from Eq. (10) by a different approach, rather than Eq. (12),
because Eq. (10) is simpler than Eq. (12). We presume that the kernel function in
Eq. (10) can be approximated by q, n and m terms with

K(x, ξ ; y, ϕ; z, ρ;T ) =
8

abc

m

∑
k=1

n

∑
j=1

q

∑
i=1

exp[−(i2/a2 + j2/b2 + k2/c2)π2T ]

× sin
iπx
a

sin
iπξ

a
sin

jπy
b

sin
jπϕ

b
sin

kπz
c

sin
kπρ

c

(13)

owing to T > 0. The above kernel is termwise separable, which is also called the
degenerate kernel or the Pincherle-Goursat kernel [Tricomi (1985)].

By inspection of Eq. (13), we can get

K(x, ξ ; y, ϕ; z, ρ;T ) = P(x, y, z; T ) ·Q(ξ ,ϕ,ρ), (14)
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where P and Q are mnq-vectors given by

P :=
8

abc



exp(−ρ2
111π2T )sin πx

a sin πy
b sin πz

c
exp(−ρ2

211π2T )sin 2πx
a sin πy

b sin πz
c

...
exp(−ρ2

q11π2T )sin qπx
a sin πy

b sin πz
c

exp(−ρ2
121π2T )sin πx

a sin 2πy
b sin πz

c
exp(−ρ2

221π2T )sin 2πx
a sin 2πy

b sin πz
c

...
exp(−ρ2

q21π2T )sin mπx
a sin 2πy

b sin πz
c

...
exp(−ρ2

1n1π2T )sin πx
a sin nπy

b sin πz
c

exp(−ρ2
2n1π2T )sin 2πx

a sin nπy
b sin πz

c
...

exp(−ρ2
qn1π2T )sin mπx

a sin nπy
b sin πz

c
exp(−ρ2

112π2T )sin πx
a sin πy

b sin 2πz
c

exp(−ρ2
212π2T )sin 2πx

a sin πy
b sin 2πz

c
...
exp(−ρ2

q12π2T )sin qπx
a sin πy

b sin 2πz
c

exp(−ρ2
122π2T )sin πx

a sin 2πy
b sin 2πz

c
exp(−ρ2

222π2T )sin 2πx
a sin 2πy

b sin 2πz
c

...
exp(−ρ2

q22π2T )sin qπx
a sin 2πy

b sin 2πz
c

...
exp(−ρ2

12mπ2T )sin πx
a sin 2πy

b sin mπz
c

exp(−ρ2
22mπ2T )sin 2πx

a sin 2πy
b sin mπz

c
exp(−ρ2

qnmπ2T )sin qπx
a sin nπy

b sin mπz
c



, (15)
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Q :=



sin πξ

a sin πϕ

b sin πρ

c
sin 2πξ

a sin πϕ

b sin πρ

c
...

sin qπξ

a sin πϕ

b sin πρ

c
sin πξ

a sin 2πϕ

b sin πρ

c
sin 2πξ

a sin 2πϕ

b sin πρ

c
...

sin qπξ

a sin 2πϕ

b sin πρ

c
...
sin πξ

a sin nπϕ

b sin πρ

c
sin 2πξ

a sin nπ

b sin πρ

c
...

sin qπξ

a sin nπϕ

b sin πρ

c
sin πξ

a sin πϕ

b sin 2πρ

c
sin 2πξ

a sin πϕ

b sin 2πρ

c
...
sin qπξ

a sin πϕ

b sin 2πρ

c
sin πξ

a sin 2πϕ

b sin 2πρ

c
sin 2πξ

a sin 2πϕ

b sin 2πρ

c
...
sin qπξ

a sin 2πϕ

b sin 2πρ

c
...
sin πξ

a sin 2πϕ

b sin mπρ

c
sin 2πξ

a sin 2πϕ

b sin mπρ

c
sin qξ

a sin nπϕ

b sin mπρ

c



,

where

ρ
2
i jk = i2/a2 + j2/b2 + k2/c2, i = 1,2, . . . ,q, j = 1,2, . . . ,n, k = 1,2, . . . ,m

and the dot between P and Q denotes the inner product, which is sometimes written
as PT Q, where the superscript T denotes the transpose. With the aid of Eq. (14),
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Eq. (10) can be written as

αu(x, y, z,0)+
∫ c

0

∫ b

0

∫ a

0
PT (x, y, z)Q(ξ , ϕ,ρ)u(ξ , ϕ, ρ, 0)dξ dϕdρ

= f (x, y, z), (16)

where we abridge the parameter T in P for clarity. Let us define

c :=
∫ c

0

∫ b

0

∫ a

0
Q(ξ , ϕ, ρ)u(ξ , ϕ, ρ , 0)dξ dϕdρ (17)

to be an unknown vector with dimensions qnm.

Multiplying Eq. (16) by Q(x, y, z), and integrating it, we can acquire

α

∫ c

0

∫ b

0

∫ a

0
Q(x, y, z)u(x, y, z, 0)dxdydz

+
∫ c

0

∫ b

0

∫ a

0
Q(x, y, z)PT (x, y, z)dxdydz

×
∫ c

0

∫ b

0

∫ a

0
Q(ξ , ϕ,ρ)u(ξ , ϕ,ρ , 0)dξ dϕdρ

=
∫ c

0

∫ b

0

∫ a

0
f (x, y, z)Q(x, y, z)dxdydz.

(18)

By definition (17) we therefore have(
αImnq +

∫ c

0

∫ b

0

∫ a

0
Q(ξ , ϕ,ρ)PT (ξ , ϕ,ρ)dξ dϕdρ

)
c :

=
∫ c

0

∫ b

0

∫ a

0
f (ξ , ϕ,ρ)Q(ξ , ϕ,ρ)dξ dϕdρ, (19)

where Imnq denotes an identity matrix of order qnm. Solving Eq. (19) one has

c =
(

αImnq +
∫ c

0

∫ b

0

∫ a

0
Q(ξ ,ϕ,ρ)PT (ξ ,ϕ,ρ)dξ dϕdρ

)−1

∫ c

0

∫ b

0

∫ a

0
f (ξ ,ϕ,ρ)Q(ξ ,ϕ,ρ)dξ dϕdρ. (20)

On the other hand, from Eq. (16) we get

αu(x, y, z, 0) = f (x, y, z)−P(x, y, z) · c. (21)
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Inserting Eq. (20) into the above equation, we obtain

αu(x, y, z, 0) =

f (x, y, z)−P(x, y, z) ·
(

αImnq +
∫ c

0

∫ b

0

∫ a

0
Q(ξ , ϕ,ρ)PT (ξ , ϕ,ρ)dξ dϕdρ

)−1

×
∫ c

0

∫ b

0

∫ a

0
f (ξ , ϕ,ρ)Q(ξ , ϕ,ρ)dξ dϕdρ.

(22)

Owing to the orthogonality of∫ c

0

∫ b

0

∫ a

0
sin

iπξ

a
sin

jπξ

a
sin

kπξ

a
sin

qπϕ

b
sin

mπϕ

b
sin

nπϕ

b

sin
rπρ

c
sin

sπρ

c
sin

wπρ

c
dξ dϕdρ

=
abc
8

δi jkδrsw, (23)

where δi jk, δqmn and δrsw are the Kronecker delta, the qnm× qnm matrix can be
written as∫ c

0

∫ b

0

∫ a

0
Q(ξ , ϕ,ρ)PT (ξ , ϕ,ρ)dξ dϕdρ =

diag[exp(−ρ
2
111π

2T ),exp(−ρ
2
211π

2T ), . . . ,exp(−ρ
2
q11π

2T ),

exp(−ρ
2
121π

2T ),exp(−ρ
2
221π

2T ), . . . ,exp(−ρ
2
q21π

2T ), . . . ,

exp(−ρ
2
1n1π

2T ),exp(−ρ
2
2n1π

2T ), . . . ,exp(−ρ
2
qn1π

2T ),

exp(−ρ
2
112π

2T ),exp(−ρ
2
212π

2T ), . . . ,exp(−ρ
2
q12π

2T ),

exp(−ρ
2
122π

2T ),exp(−ρ
2
222π

2T ), . . . ,exp(−ρ
2
q22π

2T ), . . . ,

exp(−ρ
2
12mπ

2T ),exp(−ρ
2
22mπ

2T ),exp(−ρ
2
22mπ

2T )],

(24)

where diag means that the matrix is a diagonal matrix. Inserting Eq. (24) into Eq.
(22), we thus acquire

u(x, y, z, 0) =
1
α

f (x, y, z)− 1
α

PT (x, y, z)

diag
[

1
α + exp(−ρ2

111π2T )
,

1
α + exp(−ρ2

211π2T )
, · · · ,
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1
α + exp(−ρ2

q11π2T )
,

1
α + exp(−ρ2

121π2T )
,

1
α + exp(−ρ2

221π2T )
, · · · ,

1
α + exp(−ρ2

q21π2T )
, . . . ,

1
α + exp(−ρ2

1n1π2T )
,

1
α + exp(−ρ2

2n1π2T )
, · · · ,

1
α + exp(−ρ2

qn1π2T )
, . . . ,

1
α + exp(−ρ2

112π2T )
,

1
α + exp(−ρ2

212π2T )
, · · · ,

1
α + exp(−ρ2

q12π2T )
, · · · , 1

α + exp(−ρ2
122π2T )

,
1

α + exp(−ρ2
222π2T )

, · · · ,

1
α + exp(−ρ2

q22π2T )
, · · · , 1

α + exp(−ρ2
12mπ2T )

,
1

α + exp(−ρ2
22mπ2T )

,

1
α + exp(−ρ2

qnmπ2T )

]∫ c

0

∫ b

0

∫ a

0
f (ξ , ϕ,ρ)Q(ξ , ϕ,ρ)dξ dϕdρ. (25)

Using Eq. (15) for P and Q, we can attain

u(x, y, z, 0) =

1
α

f (x, y, z)− 8
αabc

∞

∑
k=1

∞

∑
j=1

∞

∑
i=1

exp[−(i2/a2 + j2/b2 + k2/c2)π2T ]
α + exp[−(i2/a2 + j2/b2 + k2/c2)π2T ]

×
∫ c

0

∫ b

0

∫ a

0
sin

iπi
a

xsin
iπξ

a
sin

jπy
b

sin
jπϕ

b
sin

kπz
c

sin
kπρ

c
f (ξ , ϕ,ρ)dξ dϕdρ,

(26)

where the summation upper bound q, n and m can be superseded by ∞ because
our argument is independent of q, n and m. For a given f (x, y, z), through some
integrals one may use the above equation to calculate u(x, y, z, 0).

If u(x, y, z, 0) is given, we can calculate u(x, y, z, t) at any time t < T by

uα(x, y, z, t) =
∞

∑
k=1

∞

∑
j=1

∞

∑
i=1

dα
i jk exp[−(i2/a2 + j2/b2 + k2/c2)π2t]sin

iπx
a

sin
jπy
b

sin
kπz

c
, (27)
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where

dα
i jk =

8
abc

∫ c

0

∫ b

0

∫ a

0
sin

iπξ

a
sin

jπϕ

b
sin

kπρ

c
u(ξ , ϕ, ρ, 0)dξ dϕdρ. (28)

Inserting Eq. (26) into the above equation and using the orthogonality equation
(23), one obtains

dα
i jk =

8
abc{α + exp[−(i2/a2 + j2/b2 + k2/c2)π2T ]}

∫ c

0

∫ b

0

∫ a

0
sin

iπξ

a
sin

jπϕ

b
sin

kπρ

c

× f (ξ , ϕ,ρ)dξ dϕdρ. (29)

Eqs. (27) and (29) compose an analytical solution of the three-dimensional BHCP.
To discriminate it from the exact solution u(x, y, z, t),we have utilized the symbol
uα(x, y, z, t) to denote that it is a regularization solution.

5 Selection of the regularization parameter α and numerical examples

Up to this point, we have not yet specified how to determine the regularization
parameter α. Presume that f has the following Fourier sine series expansion:

f (x, y, z) =
∞

∑
k=1

∞

∑
j=1

∞

∑
i=1

d∗i jk sin
iπx
a

sin
jπy
b

sin
kπz

c
, (30)

where

d∗i jk =
8

abc

∫ c

0

∫ b

0

∫ a

0
sin

iπξ

a
sin

jπϕ

b
sin

kπρ

c
f (ξ , ϕ,ρ)dξ dϕdρ (31)

Substituting Eq. (30) into Eq. (26), we attain

uα(x, y, z, 0) =
∞

∑
k=1

∞

∑
j=1

∞

∑
i=1

exp[−(i2/a2 + j2/b2 + k2/c2)π2T ]
α + exp[−(i2/a2 + j2/b2 + k2/c2)π2T ]

d∗i jk (32)

exp[(i2/a2 + j2/b2 + k2/c2)π2T ]× sin
kπx

a
sin

jπy
b

sin
kπz

c
,

where we indicate that

exp[−(i2/a2 + j2/b2 + k2/c2)π2T ]
α + exp[−(i2/a2 + j2/b2 + k2/c2)π2T ]

=
1

1+α exp[(i2/a2 + j2/b2 + k2/c2)π2T ]
.
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For a better numerical solution, we require to set

α exp[(i2/a2 + j2/b2 + k2/c2)π2T ] = α0 << 1.

On the other hand, the term exp[−(i2/a2 + j2/b2 +k2/c2)π2T ] /(α +exp[−(i2/a2 +
j2/b2 +k2/c2)π2T ]) in Eq. (32) will be very small when i, j, k, and/or T are large,
which may result in a large numerical error. Therefore, we obtain an approximation

exp[−(i2/a2 + j2/b2 + k2/c2)π2T ]
α + exp[−(i2/a2 + j2/b2 + k2/c2)π2T ]

=
1

1+α0
= 1−α0 +α

2
0 −α

3
0 + . . . .

When the terms with order higher than one are truncated, we acquire a good ap-
proximation of u(x, y, z, 0) by

uα0(x, y, z, 0) =
∞

∑
k=1

∞

∑
j=1

∞

∑
i=1

(1−α0)d∗i jk sin
iπx
a

sin
jπy
b

sin
kπz

c
. (33)

The regularization parameter α0 is a small number, and i, j and k represent a num-
ber of the finite terms in the numerical experiments. In doing so, we can filter out
the noise induced by the higher-modes in Eq. (32).

We will apply the quasi-boundary approach on the calculations of BHCP through
numerical examples. We are interested in the stability of our approach when the
input final measured data are contaminated by random noise. We can evaluate the
stability by increasing the different levels of random noise on the terminal data:

f̂ (xi,y j,zk) = f (xi,y j,zk)+ sR(i, j,k), (34)

where f (xi,y j,zk) is the exact data. We employ the function RANDOM_NUMBER
given in Fortran to generate the noisy data R(i, j, k), which are random numbers in
[-1, 1], and s denotes the level of noise. Then, the noisy data f̂ (xi,y j,zk) are used
in the calculations.

5.1 Example 1

Let us deliberate the first numerical experiment of three-dimensional BHCP:

ut = uxx +uyy +uzz, 0 < x < 1, 0 < y < 1, 0 < z < 1, 0 < t < T, (35)

with the boundary conditions

u(0,y,z, t) = u(1,y,z, t) = u(x,0,z, t) = u(x,1,z, t) = u(x,y,0, t)
= u(x,y,1, t) = 0, (36)
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and the final time condition

u(x, y, z, T ) = e−3π2T sin(πx)sin(πy)sin(πz). (37)

The exact solution is given by

u(x, y, z, t) = e−3π2tsin(πx)sin(πy)sin(πz). (38)

In Fig. 1, we display the errors of numerical solutions acquired from the quasi-
boundary semi-analytical scheme for the case of T = 25 in this comparison and the
final data are very small in the order of O(10−322), where the grid lengths ∆x =
∆y = ∆z = 1/40 are used. At the point x = 0.1 the error is drawn with respect to y
and z by a solid line, at the point y = 0.8 the error is plotted with respect to x and z
by a circle symbol, and at the point z = 0.9 the error is plotted with respect to x and
y by a cross symbol. This example is a very hard problem of BHCP to examine the
numerical performance of novel numerical approaches. Nevertheless, the errors are
much smaller than that calculated by Chang, Liu and Chang (2009) as displayed
in Figure 9, Chang and Liu (2010) as shown in Figure 22(b) and Tsai, Young and
Kolibal (2011) as illustrated in Figures 3 and 4 therein.

The numerical results were calculated by Tsai, Young and Kolibal (2011), of which
the final time was 0.01 and the maximum error was about 0.1, under a noise of s
= 0.1. In Fig. 2, we compare the numerical errors with T = 25 for two cases: one
without the random noise and another one with two different levels of random noise
s = 0.01 and 0.1. In Figs. 3(a)-(c), we represent the exact solution and numerical
solutions sequentially. Even under the large noise s = 0.1, the numerical solution
shown in Fig. 3(c) is a good estimation to the exact initial data as displayed in Fig.
3(a). Besides, we should emphasize that in all the calculations, we can use α0 = 0
without any difficulty because Eq. (33) is still applicable. To the author’s best
knowledge, there has been no open report that the numerical methods can calculate
this ill-posed BHCP very well as the quasi-boundary semi-analytical approach.

5.2 Example 2

Let us contemplate another instance of three-dimensional BHCP:

ut = uxx +uyy +uzz, 0 < x < 1, 0 < y < 1, 0 < z < 1, 0 < t < T, (39)

with the boundary conditions

u(0,y,z, t) = u(1,y,z, t) = u(x,0,z, t) = u(x,1,z, t) = u(x,y,0, t) = u(x,y,1, t) = 0,

(40)
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Figure 1: The errors of semi-analytical solutions for Example 1 with T = 25. 

Figure 1: The errors of semi-analytical solutions for Example 1 with T = 25.

and the initial condition

u(x, y, z, 0) =

8xyz, for 0≤ x≤ 0.5,0≤ y≤ 0.5,0≤ z≤ 0.5,

8yz(1− x), for 0.5≤ x≤ 1, 0≤ y≤ 0.5,0≤ z≤ 0.5,

8x(1− y)(1− z), for 0≤ x≤ 0.5, 0.5≤ y≤ 1,0.5≤ z≤ 1,

8xz(1− y), for 0≤ x≤ 0.5, 0.5≤ y≤ 1,0≤ z≤ 0.5,

8z(1− x)(1− y), for 0.5≤ x≤ 1, 0.5≤ y≤ 1,0≤ z≤ 0.5,

8xy(1− z), for 0≤ x≤ 0.5, 0≤ y≤ 0.5,0.5≤ z≤ 1,

8y(1− x)(1− z), for 0.5≤ x≤ 1, 0≤ y≤ 0.5,0.5≤ z≤ 1,

8(1− x)(1− y)(1− z), for 0.5≤ x≤ 1, 0.5≤ y≤ 1, 0.5≤ z≤ 1.

(41)

The exact solution is given by

u(x, y, z, t) =
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Figure 2: The numerical errors of semi-analytical solutions with and without random noise effect 

for Example 1 are plotted in (a) with respect to x at fixed y = 0.8 and z = 0.9, in (b) 

with respect to y at fixed x = 0.1 and z = 0.9, and in (c) with respect to z at fixed x = 

0.1 and y = 0.8. 

Figure 2: The numerical errors of semi-analytical solutions with and without ran-
dom noise effect for Example 1 are plotted in (a) with respect to x at fixed y = 0.8
and z = 0.9, in (b) with respect to y at fixed x = 0.1 and z = 0.9, and in (c) with
respect to z at fixed x = 0.1 and y = 0.8.
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Figure 3: The exact solution for Example 1 of three-dimensional BHCP are shown in (a), in (b) 

the semi-analytical solution without random noise effect, and in (c) the semi-analytical 

solution with random noise. 

Figure 3: The exact solution for Example 1 of three-dimensional BHCP are shown
in (a), in (b) the semi-analytical solution without random noise effect, and in (c) the
semi-analytical solution with random noise.
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∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

512(−1)i(−1) j(−1)k

abcπ6(2i+1)2(2 j +1)2(2k +1)2 exp[−(i2/a2 + j2/b2 + k2/c2)π2t]

×sin
[
(2i+1)πx

a

]
sin
[
(2 j +1)πy

b

]
sin
[
(2k +1)πz

c

]
. (42)

The backward numerical solution is subjected to the final condition at time T :

f (x, y, z) = u(x, y, z,T ) =

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

512(−1)i(−1) j(−1)k

abcπ6(2i+1)2(2 j +1)2(2k +1)2 exp[−(i2/a2 + j2/b2 + k2/c2)π2T ]

×sin
[
(2i+1)πx

a

]
sin
[
(2 j +1)πy

b

]
sin
[
(2k +1)πz

c

]
. (43)

The difficulty of this problem is emanated from that we utilize a smooth final data
to recover a non-smooth initial data.

Let a = b = c =1 and insert Eq. (42) for f (x, y, z) into Eq. (29) to attain

dα
i jk =

1
{α + exp[−(i2 + j2 + k2)π2T ]}

∞

∑
m=0

∞

∑
n=0

∞

∑
q=0

512(−1)q(−1)n(−1)mδi,(2q+1)δ j,(2n+1)δk,(2m+1)

π6(2q+1)2(2n+1)2(2m+1)2

×exp{−[(2q+1)2 +(2n+1)2 +(2m+1)2]π2T}. (44)

Inserting it into Eq. (27), we have

uα(x,y,z, t) =
∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

1
{α + exp[−(i2 + j2 + k2)π2T ]}

∞

∑
m=0

∞

∑
n=0

∞

∑
q=0

512(−1)q(−1)n(−1)mδi,(2q+1)δ j,(2n+1)δk,(2m+1)

π6(2q+1)2(2n+1)2(2m+1)2

× exp{−[(2q+1)2 +(2n+1)2 +(2m+1)2]π2T}
exp[−(i2 + j2 + k2)π2t]sin(iπx)sin( jπy)sin(kπz). (45)
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Interchanging the order of summation and employing the δ property, we acquire

uα(x,y,z, t) =
∞

∑
m=0

∞

∑
n=0

∞

∑
q=0

512(−1)q(−1)n(−1)m

π6(2q+1)2(2n+1)2(2m+1)2

exp{−[(2q+1)2 +(2m+1)2 +(2n+1)2]π2T}
{α + exp{−[(2q+1)2 +(2m+1)2 +(2n+1)2]π2T}}
× exp{−[(2q+1)2 +(2m+1)2 +(2n+1)2]π2t}

sin[(2q+1)πx]sin[(2n+1)πy]sin[(2m+1)πz]. (46)

It gives

uα(x,y,z,0) =
∞

∑
m=0

∞

∑
n=0

∞

∑
q=0

512(−1)q(−1)n(−1)m

π6(2q+1)2(2n+1)2(2m+1)2

exp{−[(2q+1)2 +(2m+1)2 +(2n+1)2]π2T}
{α + exp{−[(2q+1)2 +(2m+1)2 +(2n+1)2]π2T}}

× sin[(2q+1)πx]sin[(2n+1)πy]sin[(2m+1)πz]. (47)

The term

exp{−[(2q+1)2 +(2m+1)2 +(2n+1)2]π2T}
{α + exp{−[(2q+1)2 +(2m+1)2 +(2n+1)2]π2T}}

= 1−α0

is already derived at the first of this section. Therefore, we obtain

uα0(x,y,z,0) = (1−α0)
∞

∑
m=0

∞

∑
n=0

∞

∑
q=0

512(−1)q(−1)n(−1)m

π6(2q+1)2(2n+1)2(2m+1)2

sin[(2q+1)πx]sin[(2n+1)πy]

×sin[(2m+1)πz]. (48)

Therefore, we employ this solution to compare that in Eq. (41). In practice, the data
are attained by taking the sum of the first one hundred terms, which guarantees the
convergence of the series.

Tsai, Young and Kolibal (2011) calculated the initial data with a terminal time T
= 0.01 and the maximum error was about 0.125. In Fig. 4(a), we show the errors
of numerical solutions obtained from the quasi-boundary semi-analytical method
for the case. T = 10 is used in this comparison, where the grid lengths ∆x = ∆y =
∆z = 0.02 are employed. At the point x = 0.1 the error is plotted with respect to
y and z by a solid line, at the point y = 0.7 the error is drawn with respect to x
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and z by a dashed line, and at the point z = 0.9 the error is plotted with respect
to x and y by a dotted line. Furthermore, the maximum error occurring at x = 0.5
is only 3× 10−4. Then, we offer a more ill-posed instance than the above one by
employing the current scheme at T = 30. The errors of numerical solutions were
displayed in Fig. 4(b).
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Figure 4: The errors of semi-analytical solutions for Example 2 are shown in (a) with T = 10, and 

in (b) with T = 30. 

Figure 4: The errors of semi-analytical solutions for Example 2 are shown in (a)
with T = 10, and in (b) with T = 30.

The numerical results were calculated by Tsai, Young and Kolibal (2011), of which
the final time was 0.01 and the maximum error was about 0.09, under a noise of s
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Figure 5: The numerical errors of semi-analytical solutions with and without random noise effect 

for Example 2 are drawn in (a) with respect to x at fixed y = 0.7 and z = 0.9, in (b) 

with respect to y at fixed x = 0.1 and z = 0.9, and in (c) with respect to z at fixed x = 

0.1 and y = 0.7. 

Figure 5: The numerical errors of semi-analytical solutions with and without ran-
dom noise effect for Example 2 are drawn in (a) with respect to x at fixed y = 0.7
and z = 0.9, in (b) with respect to y at fixed x = 0.1 and z = 0.9, and in (c) with
respect to z at fixed x = 0.1 and y = 0.7.
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Figure 6: The exact solution for Example 2 of three-dimensional BHCP are shown in (a), in (b) 

the semi-analytical solution without random noise effect, and in (c) the semi-analytical 

solution with random noise. 

Figure 6: The exact solution for Example 2 of three-dimensional BHCP are shown
in (a), in (b) the semi-analytical solution without random noise effect, and in (c) the
semi-analytical solution with random noise.
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= 0.05. In Fig. 5, we compare the numerical errors with T = 30 for two cases: one
without the relative random noise and another one with the relative random noise
in the level of s = 0.05. In Figs. 6(a)-(c), we show the exact solution and numerical
solutions sequentially. Even under the noise the numerical solution shown in Fig.
6(c) is a good estimation to the exact initial data as represented in Fig. 6(a).

5.3 Example 3

Let us ponder the third example of three-dimensional BHCP:

ut = uxx +uyy +uzz, −π < x < π , −π < y < π , −π < z < π , 0 < t < T, (49)

with the boundary conditions

u(−π,y,z, t) = u(π,y,z, t) = u(x,−π,z, t) = u(x,π,z, t) = u(x,y,−π, t)
= u(x,y,π, t) = 0, (50)

and the final time condition

u(x, y, z, T ) = e−3β 2T sin(βx)sin(βy)sin(β z). (51)

The exact solution is given by

u(x, y, z, t) = e−3β 2tsin(βx)sin(βy)sin(β z), (52)

where β ∈ N is a positive integer.

In Fig. 7(a), we exhibit the errors of numerical solutions attained from the quasi-
boundary semi-analytical scheme for the case of β = 1. T = 100 is employed in
this comparison and the final data are very small in the order of O(10−87), where
the grid lengths ∆x = ∆y = ∆z = 2π/40 are employed. At the point x = −π +
60π/40 the error is plotted with respect to y and z by a solid line, at the point
y =−π +66π/40 the error is drawn with respect to x and z by a circle symbol, and
at the point z =−π +72π/40 the error is plotted with respect to x and y by a cross
symbol. However, the errors are much smaller than that calculated by Tsai, Young
and Kolibal (2011) as presented in Figure 9 therein.

We will give a more ill-posed example than the above one by utilizing the quasi-
boundary semi-analytical scheme. Let β = 3, T = 40, and the final data are very
small in the order of O(10−313). Nevertheless, we can use this approach to recover
the desired initial data sinβxsinβysinβ z, which is in the order of O(1). In Fig.
7(b), the errors of numerical solutions calculated by the proposed approach with
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Figure 7: The errors of semi-analytical solutions for Example 3 are shown in (a) with T = 100 

and β = 1, and in (b) with T = 40 and β = 3. 

Figure 7: The errors of semi-analytical solutions for Example 3 are shown in (a)
with T = 100 and β = 1, and in (b) with T = 40 and β = 3.
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Figure 8: The numerical errors of semi-analytical solutions with and without ran-
dom noise effect for Example 3 are plotted in (a) with respect to x at fixed y = 2π/3
and z = 4π/5, in (b) with respect to y at fixed x = π/2 and z = 4π/5, and in (b) with
respect to z at fixed x = π/2 and y = 2π/3.
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Figure 9: The exact solution for Example 3 of three-dimensional BHCP are shown in (a), in (b) 

the semi-analytical solution without random noise effect, and in (c) the semi-analytical 

solution with random noise. 

Figure 9: The exact solution for Example 3 of three-dimensional BHCP are shown
in (a), in (b) the semi-analytical solution without random noise effect, and in (c) the
semi-analytical solution with random noise.
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∆x = ∆y = ∆z = 2π/40, and the result was much better that calculated by Tsai,
Young and Kolibal (2011), where they employed T = 0.5.

The numerical results were calculated by Tsai, Young and Kolibal (2011), of which
β = 1, the final time was 0.75 and the maximum error was about 0.09, under a
noise of s = 0.1. In Fig. 8, we compare the numerical errors with T = 100 and β =
1 for two cases: one without the random noise and another one with two different
levels of random noise s = 0.01 and 0.1. In Figs. 9(a)-(c), we represent the exact
solution and numerical solutions sequentially. Even under the large noise s = 0.1,
the numerical solution presented in Fig. 9(c) is a good estimation to the exact
initial data as displayed in Fig. 9(a). In addition, we should emphasize that in all
the calculations, we can employ α0 = 0 without any difficulty since Eq. (33) is
still applicable. To the author’s best knowledge, there has been no open literature
that the numerical approaches can calculate this ill-posed BHCP very well as the
quasi-boundary semi-analytical scheme.

6 Conclusions

In this article, we have transformed the three-dimensional BHCP into a second-
kind three-dimensional Fredholm integral equation through a direct regularization
tactic and a quasi-boundary idea. By employing the Fourier series expansion tech-
nique and a termwise separable property of kernel function, an analytical solution
of the regularized type for estimating the exact solution is displayed. Besides, we
explain that the effect of regularization parameter on the disturbed solution. Three
numerical examples have illustrated that the proposed algorism can recover all ini-
tial data very well, even though the final data are very small or noised by a large
perturbation, and the initial data to be retrieved are not smooth. Thus, the current
scheme is recommended to cope with the three-dimensional BHCPs.
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