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A Simple Procedure to Develop Efficient & Stable
Hybrid/Mixed Elements, and Voronoi Cell Finite Elements

for Macro- & Micromechanics

L. Dong1 and S. N. Atluri2

Abstract: A simple procedure to formulate efficient and stable hybrid/mixed fi-
nite elements is developed, for applications in macro- as well as micromechan-
ics. In this method, the strain and displacement field are independently assumed.
Instead of using two-field variational principles to enforce both equilibrium and
compatibility conditions in a variational sense, the independently assumed element
strains are related to the strains derived from the independently assumed element
displacements, at a finite number of collocation points within the element. The
element stiffness matrix is therefore derived, by simply using the principle of min-
imum potential energy. Taking the four-node plane isoparametric element as an
example, different hybrid/mixed elements are derived, by adopting different ele-
ment strain field assumptions, and using different collocation points. These ele-
ments are guaranteed to be stable. Moreover, the computational efficiency of these
elements is far better than that for traditional hybrid/mixed elements, or even bet-
ter than primal finite elements, because the strain field is expressed analytically
as simple polynomials (whereas, in isoparametric displacement-based element, the
strain field is far more complicated), with nodal displacements as unknowns. The
essential idea is thereafter extended to Voronoi cell finite elements, for microme-
chanical analysis of materials. Neither these four-node hybrid/mixed elements nor
the Vonroni cell finite elements need to satisfy the equilibrium conditions a pri-
ori, making them suitable for extension to geometrically nonlinear and dynamical
analyses. Various numerical experiments are conducted using these new elements,
and the results are compared to those obtained by using traditional hybrid/mixed
elements and primal finite elements. Performances of the different elements are
compared in terms of efficiency, stability, invariance, locking, sensitivity to mesh
distortion, and convergence rates.
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1 Introduction

Primal and complementary finite element methods are widely accepted and applied
for computer modeling of physical problems, because of their simplicity and ef-
ficiency. However, disadvantages of these methods are also well-known, such as
locking phenomena in problems which involve constraints, difficulty to satisfy con-
tinuity requirements (especially in plates and shells), sensitivity to mesh distortion,
etc. Carefully formulated finite elements based on multi-field assumptions, on the
other hand, can mitigate or even resolve such problems. Thus, since its early devel-
opment in 1960s, numerous formulations of hybrid/mixed finite element have been
proposed and applied to various physical problems.

The original version of the hybrid stress elements developed in [Pian (1964)] were
based on the modified principle of minimum complementary energy, using “a pri-
ori equilibrated” stress field in each element, and continuous displacement field
along element edges. Besides its better element performance, the great advan-
tage of this method is recognized to be its ability to satisfy higher-order continuity
requirements. However, for geometrical nonlinear and dynamical problems, it is
more convenient to develop hybrid/mixed finite elements based on “a posteriori
equilibrated” stress field, and continuous displacement field inside each element,
using Reissner’s variational principle, as in [Atluri (1975); Atluri, Tong and Mu-
rakawa (1983); Cai, Paik and Atluri (2009); Cai, Paik and Atluri (2009); Cai, Paik
and Atluri (2010); Cai, Paik and Atluri (2010); Zhu, Cai, Paik and Atluri (2010)].
Other hybrid/mixed finite element methods were also formulated based on the as-
sumptions of stress and incompatible displacement field using modified Reissner’s
Principle by [Pian and Wu (1988)], assumptions of displacement, stress and strain
field using Hu-Washizu principle by [Atluri (1975); Atluri, Tong and Murakawa
(1983); Tang, Chen and Liu (1984)], etc.

Besides their applications in two-dimensional and three-dimensional solid mechan-
ics, hybrid/mixed finite element methods also demonstrated their advantages in
other types of physical problems. For example, [Lee and Pian (1978), Cai, Paik
and Atluri (2009); Cai, Paik and Atluri (2009); Cai, Paik and Atluri (2010); Cai,
Paik and Atluri (2010); Zhu, Cai, Paik and Atluri (2010)] developed locking-free
hybrid/mixed finite elements for modeling plates and shells. [Bratianu and Atluri
(1983); Ying and Atluri (1983)] developed stable mixed finite elements for Stokes
flows, which eliminate incompressibility locking without resolving to selective
reduced-order integrations. [Pian and Mau (1972); Cazzani, Garusi, Tralli and
Atluri (2005)] developed different hybrid element formulations to analyze lam-
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inated composite plates. [Ghosh and Mallett (1994); Ghosh, Lee and Moorthy
(1995)] developed Voronoi cell finite elements and applied them to multi-scale
analysis of structures composed of heterogeneous materials.

However, in spite of their widely recognized advantages, there are essentially two
major drawbacks that have been limiting the engineering applications of hybrid/mixed
finite elements. One is the increased computational burden caused by matrix inver-
sion for each and every element, and the need to generate two different element ma-
trices (H and G) through integrations over the element, in the process of developing
the element stiffness matrix. The other is the questionable stability of finite ele-
ment solutions. Matrix inversion is hard to avoid as long as multi-field variational
principles are used for element derivation. Regarding stability, [Babuska (1973);
Brezzi (1974)] analyzed the existence, uniqueness, stability and convergence of
saddle point problems and established the so-called LBB conditions. Inability to
satisfy LBB conditions in general would plague the solvability and stability of hy-
brid/mixed finite element equations. [Rubinstein, Punch and Atluri (1983); Punch
and Atluri (1984); Xue, Karlovitz and Atluri (1985)] used sophisticated group the-
ory to develop guidelines for selecting least-order stress interpolations, from which
stable and invariant finite elements satisfying LBB conditions can be formulated.
[Pian and Chen (1983)] also proposed to choose stress interpolations by matching
each stress/strain mode to stress/strain modes derived from non-rigid body dis-
placement modes.

When multi-field variational principles are used to derive hybrid/mixed elements,
one has to deal with the additional computational burden, and select field assump-
tions in a complicated manner to satisfy complicated LBB conditions. In this pa-
per, we try to develop hybrid/mixed elements without using multi-field variational
principles. The essential idea of this approach is to relate independently assumed
strains to nodal displacements in a simple way, without using multi-field variational
principles. Such a relation can be easily established by enforcing the compatibility
of independently assumed strains, and the strains derived from independently as-
sumed displacements, at a finite number of collocation points within the element.
The element stiffness matrix can thereafter be easily formulated using the princi-
ple of minimum potential energy. Because no Lagrangian multipliers are involved,
this new approach is not plagued by LBB conditions. Moreover, because strains,
which are analytically expressed in terms of nodal displacements, are simple poly-
nomials, the stiffness matrix can be derived using very few quadrature points or
even analytically. Thus, this approach is expected to be not only stable but also
computationally efficient. Finally, the essential idea of this approach is extended
to develop Voronoi cell finite elements, leading to simple elements suitable for not
only linear static, but also nonlinear and dynamical problems, especially in study-
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ing the micromechanics of materials.

This paper is organized as follows. In section 2, some basics of linear elasticity and
variational principles are reviewed, and their relations to finite element methods
are discussed. In section 3, we present a family of hybrid/mixed elements, which
are developed using a conventional two-field variational principle, denoted as HM-
FEM1. We also illustrate why these elements are computationally inefficient, and
are plagued by LBB conditions. In section 4, we present a simple class of hy-
brid/mixed elements—HMFEM2, which is efficient and are not plagued by LBB
conditions. In section 5, we extend the essential idea of HMFEM2 to Voronoi cell
finite elements. In Section 6, we evaluate the performance of different elements by
conducting numerical experiments. Finally, in section 7, we present some conclud-
ing remarks.

2 Basics of Linear Elasticity and Variational Principle

Consider a linear elastic solid undergoing infinitesimal deformation. Cartesian co-
ordinates xi identify material particles in the solid. σi j,εi j,ui are components of
stress tensor, strain tensor and displacement vector respectively. f i,ui, t i are com-
ponents of prescribed body force, boundary displacement and boundary traction
vector. Su,St are displacement boundary and traction boundary of the domain Ω.
We use (),i to denote partial differentiation with respect to xi. The governing static
equilibrium, constitutive, and compatibility equations, and boundary conditions can
be written as:

σi j, j + f i = 0; σi j = σ ji in Ω (1)

σi j =
∂W
∂εi j

; W ≡ 1
2

Ei jklεi jεkl in Ω for a linear elastic solid (2)

εi j =
1
2

(ui, j +u j,i)≡ u(i, j) in Ω (3)

n jσi j = t i at St (4)

n jσi j = t̄i at St (5)

If constitutive equations (2) are satisfied a priori, and if we consider differentiable
symmetric stresses, differentiable displacements and only conservative loading,
Reissner’s variational principle in [Reissner (1950)] states that (1)(3)(4)(5) can be
derived from the stationarity conditions of the following two-field functional:

π1(σi j,ui) =
∫

Ω

[
−Wc(σi j)+σi ju(i, j)− f iui

]
dΩ

−
∫

St

t iuidS−
∫

Su

ti (ui−ui)dS
(6)
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where Wc is the complementary energy density function, which is obtained through
the contact transformation

Wc(σi j) = σi jεi j−W (εi j) (7)

such that

∂Wc

∂σi j
= εi j (8)

On the other hand, if we treat both εi j and ui as independent variables as illustrated
in the monograph [Atluri (2005)], instead of σi j and ui as in Reissner’s variational
principle, we obtain another variational principle from the stationarity conditions
of the following two-field functional:

π2(εi j,ui) =
∫

Ω

[
W (εi j)−

∂W
∂εi j

(εi j−u(i, j))− f iui

]
dΩ

−
∫

St

t iuidS−
∫

Su

ti (ui−ui)dS
(9)

such that

δπ2 =0

=−
∫

Ω

{[(
∂W
∂εi j

)
, j

+ f i

]
δui +(εi j−u(i, j))δ

∂W
∂εi j

}
dΩ

+
∫

St

(ti− t i)δuidS−
∫

Su

(ui−ui)δ tidS

(10)

which can be seen to lead to the Euler-Lagrange equations:(
∂W
∂εi j

)
, j

+ f i = 0 in Ω (11)

εi j = u(i, j) in Ω (12)

ui = ui at Su, ti = t i at St (13)

In addition, ∂W
∂εi j

= ∂W
∂ε ji

are guaranteed by the definition of W .

We note the philosophical difference between Reissner’s variational principle in-
volving σi j and ui as in (6) and the modified principle involving εi j and ui as in
(9). The present principle involving independent fields εi j and ui is of fundamental
interest of constructing finite elements. In the mesh-based finite element method, a
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compatible assumed displacement field for an element, involving nodal shape func-
tions, is not necessarily a complete polynomial, and the strain field derived from
such a displacement field is even less complete. The incomplete strains are locked
together, thus leading to the well-known locking phenomena. However, indepen-
dent assumptions of εi j and ui would provide the flexibility to choose a strain field
which eliminates the locking phenomena. In this sense, independent assumptions
of εi j and ui are more straight-forward than independent assumptions of σi j and ui

in order to avoid locking phenomena.

Moreover, when the domain Ω is discretized into subdomains Ωm (finite elements)
with boundaries ∂Ωm, each subdomain boundary can be divided into Sum,Stm,ρm,
which are intersections with Su,St and other subdomains respectively. Then, in ad-
dition to satisfying (1)(2)(3) in each Ωm, satisfying (4)(5) at Sum,Stm, displacement
compatibility and traction reciprocity conditions at each inter-subdomain boundary
should be considered:

u+
i = u−i at ρm (14)

(n jσi j)
+ +(n jσi j)

− = 0 at ρm (15)

In general, these conditions do not need to be satisfied a priori, which leads to
different modified variational principles, as summarized in [Xue, Karlovitz, Atluri
(1985)]. For example, if we consider assumed “a priori equilibrated stress field”
and inter-element continuous displacement field with (1)(2)(4)(14) satisfied, (3)(5)(15)
can be derived from the stationarity conditions of the following functional, which
is often referred to as the modified principle of minimum complementary energy:

π3(σi j,ui) = ∑
m

{∫
Ωm

Wc(σi j)dΩ−
∫

∂Ωm

tiuidS +
∫

Stm

t iuidS
}

(16)

In another way, if we consider assumed strain field and continuous displacement
field which satisfy (4)(14) and constitutive equation (2), then (1)(3)(5)(15) can be
derived by the stationarity conditions of the following functional:

π4(εi j,ui) = ∑
m

{∫
Ωm

[
W (εi j)−

∂W
∂εi j

(
εi j−u(i, j)

)
− f iui

]
dΩ−

∫
Stm

t iuidS
}

(17)

Variational principle (16) and (6) are among those originally used to derive hy-
brid/mixed finite elements, as in [Pian (1964); Atluri (1975); Atluri, Tong and Mu-
rakawa (1983)]. However, it is well-known that the two-field variational principle
of Reissner (6), and the modified principle of minimum complementary energy (16)
involve Lagrangian multipliers, which necessitate the selection of σi j and uito sat-
isfy the so-called LBB conditions—conditions which have plagued the successful
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development of hybrid/mixed finite element methods. Likewise, the development
of finite elements based on two-field (εi j and ui) principle of (9) or (17) is also
plagued by LBB conditions.

On the other hand, if we consider a compatible displacement field which satisfies
(2)(3) (4)(14) a priori , (1)(5)(15) can be derived by the stationarity conditions of
the following primitive-field variational principle:

π5(ui) = ∑
m

{∫
Ωm

[
W (εi j(uk))− f iui

]
dΩ−

∫
Stm

t iuidS
}

(18)

This primitive-field variational principle, which is often referred to as the princi-
ple of minimum potential energy, can be used to develop mesh-based primal finite
elements, based on assumption of displacement field only. These primal finite el-
ements suffer from the well-known locking phenomena as described previously.
However, because no Lagrangian multiplier or saddle point problems are involved,
these displacement-based primal finite elements are not plagued by the so-called
LBB conditions.

3 Hybrid/Mixed Finite Elements Using a Two-field Variational Principle

Consider a general isoparametric element with the following interpolations:

xi = ∑
n

x(n)
i N(n)(ξ γ) (19)

ui = ∑
n

u(n)
i N(n)(ξ γ) (20)

where xi are the global Cartesian coordinates, and ξ γ are the local non-dimensional
element curvilinear coordinates. The subscripts indicate Cartesian coordinates, and
the superscripts indicate node numbers. In general, N(n)

i (ξ γ) should be polynomi-
als which are complete to a certain order. With this assumption, the inter-element
displacement compatibility is easily satisfied a priori, and the displacement bound-
ary condition can also be satisfied a priori by prescribing nodal displacements on
the displacement boundary.

On the other hand, strain field in this element can be assumed independently as:

εi j = εi j(ξ γ ,ααα) (21)

where εi j(ξ γ ,ααα) are usually defined as simple polynomials which are complete to
a certain order. ααα is a vector containing undetermined parameters.
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We denote, with matrix and vector notation, in each Ωm and at ∂Ωm:

u = N(ξ γ)q (22)

u(i, j) = B(ξ γ)q (23)

εεε = A(ξ γ)ααα (24)

σσσ = Dεεε (25)

t = nσσσ (26)

Using the two field variational principle (17), we obtain:

δπ4(ααα,q) = 0

= δ ∑
m

(
−1

2
ααα

T Hααα +qT GT
ααα−qT Q

)
= ∑

m

(
−δααα

T Hααα +δqT GT
ααα +δααα

T Gq−δqT Q
) (27)

G =
∫

Ωm
AT (ξ γ)T DB(ξ γ)dΩ (28)

H =
∫

Ωm
AT (ξ γ)DA(ξ γ)dΩ (29)

Q =
∫

Ωm
NT (ξ γ)fdΩ+

∫
Stm

NT (ξ γ)tdS (30)

Because δααα is totally arbitrary in each Ωm, while δq need to satisfy inter-element
displacement compatibility (14) and displacement boundary condition (4), (27)
leads to:

Gq−Hααα = 0 (31)

∑
m

(
δqT GT

ααα−δqT Q
)

= 0 (32)

Therefore finite element equations are formulated as:

∑
m

(
δqT Keq−δqT Q

)
= ∑

m

(
δqT GT H−1Gq−δqT Q

)
= 0 (33)

After applying the displacement boundary condition, (33) can be solved for nodal
displacements, and the stress and strain fields can be calculated as:

εεε = A(ξ γ)H−1Gq (34)
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σσσ = DA(ξ γ)H−1Gq (35)

We denote this hybrid/mixed finite element method as HMFEM1.

As seen in (33), one major drawback of HMFEM1 is its computational inefficiency.
One has to compute matrices H and G using numerical quadrature over each ele-
ment, and carry out the matrix inversion of H for each and every element. This
situation exists almost for every hybrid/mixed finite element, as long as multi-field
variational principles are used.

Another drawback of HMFEM1 is that careful attention should be paid to the ques-
tion of how to select the independent strain field in order to obtain a stable element
performance. [Babuska (1973); Brezzi (1974)] studied general saddle-point prob-
lems or problems involving Lagrangian multipliers, and established so-called LBB
conditions. Because the derivation of HMFEM1 involves Lagrangian multiplier
∂W
∂εi j

, as seen in the two-field principle (17), the solvability and stability of HM-
FEM1 is governed by LBB conditions.

For linear elastic solid mechanics, if we define:

V = {vi ∈ H1(Ωm),v+
i = v−i at ρm, vi = 0 at Sum,∀m}

T = {τi j ∈ H1(Ωm),∀m}
Vh = {vi ∈V,{vi}= N(ξ γ)p, in Ωm,∀m}
Th = {τi j ∈ T,

{
τi j
}

= A(ξ γ)ααα, in Ωm,∀m}

Ker(B) = {εi j ∈ Th,∑
m

∫
Ωm

σi j(εkl)v(i, j)dΩ = 0,∀vi ∈Vh}

(36)

LBB conditions states that:

∃α > 0, such that Wc(σi j(εkl))≥ α
∥∥εi j
∥∥2

Th
, ∀εi j ∈ Ker(B) (37)

∃β > 0, such that inf
vi∈Vh

sup
εi j∈Th

∑
m

∫
Ωm

σi j(εkl)v(i, j)dΩ∥∥εi j
∥∥

Th
‖vi‖Vh

≥ β (38)

If one can find such positive numbers α,β , the finite element formulation has a
unique and stable solution. Moreover, if α,β do not depend on mesh size h, then
the “uniform stability” and convergence are established. For a linear elastic solid
with positive-definite material property, one can readily find that condition (37) is
always satisfied. Therefore, (38) becomes the key condition governing the perfor-
mance of this hybrid/mixed finite element method. By noticing that the rigid body
displacement is prevented by displacement boundary condition, a sufficient condi-
tion to ensure such a positive β exists as in (38) are found, as summarized in [Xue,
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Karlovitz, Atluri (1985)]:

sup
εi j∈Th

∫
Ωm

σ
m
i j (εkl)vmd

(i, j)dΩ > 0,∀vmd
(i, j),vi ∈Vh (39)

In (39), superscript md denotes non-rigid body modes in each element. It should be
noted that (39) is not a sufficient condition for “uniform stability” and convergence,
because whether or not β is uniformly bounded from below independent of h has
to be checked separately. But (39) guarantees that a unique and stable solution
can be found, which is highly desired in engineering applications. Furthermore,
it can be seen that (39) has a strong physical meaning, that for every non-rigid
body displacement mode in each element, there should be at least one independent
assumed strain mode, so that the derived “mixed strain energy” is positive. This
condition is frequently considered as free of zero-energy/kinematic/spurious modes
in a mechanics point of view, as seen in [Bicanic and Hinton (1979); Rubinstein,
Punch and Atluri (1983)]. We use matrix notation to write (39) as:

sup
ααα

∫
Ωm

ααα
T AT (ξ γ)DB(ξ γ)qmddΩ = sup

ααα

ααα
T Gqmd > 0, ∀qmd (40)

Since r rigid-body mode qr are definitely in the null space of G, an equivalent
condition to (40) can be readily found as:

rank(G) = ndo f − r (41)

where ndo f is the number of nodal degree of freedoms of the element. (41) is
frequently referred to as condition of rank-sufficiency of derived element. We no-
tice that to ensure (41) beforehand in element formulation level is difficult, where
selecting at least ndo f − r independent strain modes is merely a necessary condi-
tion. In [Rubinstein, Punch and Atluri (1983); Punch and Atluri (1984)], symmetric
group theory was for the first time utilized to prevent element rank deficiency ( in
a case of assumed σi j and vi ). In this method, assumed σi j and v(i, j) are firstly de-
composed into invariant irreducible spaces using symmetric group theory. In terms
of these irreducible representations, the matrix corresponding to

∫
Ωm

σm
i j vmd

(i, j)dΩ is
shown to be “quasi-diagonal”. Thus, one can pick least-order modes σi j to en-
sure that the derived element is stable. Although this method can be also applied
to HMFEM1, based on assumption of εi j and ui, its application in engineering is
limited by the mathematical sophistication and complexity of group theory. [Pian
and Chen (1983)] also proposed a method of suppressing zero-energy modes by
matching each assumed stress/strain mode to σi j(qmd) or εi j(qmd), without consid-
ering the invariance of derived elements. However, no matter which method one
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chooses to use, we see that because of LBB conditions, stress or strain field can-
not be arbitrarily chosen, careful and complicated analysis has to be conducted in
order to ensure the stability of solution, which is especially complicated for three-
dimensional higher-order elements.

4 A Simple Method to Develop Efficient, Stable and Invariant Hybrid/Mixed
Finite Elements:

4.1 Essential Idea and Basic Formulation

We notice that the two major drawbacks of HMFEM1 are both due to the fact
that a two-field variational principle (17) is used for element derivation: such a
varational principle leads to the necessity for the evaluation of H−1 for each and
every element, and involves Lagrangian multiplier ∂W

∂εi j
. Therefore, we step out

of this stencil and instead seek other ways to relate independently assumed strain
field in each element to nodal displacements. We notice such a relation can be
easily established by enforcing compatibility of independently assumed strains, and
strains derived from independently assumed displacements, at several pre-selected
collocation points ξ γk, k = 1,2, ...,M, which leads to:

εi j(ξ γk,ααα) = εi j(ξ γk,q) (42)

where εi j(ξ γk,ααα),εi j(ξ γk,q) are the assumed strain field, and the strain field de-
rived from assumed displacement field respectively, at point ξ γk. It should be noted
that, one does not need to collocate every strain component at each point ξ γk. For
example, for two-dimensional problems, one can collocate ε11 at points ξ γk11 , col-
locate ε22 at points ξ γk22 , and collocate ε12 at points ξ γk12 .

By selecting enough collocation equations, the vector ααα can be expressed in terms
of the nodal displacement vector q:

ααα = Cq (43)

Therefore, strain and stress fields are expressed in terms of q, as:

εεε = A(ξ γ)Cq = B∗(ξ γ)q (44)

σσσ = DA(ξ γ)Cq = DB∗(ξ γ)q (45)
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We substitute (44) and (22) into the principle of minimum potential energy (18):

δπ5(q) = 0

= δ ∑
m

{∫
Ωm

[
1
2

qT B∗T (ξ γ)DB∗(ξ γ)q−qT NT (ξ α)f
]

dΩ−
∫

Stm

qT NT (ξ γ)tdS
}

= ∑
m

[
δqT

∫
Ωm

B∗T (ξ γ)DB∗(ξ γ)dΩq−δqT
(∫

Ωm
NT (ξ γ)fdΩ+

∫
Stm

NT (ξ γ)tdS
)]

= ∑
m

(
δqT Keq−δqT Q

)
(46)

We notice that such a finite element formulation does not involve any matrix inver-
sion. Because εεε(ξ r) = B∗(ξ γ)q can usually be determined analytically beforehand,
the stiffness matrix can be determined analytically, or numerically using very few
quadrature points. Moreover, because no Lagrangian multiplier or saddle point
problem is involved, this approach is not plagued by LBB conditions. We denote
this finite element method as HMFEM2.

In section 4.1, we have illustrated why HMFEM2 is efficient and stable. In sec-
tion 4.2, we study two other properties which are considered very important for
developing any kind of finite elements—ability to pass the patch test and element
invariance.

We note that the pioneering concepts of finite-volume mixed approaches, similar to
those presented here, in the context of the Meshless Local Petrov-Galerkin method,
and without involving the LBB conditions, were presented for solid mechanics
problems [Atluri, Han and Rajendran (2004)], and for fluid mechanics problems
[Avila, Han and Atluri (2011)].

4.2 On Patch Test and Element Invariance

4.2.1 Patch Test

Patch test requires that any arbitrary linear displacement field can theoretically be
exactly reproduced by using a small number of elements in the patch. It is clear that
HMFEM1 can pass the constant strain patch test, as long as linear displacement
field and constant strain field can be represented by N(ξ r)q and A(ξ r)ααα . On the
other hand, in the derivation of HMFEM2, we substituted εεε = A(ξ r)Cq = B∗(ξ r)q
into the principle of minimum potential energy (18) to formulate finite element
equations. Although this relation is reasonably derived by collocation method, the
strain and displacement-gradient compatibility (3) is not satisfied everywhere in
Ωm. This is a violation of the requirement of the principle of minimum potential
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energy (18), thus it is not guaranteed that arbitrarily developed elements of HM-
FEM2 can pass the patch test, even if N(ξ r)q and A(ξ r)ααα can represent arbitrary
linear displacement field and its corresponding constant strain field. We study the
conditions under which HMFEM2 can pass the patch test.

In the constant strain patch test, current formulation of HMFEM2 leads to:

∑
m

(∫
Ωm

δqT B∗T (ξ r)DB∗(ξ r)qdΩ−
∫

Stm

δqT NT (ξ r)tdS
)

= ∑
m

(∫
Ωm

δqT BT (ξ r)DB∗(ξ r)qdΩ−
∫

Stm

δqT NT (ξ r)tdS
)

+∑
m

[∫
Ωm

δqT (B∗(ξ r)−BT (ξ r)
)

DB∗(ξ r)qdΩ

]
= ∑

m

{∫
Ωm

δqT BT (ξ r)DεcdΩ−
∫

Stm

δqT NT (ξ r)tdS
}

+∑
m

[∫
Ωm

δqT (B∗(ξ r)−BT (ξ r)
)

DεcdΩ

]
(47)

εεεc indicates the constant strain field of the patch test. It can be seen all the terms
vanish in (47) except the last term.

Therefore, in addition to requiring that N(ξ γ)q and B∗(ξ γ)q can represent arbitrary
linear displacement field and its corresponding constant strain field, patch test also
requires that the following condition is satisfied:

∑
m

∫
Ωm

B∗(ξ r)dΩδq = ∑
m

∫
Ωm

B(ξ r)dΩδq ∀ admissible δq (48)

This is identical to:

∑
m

∫
Ωm

εi j(ξ γk,δααα)dΩ = ∑
m

∫
Ωm

u(i, j)(ξ
γk,δq)dΩ ∀δααα = Cδq (49)

where εi j(ξ γk,δααα) and u(i, j)(ξ γk,δq) are strains derived from δααα and δq respec-
tively. We have pointed out that violation of strain displacement-gradient compati-
bility (3) may cause the inability of HMFEM2 to pass the patch test. From (49), we
can more clearly see that HMFEM2 can pass the patch test if the strain field derived
from δααα and δq are compatible at least in a finite-volume weak sense. Therefore,
when deriving HMFEM2, collocation points should be selected such that (48) or
equivalently (49) is satisfied.

We notice that
∫

Ωm
B(ξ r)dΩ =

∫
Ωm

B(ξ r) |J|dξ r can be exactly evaluated using nu-
merical quadrature, because B(ξ r) |J| are simple polynomials. Therefore, if we
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assume εi j(ξ γk,δααα) to be simple polynomials, and choose quadrature points as
collocations points, (48) and (49) can be made to be exactly satisfied. And thus the
developed elements can pass the patch test.

4.2.2 Element Invariance

Invariance is a desired property of every developed finite element, because it is an
inherent characteristic of the physical phenomenon, which we try to model with
finite elements. Invariance requires that the property of an element, which is an
approximation of a patch of real physical object, should not vary according to the
observer’s point of view. For example, consider a two-dimensional element as
illustrated in Fig. 1, if one derives the stiffness matrix in two arbitrary Cartesian
coordinates systems x1− x2 and x̄1− x̄2 respectively, element invariance indicates
that:

1
2

qT Kq =
1
2

qT Kq, ∀q = Qq (50)

where K and K are stiffness matrices derived in these two different Cartesian co-
ordinate systems, q and q represent components of element nodal displacements,
in base vectors of these two Cartesian coordinate systems ei and ēi. Q is the corre-
sponding transfer matrix between q and q.

 

Figure 1: Illustration of invariance of finite elements

[Spilker, Maskeri and Kania (1981), Sze, Chow and Chen (1992)] studied the in-
variance of hybrid/mixed elements, and concluded that the assumed stress/strain
and displacement field should be invariant in order for the derived element to be
invariant. For HMFEM1 and HMFEM2, compatibly assumed isoparametric dis-
placement field is obviously invariant. Regarding invariance of the strain field,
if strain components in ei,e j are assumed as εi j = fi j(ξ γ ,ααα), invariance requires
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that, for εi j = fi j(ξ γ ,ααα) with arbitrary ααα , one can always find a βββ , such that
ε̄i j = εkl(ek · ēi)(el · ē j) = fi j(ξ γ ,βββ ), where εi j and ε̄i j are components of the strain
tensor in ei,e j and ēi, ē j respectively. On the other hand, one can also assume
ε̂ i j = f i j(ξ γ ,ααα), where ε̂ i j are the contravariant components of the strain tensor
in the element-fixed local base vectors ĝi, ĝ j, such that εi j = ε̂kl(ĝk · ei)(ĝl · e j).
Strain field assumed in this way is always invariant, because the local base vectors
ĝi do not vary with respect to change of the global coordinate system, as they are
element-fixed.

In section 4.3, we consider the plane four-node isoparametric element as an exam-
ple, to illustrate how to develop elements of HMFEM2. By adopting different strain
field assumptions and using different collocation points, two different elements are
developed, both of which belong to the family of HMFEM2. Corresponding ele-
ments which belong to the family of HMFEM1 are also developed. Their properties
regarding efficiency, stability, locking, invariance, and ability to pass the patch test
are discussed.

4.3 Some Examples of Four-node Isoparametric Elements

Consider a four-node isoparametric element as seen in Fig. 2. Some points are
marked for convenience of illustration, including: center point (which is also the
point for a one-point Gauss integration) 0; nodal points 9, 10, 11, 12; edge mid-
points 5, 6, 7, 8; 2 by 2 Gaussian integration points 9, 10, 11, 12; 1 by 2 Gaussian
integration points 13, 15; 2 by 1 Gaussian integration points 14, 16.

The interpolations of the Cartesian coordinates and the displacement field in the
isoparametric element are:

xi = x(1)
i N(1)(ξ γ)+ x(2)

i N(2)(ξ γ)+ x(3)
i N(3)(ξ γ)+ x(4)

i N(4)(ξ γ) (51)

ui = u(1)
i N(1)(ξ γ)+u(2)

i N(2)(ξ γ)+u(3)
i N(3)(ξ γ)+u(4)

i N(4)(ξ γ) (52)

If one substitutes the displacement field assumption (52) into the principle of min-
imum potential energy (18), the derived displacement-based primal finite element
(DPFEM) is the so-called Q4 element, with Ke =

∫
Ωm BT (ξ α)DB(ξ α)dΩ. We use

DPFEM-Q4 to denote such an element. DPFEM-Q4 does not involve LBB con-
ditions, because no Lagrangian multiplier is involved. It is also computationally
efficient, if one does not consider that fact that

∫
Ωm BT (ξ α)DB(ξ α)dΩ cannot be

exactly evaluated by numerical quadrature. DPFEM-Q4 can also pass the patch test
and is invariant. However, it is well-known that DPFEM-Q4 suffers from locking,
because the derived strains from assumed displacement field are incomplete and
locked together.
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and 
ij  are components of the strain tensor in ,i je e  and ,i je e  respectively. On the other 
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Figure 2: Two-dimensional quadrilateral element: (a) Cartesian coordinates  

(b) curvilinear (non-dimensional) coordinates 

If one substitutes the displacement field assumption (52) into the principle of minimum 

potential energy (18), the derived displacement-based primal finite element (DPFEM) is 

Figure 2: Two-dimensional quadrilateral element: (a) Cartesian coordinates (b)
curvilinear (non-dimensional) coordinates

In order to eliminate locking, we can independently assume the contravariant strain
components, in the element-fixed curvilinear (non-dimensional) coordinates ξ r as:

ε̂
11 = α1 +α2ξ

2

ε̂
22 = α3 +α4ξ

1

ε̂
12 = α5

(53)

such that

εi j = ε̂
kl(ĝk · ei)(ĝl · e j) (54)

where e1,e2 are base vectors of the global Cartesian coordinate system, and ĝ1, ĝ2
are chosen as a set of element-fixed orthonormal local base vectors defined in such
a way: ĝ1 is in the same direction of covariant base vector g1, evaluated at center
0, and ĝ2 is obtained by rotating ĝ1around e3counterclockwise by 90˚, see Fig. 2.
From our analysis in section 4.2.2, it is obvious that hybrid/mixed elements derived
using strain assumption (53) are invariant, because ĝ1, ĝ2 are element-fixed, they do
not vary with respect to change of the global coordinate system. We also point out
that, we choose such a set of element-fixed orthonormal base vectors ĝ1, ĝ2 instead
of using covariant base vectors g1,g2, because ĝ1, ĝ2 is simply a rotation of e1,e2,
while g1,g2 involves distortions of e1,e2. Therefore, assuming strain components
in ĝ1, ĝ2 is expected to result in elements which are less sensitive to mesh distortion,
as compared to assuming strain components in g1,g2.

If one substitutes the displacement assumption (52), and the strain field assumption
(53) into the two-field variational principle (17), one derives an element stiffness
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matrix Ke = GT H−1G which belongs to the family of HMFEM1. We denote this
element as HMFEM1-a. HMFEM1-a can pass the patch test and is able to avoid
locking. However, HMFEM1-a is computationally inefficient, because one needs to
evaluate H−1 for each and every element, and evaluate H and G over each element.
HMFEM1-a also involves the so-called LBB conditions.

On the other hand, if one enforces the compatibility of ε̂i j and û(i, j) at a finite num-
ber of collocation points, and substitutes the derived strain field into the principle
of minimum potential energy (18), an element which belongs to the family of HM-
FEM2 will be obtained. However, as shown in section 4.2.1, collocation points
should not be arbitrarily selected. For example, if we collocate ε̂11 at point 5, 7,
ε̂22 at point 6, 8, and ε̂12 at center 0, the derived element will not be able to pass
the patch test. In order to pass the patch test, we should select quadrature points as
collocation points.

For simplicity of further illustration, we decompose the corresponding matrix B(ξ γ)
as in (23) into B11(ξ γ),B22(ξ γ),B12(ξ γ), which are the rows corresponding to
u(1,1),u(2,2),u(1,2) respectively. We further denote the value of Bi j(ξ γ) at point k
as Bk

i j. For example, u(1,2)(ξ 1 = ξ 2 = 0) = B0
12q. Similarly, we decompose the cor-

responding B̂(ξ γ) into B̂11(ξ γ), B̂22(ξ γ), B̂12(ξ γ), and denote the value of B̂i j(ξ γ)
at point k as B̂k

i j.

By collocating ε̂11 at point 13, 15, ε̂22 at point 14, 16, and ε̂12 at center 0, the
following strain field is obtained:

ε̂11 =
1
2
(
B̂13

11q+ B̂15
11q
)
+
√

3
2

ξ
2 (−B̂13

11q+B15
11q̂
)

ε̂22 =
1
2
(
B̂14

22q+ B̂16
22q
)
+
√

3
2

ξ
1 (B̂14

22q− B̂16
22q
)

ε̂12 = B̂0
12q

and εi j = ε̂
kl(ĝk · ei)(ĝl · e j)

(55)

We rewrite (55) as εεε = B∗(ξ r)q and substituting it into the principle of minimum
potential energy (18), an element which belongs to the family of HMFEM2 is ob-
tained. We denote this element as HMFEM2-a. The stiffness matrix of HMFEM2-a
is Ke =

∫
Ωm B∗T (ξ r)DB∗(ξ r)dΩ. HMFEM2-a is locking-free, invariant, and able

to pass the patch test. In addition, HMFEM2-a does not involve LBB conditions,
and it is stable because the stiffness matrix can be easily shown to be rank-sufficient.
However, HMFEM2-a is still not as computationally efficient as DPFEM-Q4, be-
cause additional computational burden is required to calculate the B matrix at each
collocation point.

To make the computation more efficient, and to make the strain field assumption
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more complete, one can further assume the strain field as (we do not correspond-
ingly assume ε12 = γ1 + γ2ξ 1 + γ3ξ 2 + γ4ξ 1ξ 2 in order to avoid locking):

ε11 = α1 +α2ξ
1 +α3ξ

2 +α4ξ
1
ξ

2

ε22 = β1 +β2ξ
1 +β3ξ

2 +β4ξ
1
ξ

2

ε12 = γ1

(56)

From our analysis in section 4.2.2, we can see that hybrid/mixed elements derived
using strain field assumption (56) are also invariant.

If one substitutes the displacement assumptions (52), and the strain field assump-
tion (56) into the two-field variational principle (17), following the same procedure
of deriving HMFEM1-a, one derives an element which belongs to the family of
HMFEM1, denoted as HMFEM1-b. However, HMFEM1-b is computationally in-
efficient, because one needs to evaluate H−1, which is a 9 by 9 matrix, for each and
every element.

On the other hand, following a similar procedure of developing HMFEM2-a, one
can derive another element which belongs to the family of HMFEM2. Similarly to
HMFEM2-a, one should not select arbitrary collocation points. For example, if we
collocate ε11,ε22 at nodal points 1, 2, 3, 4, and collocate ε12 at center point 0, the
derived element cannot pass the patch test. Instead, we should select quadrature
points as collocation points. By collocating ε11,ε22 at Gaussian integration points
1, 2, 3, 4, and collocating ε12 at center point 0, the following strain field is obtained:

ε11 = N(1)(
√

3ξ
r)B9

11q+N(2)(
√

3ξ
r)B10

11q+N(3)(
√

3ξ
r)B11

11q+N(4)(
√

3ξ
r)B12

11q

ε22 = N(1)(
√

3ξ
r)B9

22q+N(2)(ξ r)B10
22q+N(3)(

√
3ξ

r)B11
22q+N(4)(

√
3ξ

r)B12
22q

ε12 = B0
12q

(57)

We denote the element derived in this way as HMFEM2-b. HMFEM2-b is sta-
ble, locking-free, invariant, and is able to pass the patch test. Moreover, we notice
that, in order to evaluate the stiffness matrix of HMFEM2-b, exactly only 2 by 2
Gaussian integration points are needed. Therefore, one does not even need to de-
rive (57). One can just follow the same procedure of evaluating stiffness matrix
of DPFEM1-Q4, using 2 by 2 Gaussian integration points, by only substituting
B12(ξ r) with B0

12 at every Gaussian point. Derived in this way, the computational
burden of HMFEM2-b is even less than DPFEM-Q4, in the sense that the stiff-
ness matrix of DPFEM-Q4 cannot be evaluated exactly using even a large number
of quadrature points, because rational functions are involved in the integrand of∫

Ωm BT (ξ α)DB(ξ α)dΩ.
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From our analysis, we consider HMFEM2-b to be highly useful, because it is effi-
cient, stable, locking-free, invariant and able to pass the patch test, with only trivial
changes to the famous DPFEM-Q4 element. We also point out that the essential
idea of HMFEM2 can be extended to elements of higher-order, higher-dimension,
and for other physical problems. In section 5, we extend this idea to Voronoi cell
finite element method, for micromechanical analysis of materials.

5 Extension to Voronoi Cell Finite Element Method

[Ghosh and Mallett (1994); Ghosh, Lee and Moorthy (1995)] proposed the idea of
discretizing the solution domain using Dirichlet tessellation, and developing corre-
sponding Voronoi cell finite elements (VCFEM)/polygonal finite elements to solve
problems of micromechanics of materials. However, the underlying theoretical
foundation of the VCFEM proposed by [Ghosh and his co-workers (1994, 1995
and many more in the past 20 years)] is the modified principle of minimum com-
plementary energy (16), based on “a priori equilibrated” stress field inside each
element, and continuous displacement along element edges. Similar to the hybrid
stress elements in [Pian (1964) ], three major drawbacks of such a VCFEM can be
readily seen: selection of “a priori equilibrated” stress field is difficult or even im-
possible for geometrically nonlinear (finite deformation) and dynamical problems;
matrix inversion, involved in developing the stiffness matrix of each and every el-
ement, makes such a VCFEM computationally inefficient; Lagrangian multipliers
involved in such a two-field variational principle make the derived elements suffer
from LBB conditions, which are almost impossible to be satisfied a priori.

In this section, we derive a new and much simpler type of VCFEM in two-dimensional
problems, in order to avoid the aforementioned drawbacks. For an arbitrary polyg-
onal element as in Fig. 3 with n nodes x1,x2, ...,xn, with corresponding nodal
displacements u1

i ,u
2
i , ...,u

n
i , a linear displacement field assumption along each edge

is used:

uE
i =

n

∑
k=1

Nk(x)uk
i at ∂Ωm (58)

On the other hand, a displacement field inside each element is assumed as com-
pactly supported radial basis functions (CS-RBF). CS-RBF have been suggested
and widely used recently, see [Wu (1995); Atluri, Han and Rajendran (2004)]. The
reasons why we choose CS-RBF as our interior displacement field assumption are
their Dirac delta property, positive-definiteness, and relatively simple forms of spa-
tial derivatives. Moreover, the lack of their completeness has been overcome by
introducing additional polynomial functions as in [Golberg, Chen and Bowman
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Figure 3: A two-dimensional polygonal element 
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Figure 3: A two-dimensional polygonal element

(1999)]. Under such an assumption, the interior displacement field is represented
as:

uI
i = RT(x)a+PT(x)b in Ωm (59)

where RT(x) =
[
Rr1(x) Rr2(x) ... Rrl(x)

]
is a set of radial basis functions cen-

tered at l points xr1,xr2 . . .xrl along ∂Ωm; PT(x) =
[
P1(x) P2(x) ... Pm(x)

]
is

set of monomial functions which is complete to a certain order; a,b are coefficient
vectors.

While various radial basis functions can be used, in the current study, we use:

Rrl(x) =


(

1− drl(x)
rrl

)3(
1+3 drl(x)

rrl

)
drl(x) < rrl

0 drl(x)≥ rrl
(60)

where drl(x) =
∣∣x−xrl

∣∣ is the Euclidean distance from point xto point xrl , rrl is the
support size of Rrl(x).
And we use first-order complete polynomial basis:

PT(x) =
[
1 x y

]
(61)

The coefficients are obtained by enforcing the compatibility condition of the in-
terior and the edge displacements at collocation points xr1,xr2 . . .xrl , which leads
to:[

R0 P0
PT

0 0

]{
a
b

}
=
{

ur
i

0

}
(62)
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where

R0 =


Rr1(xr1) Rr2(xr1) . . . Rrl(xr1)
Rr1(xr2) Rr2(xr2) . . . Rrl(xr2)

...
...

. . .
...

Rr1(xrl) Rr2(xrl) . . . Rrl(xrl)

 (63)

P0 =


P1(xr1) P2(xr1) . . . Pm(xr1)
P1(xr2) P2(xr2) . . . Pm(xr2)

...
...

. . .
...

P1(xrl) P2(xrl) . . . Pm(xrl)

 (64)

urT
i =

[
ur1

i ur2
i · · · url

i
]

=
[

n
∑

k=1
Nk(xr1)uk

i

n
∑

k=1
Nk(xr2)uk

i · · ·
n
∑

k=1
Nk(xrl)uk

i

] (65)

By solving (62), the interior displacement field is interpolated as:

uI
i =
[
RT(x)Gr +PT(x)Gp

]
ur

i =
n

∑
k=1

N∗k(x)uk
i (66)

Summarizing (58)-(66), edge and interior displacement field are all expressed in
terms of nodal displacement vector q:

uE = N(x)q at ∂Ωm (67)

uI = N∗(x)q in Ωm (68)

And the corresponding interior strains are:

uI
(i, j) = B∗(x)q in Ωm (69)

Using the principle of minimum potential energy (18), we obtain the finite element
equations:

δπ5(q) = 0

= δ ∑
m

{∫
Ωm

[
1
2

qT B∗T (x)DB∗(x)q−qT N∗T (x)f
]

dΩ−
∫

Stm

qT NT (x)tdS
}
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∑
m

[
δqT

∫
Ωm

B∗T (x)DB∗(x)dΩq−δqT
(∫

Ωm
N∗T (x)fdΩ+

∫
Stm

NT (x)tdS
)]

= ∑
m

(
δqT Keq−δqT Q

)
(70)

We denote this novel VCFEM as VCFEM-RBF1.

However, similar to our previous analysis in section 4.2.2, there is no guarantee
that VCFEM-RBF1 can pass the constant strain patch test, even though the dis-
placement field trial solutions (67)(68) are first-order complete. This is because
displacement field in Ωm and along ∂Ωm are merely made compatible on selected
RBF center/collocation points xr1,xr2 . . .xrl , which is a violation of the requirement
of the principle of minimum potential energy (18). Following the same procedure
used in section 4.2.2, we can find the condition to pass the patch test is:

∑
m

∫
∂Ωm

[
uE

i (x,δq)n j +uE
j (x,δq)ni

]
dS = ∑

m

∫
∂Ωm

[
uI

i (x,δq)n j +uI
j(x,δq)ni

]
dS

(71)

where uE
i (x,δq) and uI

i (x,δq) are the edge and interior displacements derived from
δq respectively. Condition (71) states that the boundary and interior displacement
derived from δq should be compatible at least in a finite volume sense. Therefore, it
seems reasonable to collocate at the quadrature points along each edge. Moreover,
by increasing the number of RBF center/collocation points, the residual error of
(71) can be reduced, so that the error produced in patch test will be reduced to a
satisfactory level.

Furthermore, VCFEM-RBF1 may suffer from locking because the assumed interior
displacement field (68) is only complete to the first order, and the derived strains
are locked together. To improve the performance of VCFEM-RBF1, we can further
independently assume an interior strain field εi j(x,ααα), which eliminates the shear
locking terms, and determine ααα by enforcing the compatibility between εi j(x,ααα)
and uI

(i, j)(x,q) at several preselected collocation points, following the same proce-
dure of developing HMFEM2.

Similar to what was done in section 4.3, we decompose the corresponding B∗(ξ γ)
as in (70) into B∗11(ξ

γ),B∗22(ξ
γ),B∗12(ξ

γ), which are the rows corresponding to
uI

(1,1),u
I
(2,2),u

I
(1,2) respectively. We see that shear strain B∗12(ξ

γ)q is locked with
B∗11(ξ

γ)q,B∗22(ξ
γ)q because of the part of strain derived from radial basis function

RT(x), not the part of strain derived from linear polynomial basis function PT(x).
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Therefore, we simply use the following strain field assumption, eliminating the part
of ε12 derived from radial basis function RT(x):

ε11 = B∗11(x)ααα11

ε22 = B∗22(x)ααα22

ε12 = α12

(72)

We collocate ε11,ε12 at enough points inside Ωm, and collocate ε12 at the center of
polygon. This leads to:

ε11 = B∗11(x)q
ε22 = B∗22(x)q

ε12 = B0∗
12q

(73)

where B0∗
12 is the value of B∗12(x) evaluated at the center of the polygon. We rewrite

this as:

εεε = B∗∗(x)q (74)

Substituting strain field (74), interior displacement field (68) and edge displacement
field (67) into principle of minimum potential energy (18), we obtain the finite
element equations:

δπ5(q) = 0

= δ ∑
m

{∫
Ωm

[
1
2

qT B∗∗T (x)DB∗∗(x)q−qT N∗T (x)f
]

dΩ−
∫

Stm

qT NT (x)tdS
}

∑
m

[
δqT

∫
Ωm

B∗∗T (x)DB∗∗(x)dΩq−δqT
(∫

Ωm
N∗T (x)fdΩ+

∫
Stm

NT (x)tdS
)]

= ∑
m

(
δqT Keq−δqT Q

)
(75)

We denote this method as VCFEM-RBF2. Similar to our analysis in section 4.3
for the relation between HMFEM2-b and DPFEM-Q4, we can see that the stiff-
ness matrix of VCFEM-RBF2 can be derived using the same procedure of deriving
VCFEM-RBF1, only by substituting B∗12(x) with B0∗

12 at every quadrature point.

On the other hand, in the VCFEM proposed by [Ghosh and Mallett (1994); Ghosh,
Lee and Moorthy (1995)], “a prior equilibrated” stress field is assumed as:

σσσ = S(x)ααα in Ωm (76)
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By substituting stress field (76) and displacement field (67) into the modified prin-
ciple of minimum complementary energy (16), one obtains:

δπ3(ααα,q) = 0

= δ ∑
m

(
1
2

ααα
T Hααα−qT GT

ααα +qT Q
)

= ∑
m

(
δααα

T Hααα−δqT GT
ααα−δααα

T Gq+δqT Q
) (77)

G =
∫

∂Ωm
ST (x)T nT N(x)dS (78)

H =
∫

Ωm
ST (x)D−1S(x)dΩ (79)

Q =
∫

Stm
NT (x)tdS (80)

which leads to the finite element equations:

∑
m

(
δqT Keq−δqT Q

)
= ∑

m

(
δqT GT H−1Gq−δqT Q

)
= 0 (81)

We denote elements derived in this way as VCFEM-HS (hybrid stress).

Compared to VCFEM-HS, VCFEM-RBF2 has several important advantages:

Firstly, in the development of stiffness matrix of VCFEM-HS, one has to evalu-
ate H and G using numerical quadrature (which are high dimensional matrices for
polygons with a large number of edges), and carry out the matrix inversion of H.
Although VCFEM-RBF2 also involves matrix inversion, it is only in the phase of
defining trial solution. Stiffness matrix is directly derived using the principle of
minimum potential energy. Therefore, VCFEM-RBF2 is expected to be computa-
tionally more efficient than VCFEM-HS.

Secondly, VCFEM-RBF2 is obviously locking-free, because the shear locking terms
are eliminated in the independently assumed strain field. On the other hand, inde-
pendent assumption of stress field is not so straight-forward in the sense of avoid-
ing locking, compared to independent assumption of strain field. Careful attention
should be paid to the question of how to assume independent stress field so that the
developed elements are not locked.

Thirdly, VCFEM-RBF1,2 are both invariant, because of the assumed displacement
and strain field, which has the same formulation irrespective of the number of el-
ement edges, is obviously invariant. However, one should carefully pick different
invariant stress field assumptions for VCFEM-HS elements with different number
of edges, in order for the derived element to be invariant.



A Simple Procedure to Develop Efficient & Stable Hybrid/Mixed Elements 85

Moreover, VCFEM-HS requires selection of “a priori equilibrated” stress field.
This is difficult for nonlinear (finite deformation) and dynamical problems, thus
limiting most applications of VCFEM-HS to infinitesimal deformation, linear static
problems. On the other hand, extension to geometrical nonlinear and dynamical
problems for VCFEM-RBF2 is straight-forward.

Finally, because the modified principle of minimum complementary energy (16)
involves Lagrangian multipliers, VCFEM-HS suffers from LBB conditions, which
are almost impossible to be satisfied a priori, especially for elements with a large
number of edges. On the contrary, VCFEM-RBF2 does not involve LBB condi-
tions, because no Lagrangian multipliers are involved in the principle of minimum
potential energy (18).

As a summary, we point out that selection of “a priori equilibrated”, independent
and invariant stress field, which satisfies LBB conditions a priori for VCFEM-HS,
is especially difficult for elements with a large number of edges, and impossible for
geometrical nonlinear and dynamical problems. On the other hand, VCFEM-RBF2
avoids all of these disadvantages, and is computationally more efficient. Therefore,
we recommend VCFEM-RBF2 for engineering applications.

We also point that, there are many other possible ways of developing VCFEMs. In
this study, interior displacements are assumed as RBFs. However, there are other
kinds of promising displacement field assumptions, such as linear combinations
of T-complete functions, as in the T-Trefftz method, and linear combinations of
fundamental solutions, as in the F-Trefftz method (or the Method of Fundamental
Solution), etc. Moreover, in the present study, collocation method is used to en-
force the compatibility of edge and interior displacements in a strong form, at a
finite number of collocation points. One can also enforce such a compatibility con-
dition in a weak sense, using the least-square method. All these alternatives seem
promising, but they will be reserved for future study, following the same essential
idea presented in this study.

6 Numerical Examples

Two-dimensional linear static problems are chosen here to illustrate the perfor-
mance of different elements. The main properties that are evaluated include: ef-
ficiency, stability, invariance, locking, sensitivity to mesh distortion, and conver-
gence rates. The experiments are organized as follows.

In section 6.1, by comparing the eigenvalues of a four-node element derived in the
original and rotated coordinate system, the stability and invariance of DPFEM-Q4,
HMFEM1-a,b HMFEM2-a,b are evaluated. The CPU time for computing each of
these elements are also compared in order to show the computational burden for
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each element. In section 6.2, we conduct the so-called constant strain patch test
using these elements. In section 6.3, by modeling a cantilever beam under end
shear load or bending moment, performances of these elements are evaluated in
three aspects: locking, sensitivity to distortion, and convergence rates. In section
6.4, we present numerical experiments specifically designed for VCFEMs.

6.1 Test of Invariance, Stability and Efficiency

Plane stress problems with E = 1 and v = 0.25 are considered. A square element
with four nodes with global Cartesian coordinates (−1,−1),(1,−1),(1,1),(−1,1)
is considered. To illustrate our analysis in section 4.2.2 and 4.3, all elements of
DPFEM, HMFEM1-a,b and HMFEM2-a,b are firstly derived in the global Carte-
sian coordinate system. Their eigenvalues are shown in Tab. 1. And the CPU time
used for computing each of these elements using 2 by 2 Gaussian integration is
shown in Tab. 3, normalized to that for DPFEM-Q4. Then the global Cartesian co-
ordinate system is rotated counterclockwise by 45˚. The element stiffness matrices
are computed again in this new coordinate system. Their eigenvalue are shown in
Tab. 2.

Firstly, we can see that all elements are stable, because only 3 zero eigenvalues exist
for each element, which is equal to the number of rigid-body modes. Secondly, by
comparing Tab. 1 and Tab. 2, we can clearly see that DPFEM-Q4, HMFEM1-a,b
and HMFEM2-a,b are all invariant, because their eigenvalues do not change with
respect to the rotation of the global coordinate system. This is consistent with our
previous analysis. Finally, from Tab. 3, we can see that HMFEM2-b is the most
computationally efficient among these four hybrid/mixed elements. HMFEM1-a,b
are computationally inefficient because matrix inversion is involved. HMFEM2-a
is also not so efficient as HMFEM2-b, because additional computational burden
is required to calculate the B matrix at each collocation point. The computational
burden of HMFEM2-b is almost equal to that for DPFEM-Q4, evaluated using
2 by 2 Gauss integration. However, the stiffness matrix of a distorted DPFEM-
Q4 element cannot be exactly evaluated by Gauss integration, even though mostly
only 2 by 2 Gauss quadrature is used in engineering applications. In this sense,
HMFEM2-b is even more efficient than DPFEM-Q4, since the integration is exact
for HMFEM2-b.

6.2 Patch Test

This example is a standard patch test, shown in Fig. 4. Plane stress case is con-
sidered. The material parameters are taken as E = 1.0 and v = 0.25. Two mesh
configurations are used for the testing purpose: one is regular, and the other is ir-
regular, as shown in Fig. 4. In the patch test, a uniform tensile force is applied
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Table 1: Eigenvalues of elements derived in the original coordinate system

Eigenvalues Elements
Rotation=0˚ DPFEM-Q4 HMFEM1-a HMFEM1-b HMFEM2-a HMFEM2-b

1 1.3333 1.3333 1.3333 1.3333 1.3333
2 0.8000 0.8000 0.8000 0.8000 0.8000
3 0.8000 0.8000 0.8000 0.8000 0.8000
4 0.4889 0.3556 0.3556 0.3556 0.3556
5 0.4889 0.3556 0.3556 0.3556 0.3556
6 0.0000 0.0000 0.0000 0.0000 0.0000
7 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2: Eigenvalues of elements derived in the coordinate system rotated by 45˚

Eigenvalues Elements
Rotation=45˚ DPFEM-Q4 HMFEM1-a HMFEM1-b HMFEM2-a HMFEM2-b

1 1.3333 1.3333 1.3333 1.3333 1.3333
2 0.8000 0.8000 0.8000 0.8000 0.8000
3 0.8000 0.8000 0.8000 0.8000 0.8000
4 0.4889 0.3556 0.3556 0.3556 0.3556
5 0.4889 0.3556 0.3556 0.3556 0.3556
6 0.0000 0.0000 0.0000 0.0000 0.0000
7 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3: CPU time required for computing the stiffness matrix of each element,
normalized to that for DPFEM-Q4 element.

CPU Elements
Time DPFEM-Q4 HMFEM1-a HMFEM1-b HMFEM2-a HMFEM2-b

1.00 1.83 1.78 1.77 1.09

to the upper edge, and proper displacement boundary conditions are applied to the
lower edge. The error is defined as follows:

Error =
‖q−qexact‖
‖qexact‖ (82)

where q and qexact are the computed and exact nodal displacement vector. And ‖‖
represents the 2-norm.
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Figure 4: A cube under uniform tension with two mesh configurations 
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DPFEM-Q4, HMFEM1-a,b and HMFEM2-a,b are used for the patch test, and re-
sults are shown in Tab. 4. As expected, all these elements can pass the patch test,
and the produced errors are every limited. These results are consistent with our
previous analysis in section 4.2.1.

Table 4: Performances of different elements in the constant strain patch test
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Figure 5: A cantilever beam under an end shear load or bending moment 
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When the beam is under end bending moment, the following exact solution can also be 

found: 

 

2 2

2

( )
2

1

0

x

y

x

y

xy

M
u xy

EI

P
u x vy

EI

M
y

I

v M
y

v I







 

 

 

 




       (84) 

where 

 

3

2

2

3

for plane stress
          

/ (1 ) / (1 ) for plane strain

c
I

E v
E v

E v v v



 
  

     

 (85) 

Figure 5: A cantilever beam under an end shear load or bending moment
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6.3 Cantilever Beam Test

The performances of different elements are also evaluated, using the problem of
a cantilever beam under an end shear load or bending moment. As shown in Fig.
5, the length and height of the beam is L and 2c respectively, and it has a unit
thickness. When the beam is under end shear load, the following exact solution is
given in [Timoshenko and Goodier (1970)]:

ux =− Py
6EI

[3x(2L− x)+(2+ v)(y2− c2)]

uy =
P

6EI
[x2(3L− x)+3v(L− x)y2 +(4+5v)c2x]

σx =−P
I
(L− x)y

σy = 0

σxy =− P
2I

(y2− c2)

(83)

When the beam is under end bending moment, the following exact solution can
also be found:

ux =−M
EI

xy

uy =
P

2EI
(x2 + vy2)

σx =−M
I

y

σy =− v
1− v2

M
I

y

σxy = 0

(84)

where

I =
2c3

3

E =

{
E
E/(1− v)2 v =

{
v for plane stress
v/(1− v) for plane strain

(85)

The first problem using this beam model is to test the overall performance of these
elements against locking, with slightly distorted elements, as used in [Pian and
Sumihara (1984)], see Fig 6. Plane stress case is considered with geometry proper-
ties L = 10, c = 1, material properties E = 1500 and v = 0.25. Two loading cases
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are considered: end shear load P = 300 and end bending moment M = 2000. Com-
puted tip vertical displacement at point A, and normal stress at lower left Gaussian
point B of the leftmost element are shown in Tab. 5. One can see that severe
locking exists for DPFEM, which has great influence on both deflection and stress.
HMFEM1-a,b and HMFEM2-a,b in general perform much better, especially for
normal stress. For this particular problem, HMFEM2-a seems to have the best
performance.

The first problem using this beam model is to test the overall performance of these 
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Figure 6: Mesh configuration for overall test of performance against locking 

Element 

Type 

End Shear End Bending 

Av  B  Av  B  

DPFEM-Q4 49.9 1597.5 44.9 1101.7 

HMFEM1-a 70.9 2187.4 66.6 1533.7 

HMFEM1-b 66.8 2102.2 62.4 1464.0 

HMFEM2-a 77.8 2214.8 73.3 1559.8 

HMFEM2-b 66.7 2102.1 62.3 1463.9 

Exact 102.6 2531.6 100.3 1732.1 

Table 5: Computed and exact solution of cantilever beam in Fig. 6 under end shear or 

bending moment 
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and plotted in Fig. 8-9, with an end unit shear load. When the beam is subject to end unit 

bending moment, computational results are evaluated at the same points, and plotted in 

Figure 6: Mesh configuration for overall test of performance against locking

Table 5: Computed and exact solution of cantilever beam in Fig. 6 under end shear
or bending moment

Element Type End Shear End Bending
vA σB vA σB

DPFEM-Q4 49.9 1597.5 44.9 1101.7
HMFEM1-a 70.9 2187.4 66.6 1533.7
HMFEM1-b 66.8 2102.2 62.4 1464.0
HMFEM2-a 77.8 2214.8 73.3 1559.8
HMFEM2-b 66.7 2102.1 62.3 1463.9

Exact 102.6 2531.6 100.3 1732.1

The second problem using this beam model is to test the sensitivity of different
methods to mesh distortion, as used in [Punch and Atluri (1984) ]. Plane stress
case is considered with geometry L = 10, c = 1, material properties E = 1.0 and
v = 0. The distortion ratio is defined as e/L, as can be seen in Fig. 7. Computed
vertical displacement is evaluated at tip point A, and normal stress is evaluated at
the lower left Gauss point B (2 by 2 rule) of the leftmost element. The computed
results are compared to exact solutions, and plotted in Fig. 8-9, with an end unit
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shear load. When the beam is subject to end unit bending moment, computational
results are evaluated at the same points, and plotted in Fig. 10-11. As can be
clearly seen in Fig. 8-11, DPFEM-Q4 is always performing badly because of lock-
ing. HMFEM1-a,b and HMFEM2-a,b all perform similarly. These hybrid/mixed
elements can produce almost the exact solution at first, but they are all stiffened
along with mesh distortion. However, compared to vertical displacement, normal
stresses of HMFEM1-a,b and HMFEM2-a,b are much less sensitive to mesh dis-
tortion.

Fig. 10-11. As can be clearly seen in Fig. 8-11, DPFEM-Q4 is always performing badly 

because of locking. HMFEM1-a,b and HMFEM2-a,b all perform similarly. These 

hybrid/mixed elements can produce almost the exact solution at first, but they are all 

stiffened along with mesh distortion. However, compared to vertical displacement, 

normal stresses of HMFEM1-a,b and HMFEM2-a,b are much less sensitive to mesh 

distortion. 

 
Figure 7: Test of element sensitivity to distortion, cantilever beam under end loading 

 

Figure 8: Computed vertical displacement of cantilever beam in Fig. 7 under end shear 

Figure 7: Test of element sensitivity to distortion, cantilever beam under end load-
ing

The cantilever beam problem is finally solved to compare convergence rates of
different elements. Plane stress case with geometrical properties L = 24, c = 2,
material properties E = 1 and v = 0.25 are used as in [ Atluri, Han and Rajendran
(2004)]. Regular uniform square-shaped elements are used in order to simply com-
pare convergence rates. Nodal distances of 2.0, 1.0 and 0.5 are used, as shown in
Fig. 12. The numbers of elements are 24, 96 and 384 respectively. Vertical dis-
placement is evaluated at tip point A, and normal stress is evaluated at lower left
corner B. Relative errors of computed solutions of different methods are plot in
Fig. 13-16. As can be clearly seen, HMFEM1-a,b, HMFEM2-a,b and DPFEM-Q4
have almost the same good convergence rate. However, under same mesh configu-
ration, the relative errors produced by HMFEM1-a,b and HMFEM2-a,b are almost
an order less than DPFEM, because of their ability to avoid locking.

According to the results shown in section 6.1 - 6.3, we see that HMFEM1-a,b
HMFEM2-a,b have similar yet much better performance than DPFEM-Q4, in terms
of the ability to pass the constant strain patch test, sensitivity to mesh distortion,
locking, and convergence rates. Because HMFEM2-b is the most efficient hy-
brid/mixed element in computation, and do not involve LBB conditions, we con-
sider HMFEM2-b to be the best element for engineering applications.
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Figure 9: Computed normal stress of cantilever beam in Fig. 7 under end shear 
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Figure 9: Computed normal stress of cantilever beam in Fig. 7 under end shear
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Figure 9: Computed normal stress of cantilever beam in Fig. 7 under end shear 
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Figure 10: Computed vertical displacement of cantilever beam in Fig. 7 under end
bending

 

Figure 11: Computed normal stress of cantilever beam in Fig. 7 under end bending 

The cantilever beam problem is finally solved to compare convergence rates of different 

elements. Plane stress case with geometrical properties 24L  , 2c  , material 

properties 1E   and 0.25v   are used as in [ Atluri, Han and Rajendran (2004) ]. 

Regular uniform square-shaped elements are used in order to simply compare 
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Figure 11: Computed normal stress of cantilever beam in Fig. 7 under end bending
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Figure 14: Convergence rate of normal stress of cantilever beam in Fig. 12 under end 

shear 

 

Figure 15: Convergence rate of vertical displacement of cantilever beam in Fig. 12 under 
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Figure 16: Convergence rate of normal stress of cantilever beam in Fig. 12 under end 

bending 

According to the results shown in section 6.1 - 6.3, we see that HMFEM1-a,b HMFEM2-

a,b have similar yet much better performance than DPFEM-Q4, in terms of the ability to 

pass the constant strain patch test, sensitivity to mesh distortion, locking, and 

convergence rates. Because HMFEM2-b is the most efficient hybrid/mixed element in 

computation, and do not involve LBB conditions, we consider HMFEM2-b to be the best 

element for engineering applications. 

6.4 Numerical Examples for VCFEMs 

In this section, we demonstrate numerical experiments for VCFEMs. In this study, both 

VCFEM-RBF1 and VCFEM-RBF2 use 8 RBF center/collocations located at Gaussian 

integration points on each edge. The support size of each RBF is defined as the longest 

distance to other RBF centers. All results for VCFEM-RBF1,2 are compared to that for 

VCFEM-HS. The stress field assumption used for VCFEM-HS in this study is complete 

Airy stress functions, as used in [ Ghosh and Mallett (1994) ]. 

Firstly, we carry out eigenvalue analysis of for VCFEMs, similarly to what was done in 

section 6.1. Plane stress problem with 1E   and 0.25v   are considered. A regular 

pentagon and a regular hexagon with unit radius are used, see Fig. 17. 
e

K  of VCFEM-

RBF1,2 and VCFEM-HS are calculated in the original Cartesian coordinate system. CPU 

time used for computing the stiffness matrix of each pentagon element is also shown in 

Tab. 8. Then the coordinate system is rotated counterclockwise by 45°, 
e

K  of these 

Figure 16: Convergence rate of normal stress of cantilever beam in Fig. 12 under
end bending

6.4 Numerical Examples for VCFEMs

In this section, we demonstrate numerical experiments for VCFEMs. In this study,
both VCFEM-RBF1 and VCFEM-RBF2 use 8 RBF center/collocations located at
Gaussian integration points on each edge. The support size of each RBF is defined
as the longest distance to other RBF centers. All results for VCFEM-RBF1,2 are
compared to that for VCFEM-HS. The stress field assumption used for VCFEM-
HS in this study is complete Airy stress functions, as used in [Ghosh and Mallett
(1994)].

Firstly, we carry out eigenvalue analysis of for VCFEMs, similarly to what was
done in section 6.1. Plane stress problem with E = 1 and v = 0.25 are considered.
A regular pentagon and a regular hexagon with unit radius are used, see Fig. 17.
of VCFEM-RBF1,2 and VCFEM-HS are calculated in the original Cartesian coor-
dinate system. CPU time used for computing the stiffness matrix of each pentagon
element is also shown in Tab. 8. Then the coordinate system is rotated counter-
clockwise by 45˚, of these elements are calculated again. Eigenvalues of these
element stiffness matrices are demonstrated in Tab. 6 and Tab. 7.

As can clearly be seen, these elements are stable and invariant, because only 3 zero
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eigenvalues exist for each element, and eigenvalues do not change with respect to
change of coordinate system. The smallest eigenvalue of elements for VCFEM-
RBF1,2 are larger than that for VCFEM-HS, which means better element stability.
Moreover, as shown in Tab. 8, derivation of element stiffness matrices of VCFEM-
RBF1,2 requires less computational burden than that for VCFEM-HS.

elements are calculated again. Eigenvalues of these element stiffness matrices are 

demonstrated in Tab. 6 and Tab. 7.  

As can clearly be seen, these elements are stable and invariant, because only 3 zero 

eigenvalues exist for each element, and eigenvalues do not change with respect to change 

of coordinate system. The smallest eigenvalue of elements for VCFEM-RBF1,2 are 

larger than that for VCFEM-HS, which means better element stability. Moreover, as 

shown in Tab. 8, derivation of element stiffness matrices of VCFEM-RBF1,2 requires 

less computational burden than that for VCFEM-HS. 

 

Figure 17: A pentagon and a hexagon element 

Eigenvalue 
Number 

VCFEM-RBF1 VCFEM-RBF2 VCFEM-HS 

Rotation 
=0° 

Rotation 
=45° 

Rotation 
=0° 

Rotation 
=45° 

Rotation 
=0° 

Rotation 
=45° 

1 1.2681 1.2681 1.2681 1.2681    1.2681              1.2681           

2 0.7608 0.7608 0.7608 0.7608    0.7608              0.7608           

3 0.7608 0.7608 0.7608 0.7608    0.7608              0.7608           

4 0.6721 0.6721 0.5389 0.5389    0.5751              0.5751           

5 0.6721 0.6721 0.5389 0.5389    0.5751              0.5751           

6 0.5934 0.5934 0.3814 0.3814    0.2614              0.2614           

7 0.5934 0.5934 0.3814 0.3814    0.2614              0.2614           

8 0.0000 0.0000 0.0000 0.0000    0.0000     0.0000  

9 0.0000 0.0000 0.0000 0.0000    0.0000     0.0000  

10 0.0000 0.0000 0.0000 0.0000    0.0000      0.0000   

Table 6: Eigenvalues of stiffness matrices of pentagon elements 

 

 

Figure 17: A pentagon and a hexagon element

Secondly, we conduct the constant strain patch test. The same problem as shown
in section 6.2 is solved, with mesh configuration shown in Fig. 18. The errors
defined as in (82) for VCFEM-RBF1,2 and VCFEM-HS are demonstrated in Tab.
9. Although VCFEM-RBF1,2 cannot theoretically exactly reproduce the linear
field as VCFEM-HS, very small errors are produced for both VCFEM-RBF1 and
VCFEM-RBF2.

Eigenvalue 
Number 

VCFEM-RBF1 VCFEM-RBF2 VCFEM-HS 

Rotation 
=0° 

Rotation 
=45° 

Rotation 
=0° 

Rotation 
=45° 

Rotation 
=0° 

Rotation 
=45° 

1 1.1547 1.1547 1.1547 1.1547   1.1547   1.1547 

2 0.8163 0.8163 0.6928 0.6928   0.7390   0.7390 

3 0.7644 0.7644 0.6928 0.6928   0.7390   0.7390 

4 0.6928 0.6928 0.6642 0.6642   0.6928   0.6928 

5 0.6928 0.6928 0.6330 0.6330   0.6928   0.6928 

6 0.6744 0.6744 0.4521 0.4521   0.4783   0.4783 

7 0.6744 0.6744 0.4521 0.4521   0.4783   0.4783 

8 0.6217 0.6217 0.4427 0.4427   0.3359   0.3359 

9 0.6217 0.6217 0.3907 0.3907   0.3359   0.3359 

10 0.0000 0.0000 0.0000 0.0000   0.0000   0.0000 

11 0.0000 0.0000 0.0000 0.0000   0.0000   0.0000 

12 0.0000 0.0000 0.0000 0.0000   0.0000   0.0000 

Table 7: Eigenvalues of stiffness matrices of hexagon elements 

CPU Time  

Elements 

VCFEM-RBF1 VCFEM-RBF2 VCFEM-HS 

0.76 0.81 1.00 

Table 8: CPU time required for computing the stiffness matrix of each VCFEM pentagon 

element, normalized to that for VCFEM-HS element. 
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very small errors are produced for both VCFEM-RBF1 and VCFEM-RBF2.  

 

Figure 18: Mesh configuration used for the constant strain patch test of VCFEMs 
Figure 18: Mesh configuration used for the constant strain patch test of VCFEMs
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Table 8: CPU time required for computing the stiffness matrix of each VCFEM
pentagon element, normalized to that for VCFEM-HS element.

CPU Elements
Time VCFEM-RBF1 VCFEM-RBF2 VCFEM-HS

0.76 0.81 1.00

Table 9: Performances of different VCFEMs in the constant strain patch test

Element VCFEM-RBF1 VCFEM-RBF2 VCFEM-HS
Error 4.6×10−4 8.8×10−4 8.8×10−10

Finally, we evaluate the performance of VCFEMs by modeling the cantilever beam
as shown in Fig. 19, and compare their performances to the exact solution. Plane
stress situation is considered with geometry properties L = 10, c = 1, material prop-
erties E = 1500 and v = 0.25. Two loading cases are considered: end shear load
P = 300 and end bending moment M = 2000. The mesh configuration includes 10
elements. Computed tip vertical displacement at point A, and normal stress at lower
left corner are shown in Tab. 10. The results are consistent with our previous analy-
sis. While both elements give acceptable results, VCFEM-RBF2 demonstrates bet-
ter performance than VCFEM-RBF1. This is because VCFEM-RBF1 suffers from
locking, while VCFEM-RBF2 is able to avoid locking by eliminating the shear
locking terms in its independently assumed strains. In addition, VCFEM-RBF2
performs similarly to VCFEM-HS, for this particular problem. VCFEM-RBF2
gives slightly more accurate vertical displacements, but slightly less accurate nor-
mal stresses.

From numerical results shown in this section, we see that VCFEM-RBF2 have sim-
ilar element performance to VCFEM-HS, in terms of accuracy of solution. How-
ever, VCFEM-RBF2 is computationally more efficient than VCFEM-HS. More-
over, selection of “a priori equilibrated”, independent and invariant stress field,
which satisfies LBB conditions a priori for VCFEM-HS, is especially difficult for
elements with a large number of edges, and impossible for geometrical nonlinear
and dynamical problems. Therefore, we consider VCFEM-RBF2 more suitable for
engineering applications, and its extension to three-dimensional problems will be
studied in future.

7 Conclusion

A simple procedure to formulate hybrid/mixed finite elements is developed for ap-
plications in macro- as well as micromechanics of solids. In this approach, inde-
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Element VCFEM-RBF1 VCFEM-RBF2 VCFEM-HS 

Error 4.6×10-4 8.8×10-4 8.8×10-10 

Table 9: Performances of different VCFEMs in the constant strain patch test 

Finally, we evaluate the performance of VCFEMs by modeling the cantilever beam as 

shown in Fig. 19, and compare their performances to the exact solution. Plane stress 
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assumed strains. In addition, VCFEM-RBF2 performs similarly to VCFEM-HS, for this 

particular problem. VCFEM-RBF2 gives slightly more accurate vertical displacements, 

but slightly less accurate normal stresses. 

From numerical results shown in this section, we see that VCFEM-RBF2 have similar 

element performance to VCFEM-HS, in terms of accuracy of solution. However, 

VCFEM-RBF2 is computationally more efficient than VCFEM-HS. Moreover, selection 

of ―a priori equilibrated‖, independent and invariant stress field, which satisfies LBB 

conditions a priori for VCFEM-HS, is especially difficult for elements with a large 

number of edges, and impossible for geometrical nonlinear and dynamical problems. 

Therefore, we consider VCFEM-RBF2 more suitable for engineering applications, and its 

extension to three-dimensional problems will be studied in future. 

 

Figure 19: Mesh configuration used for overall test of performances of VCFEMs 

Element 

Type 

End Shear End Bending 

Av  B  Av  B  

VCFEM-RBF1 78.0 3320.3 74.0 2354.8 

VCFEM-RBF2 90.9 3781.0 86.7 2643.9 

VCFEM-HS 89.6  3844.0   86.4 2696.8  

Exact 102.6 4500 100.3 3000 

Table 10: Computed and exact solution of cantilever beam in Fig. 19 under end shear or 

bending moment 

Figure 19: Mesh configuration used for overall test of performances of VCFEMs

Table 10: Computed and exact solution of cantilever beam in Fig. 19 under end
shear or bending moment

Element Type End Shear End Bending
vA σB vA σB

VCFEM-RBF1 78.0 3320.3 74.0 2354.8
VCFEM-RBF2 90.9 3781.0 86.7 2643.9

VCFEM-HS 89.6 3844.0 86.4 2696.8
Exact 102.6 4500 100.3 3000

pendently assumed strains in each element are related to the strains derived from in-
dependently assumed displacements, at a finite number of collocation points within
the element. The element stiffness matrix is thereafter developed, by simply using
the principle of minimum potential energy. In addition to their self-explanatory ef-
ficiency, the developed elements are also guaranteed to be stable, because no LBB
conditions are involved. By adopting different assumptions of strain field and using
different collocation points in a plane four-node isoparametric element, different
elements are developed. Compared to traditional four-node isoparametric primal
and hybrid/mixed elements in a series of numerical examples, we can clearly see
the advantages of the current approach. Among all the elements, we highly rec-
ommend HMFEM2-b, because it is invariant, stable, locking-free, less sensitive
to mesh-distortion, and computationally most efficient, with only trivial changes
to the DPFEM-Q4 element. Elements similar to HMFEM2-b in higher-order and
higher-dimension is also recommended, which are expected to have good element
performances.

We point out that this procedure can be used to develop hybrid/mixed elements
for applications in other physical problems. We also extend this idea to develop
Voronoi cell finite elements. Two VCFEMs are developed, named VCFEM-RBF1
and VCFEM-RBF2, which are invariant, efficient, and do not involve LBB condi-
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tions. VCFEM-RBF2 is also locking-free, because of its independently assumed
unlocked strains. Moreover, because there is no need to select “a priori equili-
brated” stress field, VCFEM-RBF1,2 can be easily extended to solve geometrical
nonlinear and dynamical problems, which is a significant advantage compared to
VCFEMs proposed by [Ghosh and his co-workers (1994, 1995 and many more in
the past 20 years)].
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