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Modeling of Effective Properties of Multiphase
Magnetoelectroelastic Heterogeneous Materials

A. Bakkali1, L. Azrar1,2 and N. Fakri1

Abstract: In this paper an N-phase Incremental Self Consistent model is de-
veloped for magnetoelectroelastic composites as well as the N-phase Mori-Tanaka
and classical Self Consistent. Our aim here is to circumvent the limitation of the
Self Consistent predictions for some coupling effective properties at certain inclu-
sion volume fractions. The anomalies of the SC estimates are more drastic when
the void inclusions are considered. The mathematical modeling is based on the
heterogeneous inclusion problem of Eshelby which leads to an expression for the
strain-electric-magnetic field related by integral equations. The effective N-phase
magnetoelectroelastic moduli are expressed as a function of magnetoelectroelastic
concentration tensors based on the considered micromechanical models. The ef-
fective properties are obtained for various types, shapes and volume fractions of
inclusions and compared with the existing results.

Keywords: magnetoeletric, piezomagnetic, piezoelectric, composite, void, mod-
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1 Introduction

The concept of new multifunctional materials constitutes now a scientific challenge
especially for smart composites which include magnetoelectroelastic composites.
Efforts are currently under way to develop materials that have superior properties to
those currently existing. This has resulted in the development of composite materi-
als that exhibit remarkable properties, which are created by the interaction between
the constituent phases. There are many advantages to using composite materials
more than traditional materials, such as the possibility of weight or volume reduc-
tion in a structure while maintaining a comparable or improved performance level.
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Composite materials consisting of a piezoelectric phase and a piezomagnetic phase
show a remarkably large magnetoeletric coefficients and large coupling coeffi-
cients between elastic, electric and magnetic fields, which do not exist in either
constituent. The magnetoeletric coupling in the composite is created through the
interaction between the piezoelectric and the piezomagnetic phases. The product
property of composites offers great opportunities to design new materials that are
capable of responding in a desired way to the internal or environment changes,
which may not be achieved by traditional materials. The coupling effects in mag-
netoelectroelastic composites materials have many uses in many engineering fields
such aeronautics, automotives and medical imagery. The double coupling effects in
piezoelectric materials and the triple ones in magnetoelectroelastic are very useful
for sensors and actuators.

The effective properties of piezoelectric composites materials have been investi-
gated by many researchers. Dunn and Wienecke (1996, 1997) have given the
closed-form expressions for the infinite-body Green’s functions for a transversally
isotropic piezoelectric medium and the four Eshelby tensors for spheroid inclu-
sions in transversally isotropic solids. Dunn and Taya (1993) predicted the ef-
fective properties using the Dilute, Self Consistent, Mori-Tanaka, and Differential
micromechanical models. Fakri, Azrar and El Bakkali (2003) predicted the behav-
ior of piezoelectric composite materials and presented the numerical results for the
effective electroelastic properties in term of phase properties, orientation angles,
volume fraction and shapes of inclusions. Odegard (2004) proposed a new model-
ing approach to predict the bulk electromechanical properties of piezoelectric com-
posites and compared the obtained results with those obtained by the Mori-Tanaka
approach and the finite element method. Li (2004) applied the Self Consistent
approach to predict the effective pyroelectric and thermal expansion coefficients of
ferroelectric ceramics taking into account the texture change due to domain switch-
ing during poling.

For magnetoelectroelastic composites, Li and Dunn (1998) investigated the mag-
netoelectroelastic coupling effects using the mean field Mori-Tanaka method and
presented numerical results for fibrous and laminated composites. Wu and Huang
(2000) investigated the magnetoeletric coupling effect in a fibrous composites with
piezoelectric and piezomagnetic phases. Based on the eigenstrain formulation and
Mori-Tanaka approach, the magnetoelectroelastic Eshelby tensors and the effective
material properties of the composite are obtained explicitly. Li (2000) studied the
average magnetoelectroelastic field in a multi-inclusion or inhomogeneities embed-
ded in an infinite matrix. Feng, Fang and Hwang (2004) investigated the effective
properties of composite consisting of piezomagnetic inhomogeneities embedded
in a non-piezomagnetic matrix by using a unified energy method and the Mori-
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Tanaka and Dilute approaches. Zhang and Soh (2005) extended the micromechan-
ical Self Consistent, Mori-Tanaka and Dilute to study the coupled magnetoelec-
troelastic composite materials. Srinivas and Li (2005) developed a Self Consistent
approach to calculate the macroscopic magnetoelectric coefficients by emphasiz-
ing the effects of shape, volume fraction and orientation distribution of particles of
both phases. Lee, Boyd and Lagoudas (2005) developed a finite element analysis
and micromechanics based averaging of a representative volume element to deter-
mine the effective dielectric, magnetic, mechanical, and coupled-field properties of
an elastic matrix reinforced with piezoelectric and piezomagnetic fibers. A special
emphasis on the poling directions of the piezoelectric and piezomagnetic fibers is
done. Srinivas, Li, Zhou and Soh, (2006) developed a mean field Mori-Tanaka
model to calculate the effective magnetoelectroelastic moduli of matrix-based mul-
tiferroic composites by emphasizing the effects of shape and orientation distribu-
tion of second phase particles composites. More recently, Fakri and Azrar (2010)
developed the Incremental Self Consistent method to thermoelectroelastic materi-
als to predict the electro elastic and thermal response of piezocomposites with and
without voids.

The classical Self Consistent model, which is widely used, overestimates the pre-
dictions of some magnetoelectroelastic composites effective properties for moder-
ate and high concentrations of reinforcements and diverges for some coefficients.
For magnetoelectroelastic composites with void inclusions the predictions are lim-
ited for very low void concentrations and are erroneous for volume fraction greater
than 10%. The aim of this paper is on one hand to develop an N-phase Incremen-
tal Self Consistent model for magnetoelectroelastic materials. On the other hand
to present an accurate model based on the Self Consistent procedure for N-phases
coupled materials

In this work, a micromechanical modeling is used to predict the behavior of multi-
phase magnetoelectroelastic composites. The nine interaction tensors which are
used to predict the effective moduli of multi-phase magnetoelectroelastic compos-
ites based on various micro mechanical approaches such Self Consistent, Mori-
Tanaka, Dilute and Incremental Self Consistent schemes are derived. Numerical
results are obtained for various shapes of inclusions and compared with the ex-
isting ones. A mathematical modeling based on the Incremental Self Consistent
model is developed for multi-phase magnetoelectroelastic composites. It is clearly
demonstrated in this work that the Incremental Self Consistent model gives more
accurate results than the classical Self Consistent model.
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2 Basic equations

Let us consider the linear magnetoelectroelastic effect, where the magnetic, electric
and elastic fields are coupled through the following constitutive equations:

σi j = ci jklεkl− eli jEl−hli jHl

Di = eiklεkl +κilEl +αilHl

Bi = hiklεkl +αilEl + µilHl

(1)

where the elastic strain εkl , electric fields El , and magnetic fields Hl are indepen-
dent variables related to stresses σi j, electric displacements Di and magnetic induc-
tions Bi. The tensors ci jkl , eli j, hli j, αil , κil and µil are the elastic, piezoelectric,
piezomagnetic, magnetoeletric, dielectric and magnetic permeability constants re-
spectively. Let us note that ci jkl = c jikl = ci jlk = c jilk, eli j = el ji and hli j = hl ji. In
the constitutive equations we use -El and -Hl rather than El and Hl as they will per-
mit the construction of a symmetric matrix of constitutive moduli. The following
gradient expressions are used:

εkl =
1
2
(uk,l +ul,k) El =−ϕ

e
,l Hl =−ϕ

m
,l (2)

where uk, ϕe, ϕm are the elastic displacements, electric and magnetic potentials,
respectively.

The equilibrium equations, in the absence of body forces, electric charge and elec-
tric current densities, are as follows:

σi j,i = 0 Di,i = 0 Bi,i = 0 (3)

In order to make easy the manipulation of these equations, the condensed notations
are used. These notations are identical to those using the conventional subscripts
except that the lower case subscripts assume the range of 1-3, while the capital
subscripts take the range of 1-5, and the repeated capital subscripts are summed
over 1-5. With these notations, the generalized strain field denoted by ZKl can be
expressed as

ZKl =


εkl (K = k = 1,2,3)
−El (K = 4)
−Hl (K = 5)

(4)

Note that ZKl can be derived from the generalized potential field UK given by

UK =


uk (K = k = 1,2,3)
ϕe (K = 4)
ϕm (K = 5)

(5)
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Similarly, the generalized stress field ∑iJ is given by

∑iJ =


σi j (J = j = 1,2,3)
Di (J = 4)
Bi (J = 5)

(6)

The magnetoelectroelastic constants can then be represented as follows:

EiJKl =



ci jkl (J,K = 1,2,3)
eli j (J = 1,2,3; K = 4)
hli j (J = 1,2,3; K = 5)
eikl (J = 4; K = 1,2,3)
hikl (J = 5; K = 1,2,3)
−κil (J = 4; K = 4)
−αil (J = 4; K = 5orJ = 5; K = 4)
−µil (J = 5; K = 5)

(7)

The symmetry of EiJKl can be obtained from those of ci jkl , eli j, hli j, κil , αil and µil .
By using these shorthand notations, eqs. (1) can be rewritten as a single equation
as follows:

ΣiJ = EiJKlZKl (8a)

With

ZKl = UK,l (8b)

When standard notation matrix for tensors is adopted the constitutive equation can
be written as follow:

Σ = EZ (8c)

where

E =

c et ht

e −κ −α

h −α −µ

 , Z =

 ε

−E
−H

 , Σ =

σ

D
B


The subscript t is used to denote matrix transpose. E is a (12x12) matrix. Similarly,
Z, Σ are (12x1) matrices.
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Thus, in order to express the equilibrium equations, each individual tensor must
be transformed by the well known law of tensor transformations. The resulting
tensors can then be reunified into the form of Eqs.(4) to (7). Substituting Eqs. (2)
into Eqs.(1) and considering matrix symmetry, one obtains:

∑
iJ

= EiJKlUK,l (9)

Introducing Equation (9) in the equilibrium equation (3), the following partial dif-
ferential equation is obtained:

(EiJKlUK,l),i = 0 (10)

3 Integral equation formulation

Let us consider a homogeneous fictitious media called “reference media” which
has the magnetoelectroelastic moduli E0

iJMn. The expression of the local magneto-
electroelastic moduli is given as follow:

EiJMn(r) = E0
iJMn +δEiJMn(r) (11)

where “r” is the position vector in the media considered and δE is the deviation
part. The introduction of this expression into (10) leads to

E0
iJMnUM,ni(r)+(δEiJMn(r)UM,n(r)),i = 0 (12)

Now, let us introduce the magnetoelectroelastic Green’s tensors, denoted by GMJ(r−
r′), of the reference media corresponding to the response at the position r due to a
unit point force or charge at r′. These tensors satisfy the following partial differen-
tial equation:

E0
iJMnGMK,in(r− r′)+δJKδ (r− r′) = 0 (13)

This partial differential equation, satisfied by the magnetoelectroelastic Green’s
tensors, condensed nine partial differential equations. Based on (13), and after
some mathematical manipulations and the consideration of the boundary condi-
tions, the expression of the local generalized field UM(r) is derived:

UK(r) = U0
K(r)+

∫
V

GJK(r− r′)(δEiJMn(r′)UM,n(r′)),i′dV ′ (14)

Using the fact that ZKl = UK,l and considering the condition that the local general-
ized strain field vanishes at the boundaries the expression of the local generalized
strain field can be written as:

ZKl(r) = Z0
Kl(r)−

∫
V

ΓiJKl(r− r′)(δEiJMn(r′)ZMn(r′))dV ′ (15)
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where ΓiJKl(r− r′) =−GJK,li(r− r′) is a condensed notation of nine tensors.

This equation is an integral formulation of the generalized strain field ZKl(r). To
solve this equation the equivalent inclusion approach will be used.

4 Averaged field

Consider an infinite media with magnetoelectroelastic moduli E0
iJMn which con-

tains a single inclusion ”I” of volume V I and magnetoelectroelastic moduli E I
iJMn

assumed to be constant inside the volume V I . The inhomogeneity can be simulated
by an “equivalent inclusion”. Based on these assumptions, as done by Eshelby
(1957) in the elastic case and by Deeg (1980) in the electroelastic case, one obtains

δEiJMn = (E I
iJMn−E0

iJMn)θ
I(r)

Or

δEiJMn = ∆E I
iJMnθ

I(r) (16)

where θ I(r) is the characteristic function of V I (θ I(r) equals 1 inside the volume
V I and 0 outside of V I). Based on Eq. (15), the average generalized strain field ZI

Kl
in the considered inclusion is given by the following expression:

ZI
Kl = Z0

Kl−
1

V I

∫
V I

∫
V

ΓiJKl(r− r′)∆EI
iJMnθ

I(r′)ZMn(r′)dV ′dV (17)

The exact solution of the above integral equation is difficult to be obtained. An
approximation is then made by replacing ZMn(r′) by its average value ZI

Kl in the
considered inclusion as follows:

ZI
Kl = Z0

Kl−
1

V I

∫
V I

∫
V I

ΓiJKl(r− r′)∆E I
iJMnZI

MndV ′dV (18)

This equation can be reformulated in the following form:

ZI
Kl = Z0

Kl−
1

V I T II
iJKl∆E I

iJMnZI
Mn (19)

where T II
iJKl =

∫
V I

∫
V I ΓiJKl(r− r′)dV ′dV represents the condensed notation of the

nine interaction tensors. These tensors are computed numerically for various shapes
of inclusions using the Gaussian quadrature integration for the considered inclusion
shape.
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4.1 Spherical inclusion

A spherical inclusion with radius “q” is considered. In spherical system attached at
the inclusion, the vector ~q becomes

qp = qχp p = 1,2,3 (20)

where ~χ =


sinθcosϕ

sinθ sinϕ

cosθ

q, θ and ϕ are the spherical coordinates of the vector ~q defined in the following
domains: q∈[0, +∞[, θ ∈[0, π] and ϕ ∈[0, 2π].
Application of the Fourier transform to Eq. (13) leads to the following expression

E0
iJMnG̃JK(q)qnqi = δMK (21)

The introduction of the equation (20) into (21) leads to the algebraic problem

E0
iJMnχnχi(q2G̃JK(q)) = δMK (22)

Let us introduce a matrix M defined by

MJM = E0
iJMnχnχi (23a)

The inverse of M is given by

M−1
JK = q2G̃JK(q) (23b)

The explicit expression of the matrix M is given by

M =
[

A B
Bt C

]
(23c)

Expressions of the matrices A, B and C are derived for transversely isotropic mag-
netoelectroelastic composites with x3 the axis of symmetry. The used matrices to
derive A, B and C are given in the appendix. With spherical coordinate, these
matrices are expressed as:

A =

c11x2
1 + c66x2

2 + c44x2
3 (c12 + c66)x1x2 (c13 + c44)x1x3

(c12 + c66)x1x2 c66x2
1 + c11x2

2 + c44x2
3 (c13 + c44)x2x3

(c13 + c44)x1x3 (c13 + c44)x2x3 c44x2
1 + c44x2

2 + c33x2
3
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B =

 (e31 + e15)x3x1 (h31 +h15)x3x1
(e31 + e15)x2x3 (h31 +h15)x2x3

e15x2
1 + e15x2

2 + e33x2
3 h15x2

1 +h15x2
2 +h33x2

3


C =−

[
κ11x2

1 +κ11x2
2 +κ33x2

3 α11x2
1 +α11x2

2 +α33x2
3

α11x2
1 +α11x2

2 +α33x2
3 µ11x2

1 + µ11x2
2 + µ33x2

3

]
where x1 = sinθcosϕ , x2 = sinθ sinϕ , and x3 = cosθ .

The expression of T II
iJKl in spherical coordinates system is then given by:

T II
iJKl =

a3

6

∫
π

0
sinθ

[∫ 2π

0
(χiχlq2G̃JKdϕ)+

∫ 2π

0
(χiχKq2G̃Jldϕ)

]
dθ

K = 1,2,3

T II
iJ4l =

a3

3

∫
π

0
sinθdθ

∫ 2π

0
(χiχlq2G̃J4dϕ)

T II
iJ5l =

a3

3

∫
π

0
sinθdθ

∫ 2π

0
(χiχlq2G̃J5dϕ)

(24)

4.2 Ellipsoidal inclusion

An ellipsoidal inclusion with a, b, and c as half axes is considered. The used ellip-
soidal coordinates are expressed in the principal system of the inclusion:

~R =


R1 = r1

R2 = a
b r2

R3 = a
c r3

and

~Q =


Q1 = r1q1

Q2 = b
a q2

R3 = c
a q3

The matrix relationship between ~Q and ~q is as follows:

qi = φitQt (25)

With

φ =

1 0 0
0 a

b 0
0 0 a

c
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The expression of ~Q in this coordinate system is then

Qt = Qχt t = 1,2,3

The final expressions of T II
iJKl are similarly given by:

T II
iJKl =

abc
6

∫
π

0
sinθ

[∫ 2π

0
(φlt χtφillχllQ2G̃JKdϕ +

∫ 2π

0
(χKt χtφillχllQ2G̃JIdϕ)

]
dθ

K = 1,2,3

T II
iJ4I =

abc
3

∫
π

0
sinθdθ

∫ 2π

0
(φlt χtφillχllQ2G̃J4)dϕ

T II
iJ5I =

abc
3

∫
π

0
sinθdθ

∫ 2π

0
(φlt χtφillχllQ2G̃J5)dϕ

(26)

In this case the matrix M is given by

MJK = E0
iJKlφit χtφluχu and M−1

JK = Q2G̃JK(q)
The explicit expression of the matrix M in ellipsoidal coordinates can be directly
obtained by replacing x1, x2 and x3 in (23-c) by:

x1 = sinθcosϕ, x2 =
a
b

sinθ sinϕ, x3 =
a
c

cosθ

5 Micromechanical models

5.1 N-phase Self Consistent approach

The Self Consistent model has been originally developed for estimating macro-
scopic moduli of polycrystalline metals (Hershey 1954, Kroner 1958). The Self
Consistent model continues to be used by a great number of researchers for esti-
mating homogenized moduli of heterogeneous materials including elastic, elasto-
plastic, viscoplasitic, piezoelectric materials, etc. In the one site Self Consistent
approach the composite is considered as an inclusion embedded in a matrix which
takes the properties of the whole composites Ee f f . Based on the equivalent inclu-
sion problem of Eshelby, the expression of the concentration tensor ASC is given by
Dunn et al and Fakri et al for piezoelectric composites.

ASC
MnKl = (IKlMn +

1
V I T II

iJKl∆E I
iJMn)

−1 (27)

where ∆E I
iJMn = E I

iJMn−Ee f f
iJMn.
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For magnetoelectroelastic composite materials ASC
MnKl is the shorthand notation of

nine concentration tensors defined as functions of the tensor T II . This tensor has to
be computed first and the numerical procedure can be found in Hershey 1954.

For an N-phase medium, the effective magnetoelectroelastic moduli Ee f f , predicted
by the Self Consistent model, is expressed as:

Ee f f
iJKl =

N

∑
I=1

f IE I
iJMnASC

MnKl (28)

where f I = V I

V .

is the concentration of the inclusions I. If the first phase (N=1) is taken as the matrix
(symbol ’m’), the last expression becomes

Ee f f
iJKl = Em

iJKl +
N

∑
I=2

f I(EI
iJMn−Em

iJMn)A
SC
MnKl (29)

Let us recall that
n
∑

I=1
f IASC

MnKl = IMnKl , where IMnKl is the shorthand notation of the

four identity tensors, Em
iJMn corresponds to the magnetoelectroelastic matrix moduli

and E I
iJMn corresponds to the magnetoelectroelastic inclusions moduli. These for-

mulations permit one to predict the effective magnetoelectroelastic moduli for the
N-phase composites. For a two phase composites, the expression of Ee f f

iJKl becomes

Ee f f
iJKl = Em

iJKl + f I(E I
iJMn−Em

iJMn)A
SC
MnKl (30)

Note that equations (28) and (30) give coupled and implicit expression of the ef-
fective magnetoelectroelastic moduli of the magnetoelectroelastic material. The
concentration tensors ASC are functions of Ee f f . This kind of equations is gener-
ally solved by iterative methods. A detailed algorithm for numerical computation
is given in [6].

5.2 N-phase Incremental Self Consistent scheme

The development of the N-phase Incremental Self Consistent approach for the mag-
netoelectroelastic heterogeneous materials is one the main theoretical and numeri-
cal results of this paper. This is due to the fact that the Self Consistent method gives
erroneous predictions of effective coefficients of composites materials at high con-
centration of reinforcements. An improvement of SCM, by an incremental way has
been developed for piezo composite materials by Fakri and Azrar for two phases.
In this paper, an extension of the ISC scheme to magneto-electro-elastic effective
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properties and its development for N-phase magnetoelectroelastic composites are
done.

For N-phase materials, the resulting composite must be characterized by concen-
trations ” f J” of phases (reinforcements) 0< f J < 1;J=1, N.

∆ fJ = f J

S is considered as partial concentration of the phase J and S is the number of
steps. At the ith step, the volume fraction of the phase J is f J

i = i∆ fJ . The concept of
the volume preservation must be used for computing the finite increment of the total
volume fraction of reinforcements which will be added at the ith step. This volume
preservation can be expressed by means of magnetoelectroelastic behaviors of each
phase in the following manner:

After (i-1) steps, the magnetoelectroelastic coefficients of composite can be ex-
pressed by means of magnetoelectroelastic coefficients of each phase as:

N

∑
J=1

(i−1)∆ fJEJ +

[
1−

N

∑
J=1

(i−1)∆ fJ

]
EM = EC

i−1 (31)

where EJ and EM are the magnetoelectroelastic coefficients of the phase J and the
matrix respectively. EC

i−1 represents the composite magnetoelectroelastic coeffi-
cients for the step (i-1).

At the i-th step in the Self Consistent scheme, the next increment of phase J is ∆ f J
i .

It must be introduced in an equivalent matrix which has the behavior of the built
composite in the last steps. So, one can write:

N

∑
J=1

∆ f J
i EJ +

[
1−

N

∑
J=1

∆ f J
i

]
EC

i−1 =
N

∑
J=1

i∆ fJEJ +

[
1−

N

∑
J=1

i∆ fJ

]
EM (32)

where ∆ f J
i is the increment that must be added at the ith step into the equivalent

matrix.

The substitution of (31) into (32) leads to the following equation:

N

∑
J=1

[
∆ f J

i +

[
1−

N

∑
J=1

∆ f J
i

]
(i−1)∆ fJ

]
EJ +

[
1−

N

∑
J=1

∆ f J
i

][
1−

N

∑
J=1

(i−1)∆ fJ

]
EM

=
N

∑
J=1

i∆ fJEJ +

[
1−

N

∑
J=1

i∆ fJ

]
EM

(33)

From this equation, the following formulations are derived:

∆ f J
i +

[
1−

N

∑
J=1

∆ f J
i

]
(i−1)∆ fJ = i∆ fJ (34)
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1−

N

∑
J=1

∆ f J
i

][
1−

N

∑
J=1

(i−1)∆ fJ

]
= 1−

N

∑
J=1

i∆ fJ (35)

From (34) and (35) the general expression of the volume fraction ∆ f J
i to be injected

at the step ‘i’ into the phase J is given by:

∆ f J
i =

∆ fJ

1−
N
∑

J=1
(i−1)∆ fJ

(36)

Expression (36) shows that the incremental volume fraction of reinforcements ∆ f J
i

continuously increases as a function of the step number ‘i’. It is important to point
out that the overall properties of the equivalent homogeneous material obtained by
this procedure depends on the number of steps S.

Ee f f (i)
iJKl = Ee f f (i−1)

iJKl +
N

∑
J=1

∆ f J
i (EI

iJMn−Ee f f (i−1)
iJMn )ASC

MnKl (37)

with Ee f f (0) = EM.

Note that the Incremental Self Consistent scheme does not affect the expression of
the concentration tensors A on which the method is based. So, the formulations
used in this study and in the traditional Self Consistent method are the same. The
two methods differ only in the manner of introducing the reinforcements’ concen-
tration. In order to compare the effectiveness of the presented approach the Mori
Tanaka as well as the dilute approach is presented for N-phase composites.

5.3 N-phase Mori-Tanaka approach

The Mori-Tanaka model has been and continues to be the most widely used ap-
proach in the micro mechanics dilute heterogeneous materials with ellipsoidal in-
clusions. The Mori-Tanaka mean field approach takes into account the effect of
other inhomogeneities by considering a finite concentration of inclusions embed-
ded in an infinite matrix of magnetoelectroelastic moduli E I

iJKl and Em
iJKl , and gives

a straightforward explicit expression of the effective moduli. The corresponding
concentration tensor AMT is then given by the solution for a single inclusion em-
bedded in an infinite matrix in the same manner as the heterogeneous inclusion
problem of Eshelby.

For N phases, the Mori-Tanaka concentration tensor AMT is given as follows:

AMT
iJKl = ADil

iJMn( f mIKlMn +
N

∑
I=1

f IADil
KlMn)

−1 (38)
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To apply this to N phase composites, it is necessary to find ADil and AMT for each
phase [2]. Similarly to the Self Consistent approach, the effective behavior of N
phase composites can be obtained by

Ee f f
iJKl = Em

iJKl +
N

∑
I=2

f I(E I
iJMn−Em

iJMn)A
MT
MnKl (39)

Note that the matrix phase is explicitly taken into account but only in an average
sense.

5.4 N-phase Dilute approach

This approach has an equivalent scheme than the above approaches but does not
consider any interaction between the inhomogeneities. The expression of strain-
electro-magnetic fields ZI

Kl of inclusion can be then derived from that obtained in
the Self Consistent approach with the difference that in this case, the infinite matrix
has magnetoelectroelastic moduli Em as equivalent behavior. The concentration
tensor ADil is given [2]

ADil
MnKl = (IKlMn +

1
V I T II

iJKl∆E I
iJMn)

−1 (40)

where, ∆EI
iJMn = E I

iJMn−Em
iJMn.

The effective behavior prediction of N phase composites, in this case, is expressed
as

Ee f f
iJKl = Em

iJKl +
N

∑
I=2

f I(EI
iJMn−Em

iJMn)A
Dil
MnKl (41)

The effective magnetoelectroelastic formulations (29, 37, 39 and 41) are applicable
to a wide range of inclusion types, shapes and volume fractions. The coupling
elastic-electric-magnetic effective behaviors can be investigated and optimized with
respect to the volume fraction, shape and type of inclusions which may be elastic,
piezoelectric or magnetoelectroelastic.

6 Numerical results

6.1 Two phase composites

The Micromechanical models presented in this paper are used to predict the ef-
fective magnetoelectroelastic coefficients. These models permit to take into ac-
count the effect of phase number and concentrations, shape inclusions, as well as
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its polling orientation. Before investigating the three phase composites effective
behaviors, the numerical results of the two phase composites is first considered.

Consider a magnetoelectroelastic composite in which the matrix is piezomagnetic
(CoFe2O4) and the elliptic inclusions are piezoelectric (BaTiO3) having half axes
a, b and c. The global coordinate system for the matrix is (x1, x2, x3) and the third
half axis c is on the polling direction x3. The material properties of both phases
are transversely isotropic with x3 the axis of symmetry. The magnetoelectroelastic
characteristics of the two materials, used in this paper, are both listed in table 1 and
are obtained from [20].

Note that in the two considered phases the magnetoeletric effect does exist neither
in the matrix nor in the inclusion. This coupling effect will be induced in magneto-
electroelastic composite through the interaction between phases.

Numerical results of effective properties for different inclusions shapes based on the
Mori-Tanaka, Dilute, Self Consistent and Incremental Self Consistent approaches
are obtained using the presented concentration tensors and the obtained numerical
results are well compared with available numerical ones [11, 12, 20].

Figure 1 shows the magnetoeletric coefficient α33for fibrous composite (c/a=1000,
b=a) with respect to the volume fraction predicted by the Mori-Tanaka and Self
consistent models. The two models predict the same results and α33 is maximized
at 45% of inclusion concentration. The same results are already obtained by Zhang
and Soh [20].

Table 1: Material properties of BaTiO3/CoFe2O4

C11 C12 C13 C33 C44

BaTiO3 166 77 78 162 43

CoFe2O4 286 173 170 269.5 45.3

e15 e31 e33 κ 11 κ 33

BaTiO3 11.5 -4.4 18.6 11.2×10-9 12.6×10-9

CoFe2O4 0 0 0 0.08×10-9 0.093×10-9

h15 h31 h33 µ11 µ33

BaTiO3 0 0 0 5×10-6 10×10-6

CoFe2O4 550 580.3 699.7 -590×10-6 157×10-6



216 Copyright © 2011 Tech Science Press CMC, vol.23, no.3, pp.201-231, 2011

Units: elastic constant GPa; dielectric constants C2/Nm2; magnetic constants Ns2/C2,
piezoelectric constants C/m2; piezomagnetic constants N/Am; magnetoeletric co-
efficients Ns/VC.

The prediction based on the Incremental Self Consistent method is presented in
figure 2 at different steps (2 to 100). The convergence of the procedure is demon-
strated for e33 with respect to inclusion volume fraction. It is shown that the Incre-
mental Self Consistent Model improves the prediction of the Self Consistent model
which is usually criticized for its deficiency at high concentrations of inclusions. It
is demonstrated that with 10 steps of increments, this method gives nearly the same
results as with 20, 30, 50, and 100 steps until the concentration 50% of spherical
BaTiO3. For large concentrations, a good convergence is clearly seen with 50 steps,
but 20 steps give very close results. For the numerical predictions in this paper, the
Incremental Self Consistent model with 20 steps of the increment is used.

In figures 3 and 4 the electromagnetic coefficient α11 and the permeability coeffi-
cient µ11 are presented respectively for fibrous composites (a=b, c/a=1000) based
on Incremental Self Consistent, Self Consistent, Mori-Tanaka and Dilute models.
It is clearly shown that the predictions given by these models are in agreement
with each other for low volume fractions of inclusions. The figure 3 demonstrates
that the Self Consistent model is not able to conduct the predictions for moderate
and higher concentrations and it diverges beyond 40% concentration of inclusions.
This is the main raison why the Incremental Self Consistent is developed here. This
figure shows also that the Incremental Self Consistent model improves the predic-
tion of the classical Self Consistent one and gives closer results to Mori-Tanaka’s
predictions.

Note also that the effective moduli of the composite predicted by the Dilute model
does not take the property of the inclusion when the volume faction is close to
1. This is expected because the Dilute model is only applicable when the volume
fraction of the inclusions is very small.

In figure 5, the electromagnetic coefficient –α11 is presented for laminated mag-
netoelectroelastic composites (a=b and c/a=0.001). In this case the Mori-Tanaka,
Self Consistent and ISC micromechanical models predict the same results. -α11 is
maximized at 50% of inclusions concentration. These results are well compared
with those obtained by [11, 12, 21].

The piezoelectric modulus e33 is presented in figure 6 for ellipsoidal inclusions.
The results obtained by Self Consistent model and Mori-Tanaka and those obtained
by ISC model are different and particularly in the vicinity of 50%. Experimental
results are needed to test the accuracy of these predictions.

In figures 7 and 8, the piezoelectric modulus e31 and the dielectric modulus κ33
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Figure 1: Effective electromagnetic modulus α33 for fibrous composite BaTiO3/
CoFe2O4 predicted by Mori-Tanaka and Self Consistent models
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models.
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Figure 5: Effective electromagnetic modulus -α11for laminated composite BaTiO3/
CoFe2O4 predicted by Mori-Tanaka, Self Consistent and Incremental Self Consis-
tent models.
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Figure 7: Effective piezoelectric modulus e31 for spherical composite BaTiO3/
CoFe2O4 predicted by Mori-Tanaka, Self Consistent and Incremental Self Con-
sistent models.
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are presented respectively for magnetoelectroelastic spherical composites (a=b=c).
Again the Self Consistent model shows an over estimation especially over 20% vol-
ume fraction of inclusions. The ISC model improves the prediction of the classical
Self Consistent model for high volume fraction of inclusions.

The effective piezomagnetic coefficients h33 is presented in figure 9 for CoFe2O4
matrix with fibrous voids (a=b, c/a=1000). It is clearly shown that the prediction
given by the classical Self Consistent approach is limited for very low void concen-
tration and the model diverges at 12% of voids inclusions. On the other hand, it is
seen that the Incremental Self Consistent approach improves the prediction of the
classical Self Consistent approach and conducted far the prediction.
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Figure 9: Effective piezomagnetic modulus h33 for fibrous composite CoFe2O4/
Void predicted by Mori-Tanaka, Self Consistent and Incremental Self Consistent
models.

6.2 Three phase composites

In this subsection, the numerical results for three-phase composite materials are
presented. Two kinds of three phase composites are investigated. One is consisting
of a piezoelectric phase and a piezomagnetic phase surrounded by a matrix assumed
to be Epoxy whose properties are listed in table 2. The other is consisting of piezo-
electric phase and void phase surrounded by a piezomagnetic matrix. These voids
are simulated as empty inclusions, which may have several forms. Here, Mori-
Tanaka, Self Consistent and Incremental Self Consistent micro mechanical models
are used to predict the behavior of the considered three-phase magnetoelectroelas-
tic composites. Numerical results are presented for various shapes and types of
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inclusions. In all presented results, the volume fraction of the matrix is fixed and
the volume fractions of inclusions are varied.

Let us note that the Mori-Tanaka method has been already used by Lee, Boyd and
Lagoudas [11] for three-phase magnetoelectroelastic composites materials. Thus,
the numerical results presented in this section using the Mori-Tanaka method are
the same as those of [11].

Table 2: Material properties of Epoxy

C11 C12 C33 C44

Epoxy 5.53 2.97 5.53 1.28

e15 e31 e33 κ 11 κ 33

Epoxy 0 0 0 0.1×10-9 0.1×10-9

h15 h31 h33 µ11 µ33

Epoxy 0 0 0 1×10-6 1×10-6

In figure 10, the effective electromagnetic modulus α33for fibrous three-phase mag-
netoelectroelastic composites (a=b; c/a=1000) is presented with respect to piezo-
magnetic inclusion by using Mori-Tanaka, Self Consistent and Incremental Self
Consistent models. As in the two phase magnetoelectroelastic composites the con-
vergence of the Incremental Self Consistent model is demonstrated. It is shown that
the Incremental Self Consistent model with 10 steps of increments gives nearly the
same results as with 20, 30, and 50 steps.

In figures 11 and 12, piezomagnetic coefficients h33 and h31 are presented respec-
tively for fibrous three-phase magnetoelectroelastic composite materials. The In-
cremental Self Consistent method improves the classical Self consistent method
and gives closer results to Mori-Tanaka predictions.

In figures 13 and 14, the effective magnetic coefficient µ33and the electromagnetic
coefficient -α11are presented respectively for fibrous (a=b; c/a=1000) and lami-
nated (a=b; c/a=0.001) three-phase composite materials. For these coefficients it
is shown that the three micromechanical models predict the same results. Also it
is shown that the effective modulus -α11 takes a maximum value at 30% of the
piezomagnetic phase and piezoelectric phase. By analyzing the numerical results
presented above it is shown that the electromagnetic coefficients obtained in two
phase composites are higher than the electromagnetic coefficients obtained in three-
phase composites. This is due to the presence of the elastic matrix in three-phase
composites. Also it can be explained that in two- phase composites there is more
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Figure 10: Effective electromagnetic modulus α33 for fibrous three- phase com-
posite Epoxy/BaTiO3/ CoFe2O4 predicted by Mori-Tanaka, Self Consistent, and
Incremental Self Consistent models with the volume fraction of the matrix fixed at
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Figure 11: Effective piezomagnetic modulus h33 for fibrous three- phase composite
Epoxy/BaTiO3/ CoFe2O4 predicted by Mori-Tanaka, Self Consistent and Incre-
mental Self Consistent models with the volume fraction of the matrix fixed at 40%.
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Figure 12: Effective piezomagnetic modulus h31 for fibrous three- phase composite
Epoxy/BaTiO3/ CoFe2O4 predicted by Mori-Tanaka, Self Consistent and Incre-
mental Self Consistent models with the volume fraction of the matrix fixed at 40%.
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Figure 13: Effective magnetic modulus µ33 for fibrous three-phase composite
Epoxy/BaTiO3/ CoFe2O4 predicted by Mori-Tanaka, Self Consistent and Incre-
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ites Epoxy/BaTiO3/ CoFe2O4 predicted by the Incremental Self Consistent model
with the volume fraction of the matrix fixed at 50%.
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Figure 17: Effective electromagnetic modulus α33for fibrous three- phase com-
posites CoFe2O4 /BaTiO3/ Void predicted by Mori-Tanaka and Incremental Self
Consistent models with the volume fraction of the matrix fixed at 40%.
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interaction between the piezoelectric phase and piezomagnetic phase than in three-
phase composites.

In figures 15, 16 three dimension numerical results of a three phase composites
Epoxy/BaTiO3/ CoFe2O4 are presented to show the phases effects on the effec-
tive behavior of the composites by using the Incremental Self Consistent approach.
Spherical (a=b=c) and fibrous (a=b; c/a=1000) inclusions are considered respec-
tively in figures 15 and 16. The predictions are presented for 50% of the matrix
and various concentrations of BaTiO3 and CoFe2O4 inclusions. The variation of
the effective magnetoelectric coefficient α33 with respect to the two spherical in-
clusions concentrations is clearly shown. This coefficient may be maximized with
respect to concentrations of the piezoelectric and piezomagnetic phases. With the
epoxy matrix, when the two phases, piezomagnetic and piezoelectric, do not coex-
ist the magnetoeletric coupling effects are zeros. For the piezomagnetic effective
coefficient h33its variation is linear and its maximal value is obtained when the con-
centration of the piezomagnetic phase CoFe2O4is maximal and vanishes when we
have only the piezoelectric phase and the epoxy matrix.

In figure 17, the electromagnetic coefficient α33 is presented for fibrous (a=b;
c/a=1000) magnetoelectroelastic three-phase composites containing voids (CoFe2-
O4/BaTiO3/Void). This figure demonstrates clearly that the Self Consistent ap-
proach can not estimate the effective electromagnetic moduli α33beyond 10% con-
centration of voids in contrast with the Incremental Self Consistent approach which
can be used until 60% voids concentration. Also it can be seen that below 10% void
concentrations the three micromechanical approaches almost give the same predic-
tions.

In figures, 18 and 19 the piezomagnetic coefficient h33 and the dielectric coefficient
κ33are presented respectively for fibrous magnetoelectroelastic three-phase com-
posites containing voids as the third inclusion by using the Incremental Self Con-
sistent and Mori-Tanaka approaches. It is seen that the Incremental Self Consistent
approach conducted far the prediction until 60% void concentration. Also for the
effective coefficient h33 the Incremental Self Consistent and the Mori-Tanaka ap-
proaches give different prediction and the prediction obtained by the Incremental
Self Consistent approach is lower than that obtained by the Mori-Tanaka approach.
On the other hand the numerical predictions obtained for the effective coefficient
κ33 are almost the same.

7 Conclusion

The Incremental Self Consistent, Self Consistent, Mori-Tanaka, and Dilute mi-
cromechanical models are elaborated to predict the effective moduli of multi-phase
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Figure 18: Effective piezomagnetic modulus h33for fibrous three- phase composites
CoFe2O4 /BaTiO3/ Void predicted by Mori-Tanaka and Incremental Self Consistent
models with the volume fraction of the matrix fixed at 40%.
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Figure 19: Effective electromagnetic modulus κ33for fibrous three- phase com-
posites CoFe2O4 /BaTiO3/ Void predicted by Mori-Tanaka and Incremental Self
Consistent models with the volume fraction of the matrix fixed at 40%.
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magnetoelectroelastic composite materials for different shapes, types and concen-
tration of inclusions. The N-phase Incremental Self Consistent model is developed
for magnetoelectroelastic effective properties. The expression of the effective be-
havior of the composite obtained by the micro mechanical models is written as
function of the concentration tensors which are a function of the interaction ten-
sors. The interaction tensor depends on the constituent properties and shape of
ellipsoidal inclusions.

Numerical results have been presented for two phase composites and three phase
composites with and without void by emphasizing the effect of shape and concen-
tration inclusions. It is shown that the Self Consistent, Mori-Tanaka, and Dilute
approaches lead to the same results for very low volume fraction of inclusions.
However, for moderate and high volume fractions of inclusions the Self Consis-
tent showed an over estimating especially over 20% inclusion concentration, and
gives erroneous results for some coefficients. This drawback is corrected by the
developed ISC model, which improves the prediction of the Self Consistent model
for high volume fractions of the inclusions. In addition, it has been demonstrated
from the above numerical results obtained for three-phase composites consisting of
a piezoelectric phase and a void phase surrounded by a piezomagnetic matrix that
the Incremental Self Consistent approach can estimate the properties of the com-
posites for moderate volume fraction of voids. This model has been compared to
the Mori-Tanaka one which is extensively used. This model will be next elaborated
for predicting the behavior of disordered aggregates in nonlinear piezoelectric and
magnetoelectroelastic heterogeneous media.
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Appendix

In this paper, transversely isotropic magnetoelectroelastic materials are used. The
used magnetoelectroelastic matrix is given by:

E =

c et ht

e −κ −α

h −α −µ


with

c =



c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

 et =



0 0 e31
0 0 e31
0 0 e33
0 e15 0

e15 0 0
0 0 0



ht =



0 0 h31
0 0 h31
0 0 h33
0 h15 0

h15 0 0
0 0 0

 κ =

−κ11 0 0
0 −κ11 0
0 0 −κ33



µ =

−µ11 0 0
0 −µ11 0
0 0 −µ33

 α =

−α11 0 0
0 −α11 0
0 0 −α33






