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A New Discrete-Layer Finite Element for
Electromechanically Coupled Analyses of Piezoelectric

Adaptive Composite Structures
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Abstract: A new discrete layer finite element (DLFE) is presented for electro-
mechanically coupled analyses of moderately thick piezoelectric adaptive compos-
ite plates. The retained kinematics is based on layer-wise first-order shear de-
formation theory, and considers the plies top and bottom surfaces in-plane dis-
placements and the plate transverse deflection as mechanical unknowns. The for-
mer are assumed in-plane Lagrange linear, while the latter is assumed in-plane
full (Lagrange) quadratic; this results in a nine nodes quadrangular (Q9) DLFE.
The latter is validated in free-vibrations, first numerically against ANSYS® three-
dimensional piezoelectric finite elements for a cantilever moderately thick alu-
minum plate with two co-localized piezoceramic patches, and then experimentally
against a free quasi-isotropic transverse composite thin plate with four piezoce-
ramic patches. The obtained short-circuit and open-circuit (OC) frequencies were
satisfactory for both benchmarks, while the post-treated modal effective electrome-
chanical coupling coefficients agreed well with ANSYS® results (first benchmark)
but only fairly with the experimental ones (second benchmark). Once validated,
the Q9-DLFE was used to assess numerically the equipotential (EP) physical con-
dition influence on the OC sensed electric potential; for this purpose, the above first
benchmark, but with the top piezoceramic patch only, was finally analyzed. It was
found that the EP condition homogenizes and lowers the sensed potential on the
OC electrode.
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1 Introduction

For about four decades now, finite element (FE) models for piezoelectric structures
have been continuously developed for all types of structural elements [Benjeddou
(2000)]. In the particular case of composite structures, the available FEs can be
classified into equivalent single layer models, that assume a single displacement
field through their thickness, or layer-wise ones, that assume a different displace-
ment field through the thickness of each layer of the composite. The retained gen-
eralized displacements of the last composite FEs category are usually those asso-
ciated with the mid-layer reference surface. However, to simplify the continuity
conditions application, the lay-up FE assembly procedure, and the piezoelectric
plies surface electric potentials and charges handling, it is more suitable to retain
the variables associated to the layers top and bottom surfaces as unknowns. This
leads to the so-called discrete-layer FE (DLFE) models. The latter were already
developed for sandwich beams with surface-bonded and embedded piezoelectric
patches [Benjeddou, Trindade and Ohayon (1997)], for laminated beams with vis-
coelastic damping layers [Zapfe and Lesieutre (1999)], and recently for laminated
composite beams with surface-bonded piezoelectric patches [Al-Ajmi and Benjed-
dou (2008)]; other than one-dimensional (1D) DLFE, as the geometrically exact
piezoelectric solid-shell FE from [Kulikov and Plotnikova (2008)], are rarely avail-
able.

The piezoelectric laminated beam 1D DLFE model, recently developed by the au-
thors [Al-Ajmi and Benjeddou (2008)], is naturally extended in this paper to two-
dimensional (2D) plate structures. The present plate DLFE, as for the previous
beam one, satisfies automatically the equipotential (EP) electrode physical condi-
tion which is usually ignored in most of piezoelectric FE models as reviewed in
[Chevallier, Ghorbel and Benjeddou (2008)]. Hence, in the following, the discrete-
layer theoretical formulation is first described; then, the corresponding FE formula-
tion is presented; next, the resulting new DLFE is validated first numerically against
ANSYS® three-dimensional (3D) FE modal analyses of a cantilever isotropic alu-
minum plate with two co-localized piezoceramic patches under short-circuit (SC)
and open-circuit (OC) electric conditions; this serves to evaluate the effective elec-
tromechanical coupling coefficient (EMCC) in order to assess the present DLFE
electromechanical coupling representation. The new DLFE is then experimentally
validated against modal analysis tests of a free laminated composite plate with four
piezoceramic patches under SC and OC electric conditions [Araujo et al (2009)];
the EMCC is also post-treated for the same purpose as above. Once validated,
the DLFE is used to assess numerically the EP condition influence on the sensed
electric potential; for this purpose the above first benchmark, but with the top piezo-
ceramic patch only, is finally analyzed.
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2 Theoretical formulation

This section describes the plate kinematics (discrete-layer displacements and strains),
coupled piezoelectric and elastic plane-stress reduced constitutive equations, and
Hamilton’s principle-based variational equations which are used in the subsequent
section for the finite element formulation and derivation of the electromechanically
coupled discretized equations of motion.

2.1 Discrete-layer kinematics

The retained kinematics can be classified as a layer-wise first-order shear deforma-
tion one in the sense that it assumes that each layer (ply) of the laminated composite
plate can be moderately thick and deforms under a plane-stress state with in-plane
displacements, u1 and u2, varying linearly through each ply thickness z (or 3), and
all points through the cross-section of the layer, hence the plate, are assumed to
have the same transverse deflection, u3. In addition, perfect bonding is assumed
between the composite plate layers, and the patches bonding layers thickness and
influence are considered negligible.

The discrete-layer displacement field is then defined for the kth layer as

u1(x,y,z) = Fk−1(z) uk−1(x,y)+Fk(z) uk(x,y)

u2(x,y,z) = Fk−1(z)υk−1(x,y)+Fk(z)υk(x,y) (1)

u3(x,y,z) = w(x,y)

Where,

x ∈ [0,a] , y ∈ [0,b] , z ∈
[
hk,hk−1

]
,

Fk−1(z) =
hk−1− z

h
, Fk(z) =

z−hk

h
, h = hk−1−hk

In Equation (1), ui and υ i (i = k-1, k) are the in-plane displacements of the kth

layer’s top and bottom surfaces in x (or 1) and y (or 2) directions, respectively.

The resulting strains are those listed in the following in-plane {ε} and transverse
shear {γ} strain vectors

{ε}=


ε1
ε2
ε6

=


u1,x

u2,y

u1,y +u2,x

 , {γ}=
{

ε4
ε5

}
=
{

u2,z +u3,y

u1,z +u3,x

}
(2)

Where ‘,’ denotes a spatial partial derivation with respect to the variable that follows
it.
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2.2 Plane-stress reduced constitutive equations

The 3D linear constitutive equations for a piezoelectric material, poled along its
thickness and in the stress-charge e-form, couples the Cauchy stresses σp, linearized
strains εp, electric fields Ek, and electric displacements Dk (p= 1, . . . , 6; k = 1, 2,
3) as follows

σ1
σ2
σ3
σ4
σ5
σ6
D1
D2
D3


=



CE
11 CE

12 CE
13 0 0 0 0 0 −e31

CE
12 CE

22 CE
23 0 0 0 0 0 −e32

CE
13 CE

23 CE
33 0 0 0 0 0 −e33

0 0 0 CE
44 0 0 0 −e24 0

0 0 0 0 CE
55 0 −e15 0 0

0 0 0 0 0 CE
66 0 0 0

0 0 0 0 e15 0 ∈ε
11 0 0

0 0 0 e24 0 0 0 ∈ε
22 0

e31 e32 e33 0 0 0 0 0 ∈ε
33





ε1
ε2
ε3
ε4
ε5
ε6
E1
E2
E3


(3)

Where, CE
pq, eip,∈ε

ii (p, q= 1, . . . , 6; i= 1, 2, 3) are the shorted elastic (N/m2), stress
piezoelectric (C/m2), and blocked dielectric (F/m) constants.

Due to the retained plane-stress (σ3 = 0) and unidirectional electric field (Ex =
Ey = 0) and displacement (Dx = Dy = 0) assumptions, the former 3D piezoelectric
constitutive equations reduce to the following ones

σ1
σ2
σ6

=

Q̄11 Q̄12 0
Q̄12 Q̄22 0
0 0 Q̄66

E
ε1
ε2
ε6

−


ē31
ē32
0

E3,

{
σ4
σ5

}
=
[

Q̄44 0
0 Q̄55

]E{
ε4
ε5

}
(4)

D3 =
{

ē31 ē32 0
}

ε1
ε2
ε6

+ ∈̄ε
33E3

Where, for α , β = 1, 2 and m = 4, 5, 6, the plane stress-reduced constants are given
by

Q̄E
αβ

= CE
αβ
−

CE
α3CE

β3

CE
33

, Q̄E
mm = CE

mm; ē3α = e3α −
CE

α3

CE
33

e33, ∈̄ε
33 =∈ε

33 +
e2

33

CE
33

Equations (4) can be rewritten, respectively, in the following condensed form

{σ}=
[
Q̄E]{ε}−〈ē〉T E3, {τ}=

[
Q̄E

s
]
{γ} ,D3 = 〈ē〉{ε}+ ∈̄ε

33E3 (5)
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Where, the subscript s denotes shear, and the transverse electric field was assumed
constant through the ply thickness so that it reads

E3 =−V
h

(6)

With, V = φ k−1− φ k denoting the electric potential difference between the upper
and lower equipotential electrodes of the piezoelectric ply of thickness h, respec-
tively.

The in-plane and shear coefficients of the elastic matrices of equation (5) can be de-
fined in terms of the engineering constants (Young’s moduli Eα , shear moduli G12
and Gα3 and Poisson’s ratios ν12 and ν21), for orthotropic composite and piezo-
electric plies, by

Q̄11 =
E1

1− v12v21
, Q̄12 =

v12E2

1− v12v21
, Q̄22 =

E2

1− v12v21
, (7)

Q̄66 = G12, Q̄44 = G23, Q̄55 = G13

For an angle-ply composite layer, the transformed elastic constitutive equations
become

{σ}= [Q]{ε} , {τ}= [Qs]{γ} (8)

With,

[Q] =

Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66

 , [Qs] =
[

Q44 Q45
Q45 Q55

]

Where, the Qpq expressions are given in the Appendix.

2.3 Coupled variational formulation

The variational formulation uses this piezoelectric-extended Hamilton’s principle,∫ t2

t1
(δT −δH +δW ) dt = 0 (9)

Where, δH is the piezoelectric ply virtual electromechanical enthalpy which re-
duces to

δH =
∫

Ω

(
{δε}T {σ}+{δγ}T {τ}−δE3 D3

)
dΩ (10)
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δT is the ply (of mass densityρ) virtual kinetic energy given by (‘.’ = time deriva-
tion)

δT =
∫

Ω

(δ u̇1 u̇1 +δ u̇2 u̇2 +δ u̇3 u̇3)ρdΩ (11)

δW is the external virtual work that is here considered due to only the applied
mechanical (m) transverse force Fz on the surface SF and the electric (e) surface
charge Qe on the surface SQ; it is then defined by

δW = δWm +δWe =
∫

SF

δw Fz dSF −
∫

SQ

δφ Qe dSQ (12)

3 Finite element formulation

This section describes the generalized displacements in-plane interpolations and
resulting strains and transverse electric field discretizations that should be substi-
tuted in above variational equation (9) in order to get the discretized equations of
motion; then, focus is made on deriving the free-vibration problems, under SC and
OC electric boundary conditions, from which the effective modal EMCC is post-
processed. OC and SC static sensing problems are finally derived in order to assess
the EP physical condition influence on the computed electric potential of the sensor
electrode.

3.1 Discretized equations of motion

Each layer of the FE has corner nodal in-plane displacements degrees of freedom
(DOF), as in Fig. 1a, and all layers, forming an element in thickness direction, have
the same nodal transverse displacements DOF (Fig. 1b); the kth ply DOF vector is
then defined by

{q}= {Y1, W1, W2, Y2, W3, W4, Y3, W5, W6, Y4, W7, W8, W9} (13)

With,

{Yi}=
{

Uk−1
i , Uk

i , V k−1
i , V k

i

}
; i = 1, ...,4

The discretized surface in-plane and transverse displacements are then given by

u j =
{

N j
u
}
{q} , υ

j =
{

N j
υ

}
{q} ; ( j = k−1,k); w = {Nw}{q} (14)

Where, N j
u , N j

υ and Nw are bilinear in-plane and bi-quadratic transverse shape func-
tions.
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(a) Discrete-layer in-plane nodal displacements

 
 
 
 
 
 
 

 
 
 
 
 
 

(b) Plate nodal transverse deflections 
 

Figure 1: Discrete-layer in-plane nodal displacements (a) and plate nodal deflec-
tions (b).

The discretized in-plane displacements then become

u1 = {Nu}{q} , u2 = {Nυ}{q} (15)

Where,

{Nu}= Fk−1
{

Nk−1
u

}
+Fk

{
Nk

u

}
, {Nυ}= Fk−1

{
Nk−1

υ

}
+Fk

{
Nk

υ

}
Then, substituting equation (15) in equations (1, 2) gives these discretized strain
vectors

{ε}= [B]{q} , {γ}= [Bs]{q} (16)

With

[B] =

 Fk−1 ∂

∂x

{
Nk−1

u
}

+Fk ∂

∂x

{
Nk

u
}

Fk−1 ∂

∂x

{
Nk−1

υ

}
+Fk ∂

∂x

{
Nk

υ

}
Fk−1

{
∂

∂x

{
Nk−1

υ

}
+ ∂

∂y

{
Nk−1

u
}}

+Fk
{

∂

∂x

{
Nk

υ

}
+ ∂

∂y

{
Nk

u
}}

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[Bs] =

{
1
h

({
Nk−1

u
}
−
{

Nk
u
})

+ ∂

∂x {Nw}
1
h

({
Nk−1

υ

}
−
{

Nk
υ

})
+ ∂

∂y {Nw}

}
The electric field, given in equation (6), is in fact self-discretized and can be re-
written as

E3 =
{
−1

h
1
h

}T
{

φ k−1

φ k

}
=
{

Nφ

}T {φ} (17)

Finally, substituting the discretized strains (16) and the electric field (17) in the
variational equations (9) - (12), provides the following ply coupled equations of
motion[

[Kmm] [Kme]
[Kme]

T − [Kee]

]{
{q}
{φ}

}
+
[
[Mmm] [0]
[0]T [0]

]{
{q̈}{
φ̈
}}=

{
{F}
−{Qe}

}
(18)

With,

[Mmm] =
∫ a

0

∫ b

0

∫ hk−1

hk

(
{Nu}T {Nu}+{Nυ}T {Nυ}+{Nw}T {Nw}

)
ρdzdydx

[Kmm] =
∫ a

0

∫ b

0

∫ hk−1

hk

(
[B]T [Q] [B]+ [Bs]

T [Qs] [Bs]
)

dzdydx

[Kme] =−
∫ a

0

∫ b

0

∫ hk−1

hk

(
[B]T {ē}T {Nφ

})
dzdydx

[Kee] =−
∫ a

0

∫ b

0

∫ hk−1

hk

({
Nφ

}T ∈̄ε
33
{

Nφ

})
dzdydx

{F}=
∫

SF

{Nw}T Fz dSF

In addition, {Qe} is a vector of electric charges on the electrodes’ surfaces resulting
from the second part of equation (12) which can be re-written as

δWφ =−{δφ}T {Qe} , {Qe}=
{

Qk−1
e
−Qk

e

}
(19)

Where, Qk−1
e and Qk

e are the electric surface charges on the piezoelectric ply upper
and lower electrodes, respectively.

The elastic plies are assembled in the thickness direction to form a composite ele-
ment and then the assembly process proceeds to the surface area. The piezoelectric
plies, if they exist, are assembled after the global assembly of the composite plate
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such that the global DOF vector is made of the mechanical DOF of the composite
plate, {q}, followed by that of the piezoelectric layer one, {ϕ}.

The assembled equations of motion can be written now in this global form[
[Kmm] [Kme]
[Kme]

T − [Kee]

]{
{q}
{φ}

}
+
[
[M] [0]
[0]T [0]

]{
{q̈}{
φ̈
}}=

{
{F}
−{Q}

}
(20)

Where, {q}, {ϕ}, {F} and {Q} are global vectors of those previously defined.

To form equipotential electrodes, all piezoelectric elements that form a continuous
surface of an electrode (meshed with m FEs) must have the same surface potential
so that

φ
k−1
1 = φ

k−1
2 = · · ·= φ

k−1
m , φ

k
1 = φ

k
2 = · · ·= φ

k
m (21)

Therefore, the global electric DOFs vector is redefined as

{φ}= [P]{v} (22)

Where, [P] is a Boolean matrix and {v} denotes the vector of electrodes potentials.

Applying the last relationship to the global equation of motion (20) results in these
transformed ones[

[Kmm]
[
K̄me

][
K̄me

]T −
[
K̄ee
]]{{q}
{v}

}
+
[
[M] [0]
[0]T [0]

]{
{q̈}
{v̈}

}
=
{
{F}
−
{

Q̄
}} (23)

Where,[
K̄me

]
= [Kme] [P] ,

[
K̄ee
]
= [P]T [Kee] [P] ,

{
Q̄
}

= [P]T {Q}

3.2 Free-vibration problems

Two free-vibration problems can be formulated for OC and SC electric boundary
conditions. The OC analysis requires the piezoelectric surfaces to be charge free;
hence, the global electric charge vector vanishes, leading to this OC harmonic free-
vibration problem([

[Kmm]
[
K̄me

][
K̄me

]T −
[
K̄ee
]]−ω

2
[
[M] [0]
[0]T [0]

]){
{q}
{v}

}
=
{
{0}
{0}

}
(24)

Static condensation of electrodes voltage DOFs reduces the last system to this one(
[Koc]−ω

2[M]
)
{q}= {0} (25)
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With,

[Koc] = [Kmm]+
[
K̄me

][
K̄ee
]−1 [K̄me

]T
Solving the equation (25) leads, in particular, to the OC natural frequencies (Hz),
foc.

Under SC electric conditions, the electrodes electric potential DOFs vector is nil
and the harmonic free-vibration problem, resulting from equation (23), is now
purely mechanical(
[Kmm]−ω

2[M]
)
{q}= {0} (26)

Solving equation (26) provides, in particular, the SC natural frequencies (Hz), fsc.

From OC and SC natural frequencies, the squared modal effective EMCC is defined
as

K2 =
f 2
oc− f 2

sc

f 2
sc

(27)

The EMCC is an indicator of the electromechanical coupling representation; in
particular, it shows which mode is electromechanically coupled or not; hence, it can
be used as a pre-design tool for several applications such as piezoceramic shunted
damping (Chevallier, Ghorbel and Benjeddou (2009)], sensors/actuators positions
optimization [Trindade and Benjeddou (2009)], or damage detection [Al-Ajmi and
Benjeddou (2008)].

3.3 Static sensing problems

The sensed voltage can be measured under an applied mechanical load. As for
the free vibrations, there are two sensing problems depending on the considered
electric conditions (SC or OC) for the sensors electrodes. In order to assess the EP
physical condition influence on the computed sensed voltage, sensing problems are
derived, in the following, for the two cases: without and with EP constraints.

The static OC sensing analysis requires the piezoelectric surfaces to be charge free;
hence, when the EP conditions (21, 22) are not enforced, the global electric charge
vector vanishes in equation (20), leading to this static OC sensing coupled problem[

[Kmm] [Kme]
[Kme]

T − [Kee]

]{
{q}
{φ}

}
=
{
{F}
{0}

}
(28)

From the second line of the last equation, the OC sensing potentials can be deduced
as

{φ}= [Kee]
−1 [Kme]

T {q} (29)
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Where, {q} is the solution of this potentials-condensed static mechanical problem
(after substituting equation (29) in the first line of equation (28))

([Kmm]+ [Kme] [Kee]
−1 [Kme]

T ){q}= {F} (30)

When the EP conditions (21, 22) are enforced, equation (23) provides the following
static OC sensing coupled problem[

[Kmm]
[
K̄me

][
K̄me

]T −
[
K̄ee
]]{{q}
{v}

}
=
{
{F}
{0}

}
(31)

EP-enforced sensing voltages can then be obtained analogically to equation (29) as

{v}=
[
K̄ee
]−1 [K̄me

]T {q} (32)

Where, {q} is the solution of this potentials-condensed static mechanical problem
(after substituting back equation (32) into equation (31))

([Kmm]+
[
K̄me

][
K̄ee
]−1 [K̄me

]T ){q}= {F} (33)

Under SC electric conditions and when the EP conditions (21, 22) are not enforced
in equation (20), the electrodes electric potential DOFs vector vanishes in the latter
equation leading to the following static SC sensing problem[

[Kmm] [Kme]
[Kme]

T − [Kee]

]{
{q}
{0}

}
=
{
{F}
−{Q}

}
(34)

From the second line of the last equation, the SC sensing charges can be deduced
as

{Q}=− [Kme]
T {q} (35)

Where, {q} is the solution of this mechanical static problem (from first line of (34))

[Kmm]{q}= {F} (36)

When the EP conditions (21, 22) are enforced in equation (20), equation (23) pro-
vides the following static OC sensing coupled problem[

[Kmm]
[
K̄me

][
K̄me

]T −
[
K̄ee
]]{{q}
{0}

}
=
{
{F}
−
{

Q̄
}} (37)
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EP-enforced sensing voltages can then be obtained from the last equation’s second
line as{

Q̄
}

=−
[
Kme

]T {q} (38)

Where, {q} is the solution of this static mechanical problem (from first line of (37))

[Kmm]{q}= {F} (39)

The comparison of equations (32,33) to equations (38,39) indicates that the EP
condition is expected to be more influential for the computed OC sensing voltage,
equation (32), than for the SC sensing charge, equation (38); this is due to the
fact that the mechanical static problem resulting from the SC electric condition,
as shown by equations (36) and (39), is unchanged by the EP condition, while the
corresponding one, as shown by equations (30) and (33), for the OC condition is
modified by the EP condition. Hence, in the validation section, the EP physical
condition influence is assessed only for the computed OC sensing voltages.

4 Free-vibrations validation and static OC sensing analysis

The piezoelectric adaptive composite plate Q9-DLFE is hereafter validated first
numerically against ANSYS® (version 10) 3D FE modal analyses of a cantilever
isotropic aluminum plate with co-localized piezoceramic patches (PIC255 from
PI Germany) under SC and OC electric conditions in order to assess the elec-
tromechanical coupling representation of the present DLFE through the EMCC
evaluation; then, the Q9-DLFE is experimentally and numerically validated via
modal analyses of a free laminated composite plate with four PIC255 piezoceramic
patches under SC and OC electric conditions; the EMCC is also post-treated for
the same purpose as above. Once validated, the Q9-DLFE is used to assess numer-
ically the EP physical condition influence on the computed OC sensing voltage; for
this purpose, the above first benchmark, but with the top piezoceramic patch only,
is finally analyzed.

4.1 Cantilever isotropic plate with a pair of co-localized piezoceramic patches

The benchmark proposed by [Chevallier, Ghorbel, and Benjeddou (2008)] is here
first considered; it consists of a cantilever moderately thick aluminum plate with a
pair of symmetrically bonded piezoceramic PIC255 patches as shown in Fig. 2.

The base isotropic plate has a thickness of h = 3.9 mm, Young’s modulus of E= 69
GPa, mass density of ρ = 2790 kg/m3 and Poisson’s ratio of ν= 0.3. Each PIC255
piezoceramic patch has a thickness of 0.3 mm. The plate is 79 mm long and the
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Figure 2: Cantilever aluminum plate with co-localized PIC255 patches

50 mm long patches pair is placed 18 mm from the fixed end. Both of the base
plate and the patches have a common width of 25 mm. The PIC255 patches elec-
tromechanical isotropic-transverse plane stress-reduced properties are: Q̄E

11 = Q̄E
22=

69.18 GPa, Q̄E
12= 22.14 GPa, Q̄E

44 = Q̄E
55= 21 GPa, Q̄E

66= 23.5 GPa, mass density ρ=
7720 Kg/m3, ē31 = ē32= -16.57 C/m2 and ∈̄ε

33= 9.52 nF/m. The corresponding full
3D properties are given in [Chevallier, Ghorbel and Benjeddou (2008, 2009)]. The
DLFE model is made of two elastic plies for the aluminum base structure in addi-
tion to the upper and lower piezoelectric plies, and meshed with 8 elements in the
width and 38 elements in the length (8 elements from the fixed end to the piezoce-
ramic patch, 25 elements for the piezoceramic section, and 5 elements for the free
end section) leading to a 304 FE model.

The modal effective squared EMCC (%) results are post-processed from the SC
and OC natural frequencies (Hz) resulting from the present piezoelectric plate Q9-
DLFE, and compared to those from piezoelectric 3D FE analyses with ANSYS®.
As can be seen in Tab. 1, the present Q9-DLFE predictions, for both calculated
SC and OC frequencies (Hz) and post-treated squared EMCC (%) values of the
first four modes, are in good agreement with the reference [Chevallier, Ghorbel and
Benjeddou (2008)] results obtained using ANSYS® full quadratic (20 nodes) 3D
FE simulations (1700 FE model).

4.2 Free laminated composite plate with four piezoceramic patches

The second validation example is taken from [Araujo, Mota Soares, Friedmann,
Röhner, Henkel (2009)]; it is a free composite plate of aeronautic type that is
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Table 1: ANSYS® quadratic 3D FE [Chevallier, Ghorbel and Benjeddou (2008)]
vs. present plate Q9-DLFE results for the aluminum adaptive cantilever plate.

Mode
foc(Hz) fsc(Hz) K2 (%)

3D DLFE Er∗ (%) 3D DLFE Er∗ (%) 3D DLFE Er∗ (%)
1 495.61 495.46 -0.03 493.07 492.87 -0.04 1.03 1.05 1.94
2 2797.9 2808.2 0.37 2797.9 2808.2 0.37 0 0 0
3 3044.1 3099.4 1.82 3044.1 3099.4 1.82 0 0 0
4 3317.7 3322.5 0.14 3249.0 3251.7 0.08 4.27 4.40 3.04

* Er (%) = 100 (DLFE-3D)/3D

made of 16 plies in a symmetric stacking sequence: [90/45/0/-45/90/45/0/-45/-
45/0/45/90/-45/0/45/90]. The total thickness of the whole composite plate is 4.13
mm equally distributed on all plies. Each ply of the composite has the follow-
ing properties as identified by [Araujo, Mota Soares, Friedmann, Röhner, Henkel
(2009)] using a modal – based mixed experimental – plate FE optimization in-
verse approach: E1 = 130.8 GPa, E2 = 10.6 GPa, G12 = 5.6 GPa, G13 = 4.2 GPa,
G23=3.0 GPa, v12 = 0.36, and ρ = 1543 kg/m3. Four PIC255 patches, of dimen-
sions 50×50×0.9 mm3 are bonded to the plate on one side only as in Fig. 3. The
properties of the PIC255 in this example are calculated, from those identified in
[Araujo, Mota Soares, Friedmann, Röhner, Henkel (2009)] with the same above
approach, as: Q̄E

11= 55.05 GPa, Q̄E
22= 49.86 GPa, Q̄E

12= 14.46 GPa, Q̄E
44= 20.6 GPa,

Q̄E
55= 8 GPa, Q̄E

66= 14.3 GPa, ρ = 7800 kg/m3, ē31= -17.0 C/m2, ē32= -12.2 C/m2,
∈̄ε

33= 9.52 nF/m; notice that the latter value and mass density were not identified in
[Araujo, Mota Soares, Friedmann, Röhner, Henkel (2009)].

The Q9-DLFE is here used to compute SC and OC frequencies (Hz) which are
post-treated to get the squared EMCC (%); an in-plane 8×12 plate DLFE mesh is
considered with 16 plies for the composite plate, and one more ply for the piezo-
electric patches. The Q9-DLFE results are compared to the corresponding exper-
imental ones from [Araujo, Mota Soares, Friedmann, Röhner, Henkel (2009)] and
presented in Tab. 2. The latter shows that the Q9-DLFE frequency predictions for
OC and SC are satisfactory when compared with the experimental results; however,
its resulting squared EMCC values mostly differ due to their sensitivity to minimal
frequency deviation [Chevallier and Benjeddou (2009)] since they are defined from
small differences of squared frequency values.

Table 2 shows that the DLFE 3rd , 5th and 6th modes are electromechanically uncou-
pled (with zero EMCC), while the tests show them slightly coupled. To check this
important difference, the same example has been run using ANSYS® full quadratic



A New Discrete-Layer Finite Element 279

 
Figure 3: Free composite plate with four PIC255 patches

Table 2: Experimental [Araujo, Mota Soares, Friedmann, Röhner, Henkel (2009)]
vs. present 2D DLFE results for the free composite plate with four piezoceramic
patches.

Mode
foc(Hz) fsc(Hz) K2 (%)

Exp. DLFE Er∗ (%) Exp. DLFE Er∗ (%) Exp. DLFE Er∗

1 243.75 240.00 -1.54 243.13 239.77 -1.38 0.51 0.19 -62.74
2 313.75 312.81 -0.30 311.88 311.92 0.01 1.20 0.58 -51.67
3 543.75 551.53 1.43 541.56 551.53 1.84 0.81 0 -
4 576.88 588.67 2.04 571.56 582.44 1.90 1.87 2.15 14.97
5 735.31 738.20 0.39 734.69 738.20 0.48 0.17 0 -
6 878.44 893.14 1.67 874.69 893.14 2.11 0.86 0 -
7 1025.0 1052.1 2.64 1019.1 1051.5 3.18 1.16 0.12 -89.65

* Er (%) = 100 (DLFE-Exp)/Exp

(20 nodes) composite (SOLID191) and piezoelectric (SOLID226) 3D FE model.
However since only plane stress - reduced PIC255 data have been identified in
[Araujo, Mota Soares, Friedmann, Röhner, Henkel (2009)], the lacking 3D elastic,
piezoelectric and dielectric (not identified) data were completed from its manufac-
turer related data sheet as: E3 = 47.7 GPa, v13 = v23 = 0.44, e31 = e32 = -7.15 C/m2,
e33= 13.7 C/m2, e15=e24=11.9 C/m2, ∈ε

11 = ∈ε
22 = 8.234 nF/m, ∈ε

33 = 7.588 nF/m.
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Using these 3D data and equation (4), the plane stress – reduced data used for the
DLFE simulations are computed as: Q̄E

11= 55.574 GPa, Q̄E
22= 53.533 GPa, Q̄E

12=
19.65 GPa, Q̄E

44= 20.6 GPa, Q̄E
55= 8 GPa, Q̄E

66= 14.3 GPa, ρ = 7800 kg/m3, ē31=
-15.64 C/m2, ē32= -14.839 C/m2, ∈̄ε

33= 9.5119 nF/m.

The obtained results, as shown in Table 3, confirm that modes 3, 5 and 6 are un-
coupled. Moreover, Table 3 indicates that, with the present data that use the man-
ufacturer piezoelectric coupling and dielectric constants, the DLFE results are now
closer to the experimental ones since the computed EMCC for the higher coupled
modes 2 and 4, the experimental (1.20 %, 1.87%) and DLFE (1.17%, 1.83%) re-
sults are now very close. This indicates that the identified reduced piezoelectric
coupling constants are not satisfactory.

Table 3: ANSYS® full quadratic 3D FE vs. present 2D DLFE results for the free
composite plate with four piezoceramic patches.

Mode
foc(Hz) fsc(Hz) K2 (%)

3D DLFE Er∗ (%) 3D DLFE Er∗ (%) 3D DLFE Er∗

1 243.38 240.05 -1.37 242.87 239.82 -1.26 0.42 0.19 -54.76
2 317.59 313.77 -1.20 311.37 311.95 0.19 4.04 1.17 -71.04
3 538.38 551.99 2.53 538.38 551.99 2.53 0 0 -
4 586.91 588.15 0.21 572.91 582.84 1.73 4.95 1.83 -63.03
5 733.07 738.00 0.67 733.07 738.00 0.67 0 0 -
6 873.87 893.95 2.30 873.87 893.95 2.30 0 0 -
7 1013.6 1053.2 3.91 1013.0 1052.8 3.93 0.12 0.06 -50.00

* Er (%) = 100 (DLFE-3D)/3D

4.3 EP condition effect on the static OC sensed voltage

Physically, the computed potentials on the sensor electrodes should be constant due
to the EP condition. However, in the literature, they are often shown continuously
(for nodal approximation) or step-wise (for element approximation) linearly de-
creasing from the cantilever to the free end of the piezoelectric structure. As it was
shown above (see sub-section 3.3) theoretically that the computed OC sensed po-
tential is more sensitive to the EP than the SC one, the aim here is to assess the EP
physical condition influence only on the computed OC sensing electric potential of
the piezoelectric patches electrodes.

To evaluate the effect of the EP electrode physical condition on the OC sensed
voltage, the first example of the cantilever plate is considered, but with one piezo-
ceramic patch only attached to the upper surface of the plate as shown in Fig. 4.



A New Discrete-Layer Finite Element 281

By applying a unit transverse load (F=1N) at one of the corner tips of the beam
(see Fig. 4), the potential difference vector can be calculated without and with EP
condition by equations (29) and (32), respectively. To calculate the potential dif-
ference, the electric DOF corresponding to the lower electrode are grounded. This
can be done in practice by eliminating the rows and columns corresponding to the
grounded electrode (zero potential) from the stiffness matrix. Two plies are used to
model the base plate through the thickness and one ply for the piezoelectric patch.
The used mesh has 6 FE along width and 15 FE along length (3 FE from fix to
patch, 10 for patch, and 2 from patch to free end). Fig. 5a shows the potential
difference, without EP condition, while the case with EP is shown in Fig. 5b; both
figures represent, as in-plane axes values, the number of piezoelectric elements
along the patch width and length.

 
Figure 4: Cantilever aluminum plate with single PIC255 patch

It can be seen from Fig. 5a that the sensed voltage without EP electrode condition
makes good physical sense with the piezoelectric patch coupling since each element
in this case will virtually has its own set of electrodes. Hence, the sensed voltage
is higher from the clamped side due to higher strains and vice versa. However,
in practice, a piezoelectric patch usually has one electrode at each of its major
surfaces that renders its electric potential spatially uniform. As is shown in Fig. 5b,
this has as consequences, not only to homogenize (to make the electric potential
spatially uniform) but also to lower the computed sensed voltage; quantitatively,
Fig. 5 shows that the uniform voltage obtained after enforcing the EP condition is
about 3V under a unit load, and the voltage calculated without enforcing the EP
condition varies linearly from about 4V to about 1V. Hence, it can be concluded
that, in order to reach accurate computation of the sensing voltages, it is mandatory
to apply the EP electrode physical condition.
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(a) 

 
(b) 

 Figure 5: OC sensed voltage (a) without EP and (b) with EP condition application
on the patch electrodes for an applied unit load (F=1N) at the cantilever Al plate
corner tip
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5 Conclusions and perspectives

A new piezoelectric adaptive plate discrete-layer finite element (DLFE) has been
formulated on the basis of the first-order shear deformation theory for each ply of
the multilayer construction with the top and bottom layer surfaces in-plane dis-
placements and plate transverse deflection as mechanical unknowns; the former
were assumed Lagrange linear, while the latter was considered Lagrange quadratic,
leading to a nine-nodes quadrangular (Q9) DLFE having these mechanical un-
knowns as nodal degrees of freedom (DOF), and the voltage as the piezoelectric
ply electric DOF. The equipotential (EP) physical condition of the piezoelectric
layer(s) electrodes was enforced.

This new Q9-DLFE validation on a moderately thick cantilever aluminum rect-
angular plate with a co-localized piezoceramic large patches pair was satisfactory
for both calculated short-circuit (SC) and open-circuit (OC) frequencies and post-
treated modal effective electromechanical coupling coefficients (EMCC); however,
its validation on a free quasi-isotropic transverse composite plate with four piezo-
ceramic patches was satisfactory for the SC and OC frequencies but only fairly for
most of the post-treated modal effective EMCCs due to the highly sensitive defi-
nition of the latter. Once validated, this new Q9-DLFE was used to assess the EP
physical condition influence on the computed OC sensed voltage of a single large
patch bonded to the upper surface of the same cantilever aluminum beam of the
first benchmark. It was found that, to be accurate in simulating the physics, the
EP constraints have to be mandatory enforced on the patch electrodes for both SC
and OC sensors. In addition, the numerical analysis has shown that besides mak-
ing the sensed electric potential uniform, the EP condition lowers the computed
sensed voltage compared to that calculated without the EP constraints. Moreover,
corresponding theoretical equations showed that the EP constraints should be more
influential for the OC, than the SC, electric conditions on the patch electrodes.

As an immediate extension, this Q9-DLFE shall include a quadratic potential ap-
proximation as was already made in the corresponding beam one [Al-Ajmi and
Benjeddou (2008)] in order to assess its influence on the computed sensed voltage
without and with enforcing the EP physical constraints. Then, the beam and plate
DLFE formulations and analyses could be extended to the d15-shear piezoelectric
response.
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Appendix

The transformed elastic components for the plate composite ply are defined as fol-
lows:

Q̄11 = Q11 cos4
θ +Q22 sin4

θ +2(Q12 +2Q66)cos2
θ sin2

θ

Q̄22 = Q11 sin4
θ +Q22 cos4

θ +2(Q12 +2Q66)cos2
θ sin2

θ

Q̄12 = Q12
(
cos4

θ + sin4
θ
)
+(Q11 +Q22−4Q66)cos2

θ sin2
θ

Q̄16 = (Q11−Q12−2Q66)cos3
θ sinθ − (Q22−Q12−2Q66)sin3

θ cosθ

Q̄26 = (Q11−Q12−2Q66)sin3
θ cosθ − (Q22−Q12−2Q66)cos3

θ sinθ
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Q̄16 = (Q11 +Q22−2Q12−2Q66)cos2
θ sin2

θ +Q66
(
cos4

θ + sin4
θ
)

Q̄44 = Q44 cos2
θ +Q55 sin2

θ

Q̄55 = Q55 cos2
θ +Q44 sin2

θ

Q̄45 = (Q55−Q44) sinθ cosθ

Where, θ is the ply angle defined as shown in the following Fig. 6.

 
Figure 6: Angle-ply composite layer

The used abbreviations in the text are defined in this list:

1D: one-dimensional
2D: two-dimensional
3D: three-dimensional
DLFE: discrete-layer finite element
DOF(s): degree(s) of freedom
EMCC: electromechanical coupling coefficient
EP: equipotential
FE: finite element
OC: open-circuit
Q9: nine nodes quadrangular
SC: short-circuit




