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Abstract: The inverse boundary optimization problem, governed by the Helmholtz
equation, is analyzed by the Trefftz method (TM) and the exponentially convergent
scalar homotopy algorithm (ECSHA). In the inverse boundary optimization prob-
lem, the position for part of boundary with given boundary condition is unknown,
and the position for the rest of boundary with additionally specified boundary con-
ditions is given. Therefore, it is very difficult to handle the boundary optimization
problem by any numerical scheme. In order to stably solve the boundary optimiza-
tion problem, the TM, one kind of boundary-type meshless methods, is adopted in
this study, since it can avoid the generation of mesh grid and numerical integra-
tion. In the boundary optimization problem governed by the Helmholtz equation,
the numerical solution of TM is expressed as linear combination of the T-complete
functions. When this problem is considered by TM, a system of nonlinear algebraic
equations will be formed and solved by ECSHA which will converge exponentially.
The evolutionary process of ECSHA can acquire the unknown coefficients in TM
and the spatial position of the unknown boundary simultaneously. Some numerical
examples will be provided to demonstrate the ability and accuracy of the proposed
scheme. Besides, the stability of the proposed meshless method will be validated
by adding some noise into the boundary conditions.
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1 Introduction

The boundary optimization problem is one kind of inverse problems. Inverse prob-
lems can be found in many realistic engineering applications, such as the detec-
tion of vibration phenomena and wave propagation. Many numerical schemes are
recently proposed to deal with the inverse problems, such as boundary element
methods (BEM) [Marin and Lesnic (2003); Marin (2006)], method of fundamental
solutions (MFS) [Mera and Lesnic (2005); Marin and Lesnic (2005)], etc. Since
most of the inverse problems are ill-posed, the numerical simulation seems the op-
timal choice for analyzing the inverse problems. Most of the numerical schemes
for inverse problems are very inaccurate, ill-posed and unstable. Therefore, many
researchers have paid attention on effectively and stably handling the inverse prob-
lems in the past decades [Marin and Lesnic (2003); Marin (2006); Mera and Lesnic
(2005); Marin and Lesnic (2005); Barral, Moreno, Quintela and Sanchez (2006);
Zou, Zhou, Zhang and Li (2007); Zeb, Ingham and Lesnic (2008); Fan, Chan,
Kuo and Yeih (2012); Fan and Chan (2011)]. In this study, a numerical scheme
is proposed to stably solve the boundary optimization problem governed by the
Helmholtz equation.

In the boundary optimization problem, which is also known as the geometric detec-
tion problem, one kind of boundary condition is given on part of boundary, whose
positions are unknown in a prior. And the Cauchy data is given on the rest bound-
ary with known spatial position. There are some numerical schemes have been
proposed to handle the boundary optimization problem in recent years. Marin and
Lesnic (2003) proposed the BEM and the Tikhonov first-order regularization pro-
cedure to deal with the boundary determination problem, while Mera and Lesnic
(2005) used the MFS and the Tikhonov regularization to solve three-dimensional
inverse geometric problem. Despite of these numerical methods, it is still neces-
sary to develop an efficient numerical scheme for accurately and stably solving the
boundary optimization problem. In this paper we propose the Trefftz method (TM)
and the exponentially convergent scalar homotopy algorithm (ECSHA) to deal with
the boundary optimization problem.

In order to avoid the mesh generation and numerical integration, many meshless
methods are proposed recently, such as the MFS [Young, Tsai, Lin and Chen
(2006); Gu, Young and Fan (2009)], the radial basis functions collocation method
[Duan and Tan (2006); Zhang (2007); Ma and Wu (2009)], the meshless local
Petrov-Galerkin (MLPG) method [Atluri and Shen (2002); Atluri, Han and Shen
(2003); Atluri, Liu and Han (2006); Li and Atluri (2008); Sladek, Sladek, Solek
and Atluri (2008)], the TM [Abou-Dina (2002); Li (2008); Chen, Lee, Yu and
Shieh (2009); Chen, Lee and Shieh (2009)], etc. For the present problem, it is
then nature for us to adopt the boundary-type meshless scheme to deal with the
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problem, since positions of some boundary points are unknown. The boundary-
type meshless methods only need the boundary information rather than the mesh
throughout the computational domain. The TM is one kind of boundary-type mesh-
less methods, which are more suitable than the domain-type meshless schemes for
the boundary optimization problem. Besides, the numerical solution of TM satisfies
the homogeneous governing equation. Its solution is expressed as the linear com-
bination of T-complete functions such that we only require the solution to satisfy
the boundary conditions on the collocated boundary points. In this study, the TM
is used for spatial discretization of the boundary optimization problem. Since the
spatial position of boundary portion is unknown, a system of nonlinear algebraic
equations (NAEs) will be formed by satisfying the boundary conditions at every
boundary node. The Newton’s method is a well-known solver when a system of
NAEs is considered. However, the Newton’s method is sensitive to initial guessing
under certain circumstances. Therefore, some numerical algorithms are proposed
in order to stably and efficiently solving the NAEs. Recently, the fictitious time
integration method (FTIM) [Liu and Atluri (2008); Chang and Liu (2009); Ku,
Yeih, Liu and Chi (2009);] and the scalar homotopy method (SHM) [Liu, Yeih,
Kuo and Atluri (2009); Fan, Liu, Yeih and Chan (2010)] have been proposed to
efficiently deal with the NAEs. In FTIM, the NAEs are transformed to a system of
ordinary differential equations (ODEs) by introducing the fictitious time variable.
In SHM, the algorithm also transforms the NAEs to ODEs by introducing the scalar
homotopy function and the fictitious time. Based on the above two algorithms, the
ECSHA [Fan, Chan, Kuo and Yeih (2012); Fan and Chan (2011); Ku, Yeih and
Liu (2010); Liu, Ku, Yeih, Fan and Atluri (2010)] is proposed by using a fictitious
time variable and a scalar homotopy function. The convergent rate of the ECSHA
is mathematically proven to be exponential. Therefore, we will adopt the ECSHA
to efficiently solve the system of NAEs formed by the TM.

In this study, the TM and the ECSHA will be adopted to analyze the boundary op-
timization problem governed by the Helmholtz equation. The numerical solution
of TM is expressed as a linear combination of T-complete functions. Since the co-
efficients of TM and the spatial position of some boundary points are unknown, a
system of NAEs will be formed by forcing the satisfactions of the boundary con-
ditions on boundary collocation points. The unknown coefficients in TM and the
position of unknown boundary can be found simultaneously by the evolutionary
process of ECSHA. There are some numerical examples provided to demonstrate
the ability and accuracy of the proposed scheme. Finally, the stability of the pro-
posed meshless method will be verified by adding some noise into the boundary
conditions.
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2 Boundary Optimization Problem

The boundary optimization problem considered in this article is governed by the
Helmholtz equation. The governing equation and the corresponding boundary con-
ditions are shown as follows:(
∇

2 + k2)u(x,y) = 0, (x,y) ∈Ω, (1)

u(x,y) = q1 (x,y) , (x,y) ∈ Γ, (2)

(∇u(x,y)) ·~n = q2 (x,y) , (x,y) ∈ Γ, (3)

u(x,y) = h1 (x,y) , (x,y) ∈ γ, (4)

(∇u(x,y)) ·~n = h2 (x,y) , (x,y) ∈ γ, (5)

where ∇2 is the Laplacian. k is the wave number, ~n is the unit outward normal
vector, and q1 (x,y), q2 (x,y), h1 (x,y) and h2 (x,y) are given boundary conditions.
Ω is the interested domain, Γ is the known boundary and γ is the unknown bound-
ary. On the known boundary Γ, overprescribed Cauchy boundary conditions as
described in Eqs. (2-3) are given. On the unknown boundary γ , only the Dirichlet
or Neumann boundary condition is given, Eq. (4) or (5). The spatial position of
γ is unknown in a prior. The purpose of the boundary optimization problem is to
determine the spatial positions of the boundary points on the unknown boundary,
γ , and the numerical solution of the Helmholtz problem, u(x,y). The schematic di-
agram for the boundary optimization problem is demonstrated in Fig. 1(a). For the
boundary with unknown spatial position, γ , we will find out the radius of boundary
nodes for each fixed azimuth in the polar coordinate system.
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Figure 1: The schematic diagrams for (a) the two-dimensionall boundary optimiza-
tion problem and (b) the unit normal vector.
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3 Numerical Method

Since the spatial position of some boundary portion is unknown in advance, it is
nature to use the boundary-type meshless method. The TM is adopted for the spatial
discretization. In TM, the solution can be expressed by a linear combination of the
T-complete functions of the Helmholtz equation with underdetermined coefficients.
The unknown coefficients in the expression will then be obtained by enforcing the
satisfactions of the boundary conditions for every boundary collocation points.

3.1 The Trefftz method (TM)

The TM for Helmholtz equation will be described in this sub-section. The T-
complete functions for Helmholtz equation for the interior domain and doubly-
connected domain can be shown in Eq. (6) and Eq. (7), respectively:{

J0 (kr) ,J j (kr)cos( jθ) ,J j (kr)sin( jθ) , j = 1,2,3, ...
}

, (6)

{J0 (kr) ,J j (kr)cos( jθ) ,J j (kr)sin( jθ) ,Y0 (kr) ,Yj (kr)cos( jθ) ,Yj (kr)sin( jθ) ,
j = 1,2,3, ...}, (7)

where J j () and Yj () are Bessel functions of the first kind and the second kind.

For simply- and doubly- connected domains, the numerical solution can be ex-
pressed by the T-complete functions listed in Eq. (6) and Eq. (7). The correspond-
ing outer boundary of the computational domain, Ω, in the polar coordinates is
given by Γ0 = {(r,θ)|r = ρ (θ) ,0≤ θ ≤ 2π} and the corresponding inner bound-
ary is given Γ1 = {(r,θ)|r = η (θ) ,0≤ θ ≤ 2π}. The numerical solution of the
Helmholtz equation for simply- and doubly- connected domains in TM can then be
expressed as the linear combination of the T-complete functions as shown in Eq.
(8) and Eq. (9):

u(r,θ) = a0J0 (kr)+
m

∑
j=1

a jJ j (kr)cos( jθ)+b jJ j (kr)sin( jθ) , (8)

u(r,θ) =a0J0 (kr)+ c0Y0 (kr)+
m

∑
j=1

a jJ j (kr)cos( jθ)+b jJ j (kr)sin( jθ)

+ c jYj (kr)cos( jθ)+d jYj (kr)sin( jθ) ,

(9)

where a0, c0,
{

a j
}m

j=1,
{

b j
}m

j=1,
{

c j
}m

j=1 and
{

d j
}m

j=1 are the unknown coefficients
which will be retrieved by satisfying the boundary conditions on the boundary col-
location points. In Eqs. (8) and (9), terms up to the m-th order are used to replace
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the infinite series in the original expressions. Once the unknown coefficients are
obtained, the numerical solution and its derivative at any position inside the compu-
tational domain can be found from Eqs. (8) and (9). Since the Neumann boundary
condition will be given on the unknown boundary, γ , the unit normal vector on γ

should be determined via the evolutionary process. In this paper, the out normal
vectors at some specific boundary points are approximated from its neighboring
nodes as shown in Fig. 1(b). In this figure, the unit outward normal vector at node
B is determined from the spatial coordinates of neighboring nodes A and C as

(nx,ny)B =
(
−yC + yA

lAC
,
xC− xA

lAC

)
, (10)

where (nx,ny)B is the normal vector at node B. (xA,yA) and (xC,yC) are the spatial

coordinates at node A and node C. lAC =
√

(xA− xC)2 +(yA− yC)2 is the distance
between two nodes, A and C. The normal vectors at nodes along γ will vary at every
evolutionary step since the spatial positions for boundary points on γ will move
at the evolutionary process of ECSHA. It should be noticed that the system of the
resulting algebraic equations is nonlinear since the positions for unknown boundary
involves in the equations such that the radial distances for boundary points on γ in
Eqs. (8) and (9) induce the nonlinearity.

3.2 The exponentially convergent scalar homotopy algorithm (ECSHA)

A system of NAEs will be formed via Eq. (8) or (9) by enforcing the satisfactions
of the boundary conditions at boundary collocation nodes. The unknowns in the
system of NAEs are both of the coefficients in TM and the spatial positions of
boundary γ . For the following NAEs:

F(x) = 0, (11)

where F ∈ Rne and x ∈ Rnn. ne and nn are the numbers of equations and unknowns,
respectively, it is quite important for us to find a stable and efficient numerical
algorithm to solve it. Here we propose to use the ECSHA [Fan, Chan, Kuo and
Yeih (2012); Fan and Chan (2011); Ku, Yeih and Liu (2010); Liu, Ku, Yeih, Fan
and Atluri (2010)] to solve Eq. (11).

In ECSHA, we consider a scalar homotopy function as follows:

h(x, t) =
1
2

Q(t)‖F(x)‖2− 1
2

Q(t)‖F(x0)‖2 = 0, (12)

where t is a fictitious time variable and Q(t) > 0 is a given function with Q(0) = 1.
x(0) = x0 is the initial condition. From a series of mathematical derivation [Fan,
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Chan, Kuo and Yeih (2010); Fan and Chan (2011); Ku, Yeih and Liu (2010); Liu,
Ku, Yeih, Fan and Atluri (2010)], the following evolution equation of ECSHA can
be derived

dx
dt

=
−ν

2(1+ t)d
‖F(x)‖2∥∥∥B̃F(x)

∥∥∥2 B̃F(x) , (13)

where ν is the damping coefficient and d is a parameter for convergence rate. B is
the Jacobian matrix with its ij-components given by Bi j = ∂Fi

/
∂x j. The B̃ denotes

the transpose of Jacobian matrix.

The exponential convergence of ECSHA can be mathematically proved [Fan, Chan,
Kuo and Yeih (2012); Fan and Chan (2011); Ku, Yeih and Liu (2010); Liu, Ku,
Yeih, Fan and Atluri (2010)] and the ECSHA is insensitive to the initial guess.
Hence, we will adopt the ECSHA to efficiently solve the system of NAEs from
spatial discretization of TM. For simplicity, the explicit Euler method is used to
integrate Eq. (13),

xn+1 = xn +∆t
−ν

2(1+ tn)d
‖F(xn)‖2∥∥∥(B̃n
)

F(xn)
∥∥∥2

(
B̃n
)

F(xn) , (14)

where the superscripts n and n + 1 denote the nth and the (n+1)th time steps. ∆t
is the time increment for integration. The stopping criterion for Eq. (14) will be
defined as:

‖Fn‖2

ne
≤ ε, (15)

where ε is a pre-defined parameter for integration. When ‖Fn‖2 approaches to zero,
the solution of Eq. (11) will be obtained.

4 Numerical Results and Comparisons

The boundary optimization problem governed by the Helmholtz equation will be
solved by the proposed algorithm which is the combination of TM and ECSHA.
In the following subsections, three numerical examples are provided to validate the
efficacy and stability of the proposed scheme.

For clarity, the following abbreviations are used in these examples: nb1 denotes
the number of boundary nodes along Γ, nb2 denotes the number of boundary nodes
along γ , k denotes the wave number, icb denotes the initial guess of radial distance
of the unknown boundary, and icc1, icc2 denote the initial guesses of the unknown
coefficients in the solution expression in TM.
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Figure 2: The computational domains and corresponding boundaries for (a) Exam-
ple 1, (b) Example 2, and (c) Example 3.

4.1 Example 1

In the first example, the computational domain and boundary are illustrated in Fig.
2(a). The computational domain is enclosed by a Cassini curve defined as the
parametric equation

Γ0 = {(x,y) |x = ρ cosθ ,y = ρ sinθ ,0≤ θ ≤ 2π} , (16)

where

ρ (θ) =
(

cos(3θ)+
√

2− sin2 (3θ)
) 1

3

. (17)

The computational domain and the corresponding boundary are depicted in Fig.
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2(a). The boundary conditions listed in Eqs. (2)-(3) are prescribed along the upper
half boundary, Γ, while the Dirichlet boundary condition is given on the lower part
of the boundary, γ . The analytical solution in the first example is expressed as:

u(x,y) = cos(kx)+ sin(ky) . (18)

Unless otherwise specified, the following parameters are adopted in all of the nu-
merical experiments for this example: nb1 = 30, nb2 = 20, m = 16, icb = 1.2,
icc = 0.1, k =

√
2, d = 0.01, ν = 1, ∆t = 0.01, ε = 10−7. The numerical (solid

line) and analytical solutions (dashed line) are demonstrated in Fig. 3(a), respec-
tively. In addition, the distribution of absolute error is shown in Fig. 3(b). All of
the absolute errors are very small which can prove that the proposed scheme can
acquire highly accurate solution for the boundary optimization problem.

Since the inverse problem is originated from realistic applications, we add some
noise into boundary conditions by the following equations:

u(x,y) = q1 (x,y)
(

1+ rd× ss
100

)
, (x,y) ∈ Γ, (19)

(∇u(x,y)) ·~n = q2 (x,y)
(

1+ rd× ss
100

)
, (x,y) ∈ Γ, (20)

u(x,y) = h1 (x,y)
(

1+ rd× ss
100

)
, (x,y) ∈ γ, (21)

(∇u(x,y)) ·~n = h2 (x,y)
(

1+ rd× ss
100

)
, (x,y) ∈ γ, (22)

where rd is the random number, whose range is [−1,1]. ss is the user-defined pa-
rameter to denote the percentage of the noise. The recovered boundary positions
by adding different levels of relative noise are shown in Fig. 4. From these results,
the spatial positions of unknown boundary can be recovered very well even 1.5%
noise level is added into the boundary conditions. It evidently shows the stability
and good noise resistance of the proposed scheme. The influence on the numeri-
cal accuracy by using different levels of added noise is demonstrated in Table 1(a).
From these results, it is proved that the proposed meshless algorithm is very sta-
ble and accurate for solving the boundary optimization problem governed by the
Helmholtz equation.

4.2 Example 2

In the second example, the computational domain and boundary are illustrated in
Fig. 2(b). The boundary enclosing the computational domain is defined by the
parametric equation

Γ0 = {(x,y) |x = ρ cosθ ,y = ρ sinθ ,0≤ θ ≤ 2π } , (23)
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 Figure 3: The distributions of (a) numerical solution (solid line) and analytical
solution (dashed line), and (b) absolute error.

where

ρ (θ) = 1. (24)

All of boundary conditions listed in Eqs. (2)-(3) are prescribed along the upper half
boundary, Γ, while the Neumann boundary condition is given on the lower part of
the boundary, γ . The analytical solution in the second example is expressed as:

u(x,y) = cos(x)sin(y) . (25)
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Figure 4: Recovered boundary positions by adding levels of noise.

The following parameters are used in the numerical experiments for this example:
nb1 = 34, nb2 = 16, m = 22, icb = 0.9, icc = 0.2, d = 0.01, ν = 1, ∆t = 0.01,
ε = 10−7. The numerical (solid line) and analytical solutions (dashed line) are
demonstrated in Fig. 5(a). Besides, the distribution of absolute error is shown
in Fig. 5(b). The recovered positions of unknown boundary portion by adding
different levels of noise are depicted in Fig. 6. Although there are little differences
between these final positions, the results are acceptable and very stable. In addition,
the errors by adding different levels of noise are displayed in Table 1(b). From these
numerical results, the proposed meshless scheme is very stable for noisy data and
all of the maximum absolute errors are very small.

4.3 Example 3

For the third example, the computational domain and boundary are illustrated in
Fig. 2(c). The outer boundary enclosing the computational domain is defined by
the parametric equation

Γ0 = {(x,y) |x = ρ cosθ ,y = ρ sinθ ,0≤ θ ≤ 2π } , (26)

where

ρ (θ) =
(

cos(3θ)+
√

2− sin2 (3θ)
) 1

3

. (27)
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 Figure 5: The distributions of (a) numerical solution (solid line) and analytical
solution (dashed line), and (b) absolute error.

The unknown inner boundary, γ , is also a Cassini curve defined as the parametric
equation:

Γ1 = {(x,y) |x = η cosθ ,y = η sinθ ,0≤ θ ≤ 2π } , (28)

where

η (θ) = 0.5
(

cos(3θ)+
√

2− sin2 (3θ)
) 1

3

. (29)
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Figure 6: Recovered boundary positions by adding levels of noise.

Table 1: The maximum absolute errors by adding different levels of noise in (a)
example 1, (b) example 2, (c) example 3.

(a)

ss Maximum absolute error

0.5 0.0114
1.0 0.1366
1.5 0.0911

(b)

ss Maximum absolute error

0.5 0.0048
1.0 0.0094
2.0 0.0338

(c)

ss Maximum absolute error

0.5 0.0134
1.0 0.0345
2.0 0.1203
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The objective of this problem is to find out the recovered position of inner bound-
ary and the solution inside the doubly-connected domain, while the boundary con-
ditions listed in Eqs.(2)-(3) are prescribed on the outer boundary Γ and Dirichlet
boundary condition is given on the inner boundary, γ . The analytical solution in the
third example is expressed as:

u(x,y) = J0

(
10
√

(x−0.02)2 +(y−0.02)2
)

. (30)

 
(a) numerical solution (solid line) and analytical solution (dashed line) 
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Figure 8: Recovered boundary positions by adding levels of noise.

The following parameters are used in the numerical experiments for this example:
nb1 = 50, nb2 = 20, m = 9, icb = 0.55, icc1 = 0.01, icc2 =−0.01, d = 0.01, ν = 1,
∆t = 0.01, ε = 10−7. The numerical (solid line) and analytical solutions (dashed
line) are demonstrated in Fig. 7(a). In addition, the distribution of absolute error
is shown in Fig. 7(b). The recovered positions of unknown boundary portion by
adding different levels of noise are depicted in Fig. 8. Besides, the errors by adding
different levels of noise are tabulated in Table 1(c). From these numerical solutions,
the proposed numerical method is very stable for different levels of noisy data since
all of the maximum absolute errors are very small.

5 Conclusions

In this paper, a boundary-type meshless algorithm, the combination of TM and
ECSHA, is proposed to stably and accurately analyze the boundary optimization
problem which is governed by Helmholtz equation. In the boundary optimization
problem, the Cauchy data is given in part of boundary and the Dirichlet boundary
condition or Neumann boundary condition is imposed in the other part of boundary
whose spatial position is unknown in a prior. The TM is used for spatial discretiza-
tion for the inverse problem and then it will result in a system of NAEs. The
ECSHA is adopted to efficiently solve the system of NAEs. It is insensitive to ini-
tial guess and the evolutionary process is proven to be exponentially convergent.
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Therefore, the combination of TM and ECSHA is proposed for efficiently solving
the boundary optimization problem governed by Helmholtz equation.

There are three numerical examples provided to validate the proposed meshless
scheme. By adding different levels of noise into the given boundary conditions,
the stability and noise resistance of the proposed method are verified. From all of
the numerical results, it can prove that the stability and accuracy of the proposed
scheme are excellent. Therefore, it is numerically verified that the proposed mesh-
less method is very stable for solving the boundary optimization problem governed
by the Helmholtz equation.
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