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Abstract: The application of the Galerkin method, using global trial functions
which satisfy the boundary conditions, to nonlinear partial differential equations
such as those in the von Karman nonlinear plate theory, is well-known. Such an ap-
proach using trial function expansions involving multiple basis functions, leads to
a highly coupled system of nonlinear algebraic equations (NAEs). The derivation
of such a system of NAEs and their direct solutions have hitherto been consid-
ered to be formidable tasks. Thus, research in the last 40 years has been focused
mainly on the use of local trial functions and the Galerkin method, applied to the
piecewise linear system of partial differential equations in the updated or total La-
grangean reference frames. This leads to the so-called tangent-stiffness finite ele-
ment method. The piecewise linear tangent-stiffness finite element equations are
usually solved by an iterative Newton-Raphson method, which involves the inver-
sion of the tangent-stiffness matrix during each iteration. However, the advent of
symbolic computation has made it now much easier to directly derive the coupled
system of NAEs using the global Galerkin method. Also, methods to directly solve
the NAEs, without inverting the tangent-stiffness matrix during each iteration, and
which are faster and better than the Newton method are slowly emerging. In a
previous paper [Dai, Paik and Atluri (2011a)], we have presented an exponentially
convergent scalar homotopy algorithm to directly solve a large set of NAEs arising
out of the application of the global Galerkin method to von Karman plate equations.
While the results were highly encouraging, the computation time increases with the
increase in the number of NAEs—the number of coupled NAEs solved by Dai, Paik
and Atluri (2011a) was of the order of 40. In this paper we present a much improved
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method of solving a larger system of NAEs, much faster. If F(x) = 0 [Fi(x j) = 0] is
the system of NAEs governing the modal amplitudes x j [ j = 1, 2...N], for large N,
we recast the NAEs into a system of nonlinear ODEs: ẋ = λ [αF +(1−α)BTF],
where λ and α are scalars, and Bi j = ∂Fi/∂x j. We derive a purely iterative algo-
rithm from this, with optimum value for λ and α being determined by keeping x
on a newly defined invariant manifold [Liu and Atluri (2011b)]. Several numerical
examples of nonlinear von Karman plates, including the post-buckling behavior of
plates with initial imperfections are presented to show that the present algorithms
for directly solving the NAEs are several orders of magnitude faster than those in
Dai, Paik and Atluri (2011a). This makes the resurgence of simple global Galerkin
methods, as alternatives to the finite element method, to directly solve nonlinear
structural mechanics problems without piecewise linear formulations, entirely fea-
sible.

Keywords: large deflections, global nonlinear Galerkin method, von Karman
plate equations, nonlinear algebraic equations (NAEs), initial guess, optimal vector-
driven algorithm (OVDA), new manifold

1 Introduction

Ingenious ways of using von Karman’s nonlinear theory for moderate rotations,
in an updated Lagrangian corotational frame, for analyzing large rotations, and
large deformation of plates and shells, have been proposed by Cai, Paik and Atluri
(2009a, 2009b, 2010a, 2010b) and Zhu, Cai, Paik and Atluri (2010). In von Kar-
man’s theory, the large deflection behavior of plates with initial imperfections is de-
scribed by two nonlinear PDEs which are notoriously difficult to solve. In general,
the exact analytical solution of PDEs are possible only in the simplest geometrical
domains, and only mostly for linear problems [Atluri 2002]. Therefore, for solving
the von Karman PDEs, researchers turn to the numerical methods.

For nonlinear problems, such as the von Karman nonlinear theory of plates, it is
these days very common to develop the tangent-stiffness finite element method,
based on local trial function in each element, using the incremental form of the
symmetric Galerkin weak-form. The tangent-stiffness equations of the nonlinear
plate theory are solved by using Newton-Raphson iteration scheme for each incre-
mental displacement state, which is only quadratically convergent. Moreover, the
Newton method involves the expensive process of inverting the tangent-stiffness at
each iteration.

To avoid the expensive effort due to solving such a large set of equations as in the
finite element method, an incremental global Galerkin method was first proposed
by Ueda, Rashed and Paik (1987), and applied by Paik, Thayamballi, Lee and
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Kang (2001), Paik and Lee (2005). In the incremental global Galerkin method,
instead of solving the von Karman PDEs directly, an incremental form of governing
differential equations is derived. The derived PDEs are a set of piecewise linear
partial differential equations. Therefore, upon applying the global Galerkin method
to the incremental form of governing differential equations, a set of linear system of
simultaneous equations will be obtained. This incremental global Galerkin method
naturally leads to a tangent-stiffness matrix which is in general densely populated
[as opposed to the sparsely populated tangent-stiffness matrix of the plates, based
on the finite element method], but the matrix is of a much smaller size than that in
FEM. However, the solution of the nonlinear plate problem, using the incremental
global Galerkin method of Ueda, Rashed and Paik (1987) also involves a Newton-
Raphson iteration, and the inversion of the tangent-stiffness matrix at each time and
is only quadratically convergent.

Unlike the above methods, in the present paper the global Galerkin method is ap-
plied directly to the von Karman equations to derive a system of third order coupled
NAEs. As a contribution of this study, we solve the resultant large set of NAEs di-
rectly in each load step by introducing a highly efficient algorithm which does not
involve the inversion of the Jacobian tangent-stiffness matrix. In general, the re-
sultant NAEs is hard to solve. Firstly, one has to find the one physical solution
among the multiple solutions. Therefore, a suitable initial guess is required to lead
to the real solution. To keep track of the physical solution, we will solve the sets
of NAEs corresponding to gradually increased loads, and take the solution of the
last load step as the initial guess for the current NAEs under the current loads. Sec-
ondly, the size of NAEs grows large dramatically, with the increase of the number
of terms of the deflection function. However, there are few tools to solve such a
large system of NAEs directly. The most well-known Newton method suffers from
its sensitivity to initial guess and being very expensive for calculating the inverse
of the Jacobian matrix at each iteration step. Because of these two reasons, solving
the von Karman equations by the global nonlinear Galerkin method is thought to
be an impossible task until the work by Dai, Paik and Atluri (2011a), where they
use the exponentially convergent scalar homotopy algorithm (ECSHA) to solve the
large set of NAEs. Recently, six algorithms are developed to directly deal with
the NAEs without calculating the inverse of the Jacobian matrix. They are the
fictitious time integration method (FTIM) [Liu and Atluri (2008)], the modified
Newton method [Atluri, Liu and Kuo (2009)], the scalar homotopy method (SHM)
[Liu, Yeih, Kuo and Atluri (2009)], the exponentially convergent scalar homotopy
algorithm [Liu, Ku, Yeih, Fan and Atluri (2010)], a residual-norm based iterative al-
gorithm [Liu and Atluri (2011a)] and the optimal vector-driven algorithm (OVDA)
[Liu and Atluri (2011b)]. Of these, the iterative OVDA algorithm [Liu and Atluri
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(2011b)] promises to be the best, and much faster than the Newton method. In this
iterative method, the system of nonlinear equations F(x) = 0 [Fi(x j) = 0] governing
the global Galerkin modal amplitudes x j are solved by first converting the NAEs
into a system of nonlinear ODEs: ẋ = λ [αF + (1−α)BTF], where λ and α are
scalars, and Bi j = ∂Fi/∂x j. We derive a purely iterative algorithm from this, with
optimum values for λ and α being determined to keep x on a newly defined mani-
fold. The present OVDA algorithm is several orders of magnitude faster than either
the ECSHA used in Dai, Paik and Atluri (2011a) or the Newton algorithm. Sev-
eral numerical examples of nonlinear von Karman plates, including post-buckling
behavior of plates with initial imperfections, are presented to show that the present
algorithms for directly solving the NAEs are several orders of magnitude faster
than those in Dai, Paik and Atluri (2011a). The ideas presented in this paper and
the state of the science in symbolic computation, make the resurgence of the global
Galerkin method, as an efficient and simple tool to quickly solve nonlinear struc-
tural mechanics problems, possible.

2 Governing differential equations of plates and the global nonlinear Galerkin
method

The elastic large deflection response of a plate with initial imperfection is governed
by two PDEs, which are named von Karman plate equations. One of them repre-
sents the equilibrium condition in the transverse direction, and the other represents
the compatibility condition of in-plane strains. The PDEs are as follows:

ϕ = D∇
4w− t

[
∂ 2F
∂y2

∂ 2(w+w0)
∂x2 +

∂ 2F
∂x2

∂ 2(w+w0)
∂y2 −2

∂ 2F
∂x∂y

∂ 2(w+w0)
∂x∂y

]
−Q

= 0
(1)

∇
4F = E

[(
∂ 2w
∂x∂y

)2

− ∂ 2w
∂x2

∂ 2w
∂y2 +2

∂ 2w0

∂x∂y
∂ 2w
∂x∂y

− ∂ 2w0

∂x2
∂ 2w
∂y2 −

∂ 2w
∂x2

∂ 2w0

∂y2

]
(2)

In the above, w0 is the given initial transverse displacement, w is the additional
transverse displacement, and F is the Airy stress function governing the in plane
stress resultants. In solving the above PDEs by the direct nonlinear global Galerkin
method for capturing elastic large deflections of a simply supported plate, the added
deflection w due to the applied load, and the initial deflection w0 should satisfy the
boundary conditions at four edges. In particular, the boundary conditions are as
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Table 1: Notations
a length of the plate
b width of the plate
t thickness of the plate
α aspect ratio a/b
E Young’s modulus
υ Poisson’s ratio
D = Et3

12(1−υ2) plate bending rigidity
w added deflection of the plate
w0 initial deflection of the plate
F Airy stress function
M assumed half wave number in the x di-

rection
N assumed half wave number in the y di-

rection
Px compression force in the x direction
Py compression force in the y direction
Mx in-plane bending moment in the x direc-

tion
My in-plane bending moment in the y direc-

tion
τ shear stress
Q lateral pressure
σrx residual stress in the x direction
σry residual stress in the y direction

follows:

w = 0,
∂ 2w
∂y2 +υ

∂ 2w
∂x2 = 0, at y = 0, and y = b

w = 0,
∂ 2w
∂x2 +υ

∂ 2w
∂y2 = 0, at x = 0, and x = a

(3)

To satisfy the boundary conditions, the added deflection function w and the initial
deflection w0 can be assumed in Fourier series,

w0 =
M

∑
m=1

N

∑
n=1

A0mn sin(
mπx

a
)sin(

nπy
b

) (4)
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w =
M

∑
m=1

N

∑
n=1

Amn sin(
mπx

a
)sin(

nπy
b

) (5)

Where, Amn and A0mn are the unknown and the known coefficients, respectively.
The conditions of the combined loads, namely, bi-axial loads, bi-axial in-plane
bending and edge shear are given as follows:

b∫
0

∂ 2F
∂y2 tdy = Px,

b∫
0

∂ 2F
∂y2 t(y− b

2
)dy = Mx at x = 0, and x = a

a∫
0
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∂x2 tdx = Py,

a∫
0

∂ 2F
∂x2 t(x− a

2
)dx = My at y = 0, and x = b

∂ 2F
∂x∂y

=−τ, at f our edges

(6)

Then the homogenous solution Fh for the Airy stress function F should satisfy
the condition of the combined loads acting on the plate. Considering the loading
conditions, we can easily find Fh , by assuming Fh as cube polynomials in x and y.
Substituting Fh into Eq. (6) we can obtain,

Fh =−Px
y2

2bt
−σrx

y2

2
−Py

x2

2at
−σry

x2

2
−Mx

y2(2y−3b)
b3t

−My
x2(2x−3a)

a3t
− τxyxy

(7)

For simplicity, the following notations are introduced to abbreviate the expressions
involving the sine or cosine terms,

sin(
mπx

a
) = sx(m), cos(

mπx
a

) = cx(m)

sin(
nπy

b
) = sy(n), cos(

nπy
b

) = cy(n)
(8)

To find the particular solution Fp, which should satisfy Eq. (2) , one can substitute
w and w0 into the right side of Eq. (2), thus obtaining:

∇
4Fp =

Eπ4

4a2b2

M

∑
m=1

N

∑
n=1

K

∑
k=1

L

∑
l=1

{
[AmnAklml(nk−ml)−AklA0mn(nk−ml)2]cx(m+ k)cy(n+ l)

+ [AmnAklml(nk +ml)+AklA0mn(nk +ml)2]cx(m+ k)cy(n− l)

+ [AmnAklml(nk +ml)+AklA0mn(nk +ml)2]cx(m− k)cy(n+ l)

+[AmnAklml(nk−ml)−AklA0mn(nk−ml)2]cx(m− k)cy(n− l)
}

(9)
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Consequently, the particular solution Fp for the Airy stress function can be written
in the following way,

Fp =
M

∑
m=1

N

∑
n=1

K

∑
k=1

L

∑
l=1
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+B3(m,n,k, l)× cx(m− k)cy(n+ l)
+B4(m,n,k, l)× cx(m− k)cy(n− l)}

(10)

Upon substituting Fp into the Eq. (2), the coefficients B1, B2, B3 and B4 are obtained
as

B1(m,n,k, l) =
Eα2

4
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[(m+ k)2 +(n− l)2]2

B3(m,n,k, l) =
Eα2

4
× AmnAklml(nk +ml)+AklA0mn(nk +ml)2

[(m− k)2 +(n+ l)2]2

B4(m,n,k, l) =
Eα2

4
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(11)

Inserting B1, B2, B3 and B4 in Eq. (10) , we obtain:
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4
M
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}
(12)

Then, the Airy stress function F can be obtained by

F = Fh +FP (13)
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It is evident from Eq. (7), Eq. (12) and Eq. (13) that F is a second order function
with regard to the unknown deflection coefficients Amn. To compute the unknown
coefficients Amn, the global Galerkin method is applied to the equilibrium Eq. (1),

∫ ∫ ∫
v

ϕ(x,y,z)sx(i)sy( j)dxdydz = 0, i = 1,2,3... j = 1,2,3... (14)

Upon substituting Eq. (13) into Eq. (1), and then Eq. (1) to Eq. (14) after a lengthy
derivation, we obtain a system of third order coupled NAEs, with respect to the
unknown coefficients Amn, the expression of the derived NAEs is

M
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+
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∑
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}
−Q×H00(i, j) = 0

Where, for simplicity, the coefficient matrix H1(i, j,m,n,k, l,r,s) is denoted by H1
and so forth. All the coefficient matrices can be obtained by performing integration
over the whole volume of the plate. We can write the Eq. (15) in a matrix form,

[K f ]MN×MNA f +[Ks]MN×(MN)2As +[Kt ]MN×(MN)3At +[C]MN×1 = 0 (16)

Where [C]MN×1 is the constant column matrix, [K f ]MN×MN , [Ks]MN×(MN)2 and
[Kt ]MN×(MN)3 are the first order, second order, third order coefficient matrices, re-
spectively, with their subscripts being their dimensions. A f ,As,At are the first order,
second order and third order unknown vectors, respectively. The exact descriptions
of the matrices and vectors in Eq. (16) are provided in the paper by Dai, Paik and
Atluri (2011a).

We can see from Eq. (16) that the number of nonlinear terms of the NAEs be-
comes larger dramatically with the increase of deflection function terms M×N.
For instance, if we take M = N = 2, M = N = 3, M = N = 4 and M = N = 5 the
number of third order terms in one equation is 64, 729, 4096 and 15625, respec-
tively. Therefore, solving the system of third order simultaneous equations to solve
for the coefficients AMN normally requires a large amount of computational efforts,
especially when M×N are not small. Moreover, since the solution of each coef-
ficient should be unique, one will have to construct a suitable initial guess for the
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NAEs to find the one physical solution among the multiple solutions. Because of
these two reasons, it has been considered to be an impossible task to solve such a
set of highly nonlinear third order simultaneous equations [Paik, Thayamballi, Lee
and Kang 2001].

In section 3, an extraordinarily efficient optimal vector-driven algorithm, which can
be used to iteratively and efficiently solve a large set of NAEs, is introduced. This
algorithm is shown to be several orders of magnitude faster than the exponentially
convergent scalar homotopy algorithm (ECSHA) used in the earlier paper [Dai,
Paik and Atluri (2011a)]. In section 4, approaches for providing the proper initial
guess to directly solve the highly nonlinear algebraic equations are discussed.

3 The Optimal Vector-Driven Algorithm

The thoroughly novel optimal vector-driven algorithm, which is recently proposed
by Liu and Atluri (2011b), is based on an invariant manifold defined in the space
of (x, t) in terms of the residual-norm of the vector F(x). Although they start from
a continuous invariant manifold based on the residual-norm and arrive at a system
of vector-driven ODEs to govern the evolution of unknown variables, interestingly
they finally derive a novel algorithm of purely iterative type in nature without re-
sorting on the fictitious time and its step size. Liu and Atluri (2011b) point out and
prove that the OVDA is convergent automatically, easy to implement, and with-
out calculating the inversions of the Jacobian matrices. The advantages make the
OVDA an efficient tool to solve a large set of NAEs.

3.1 Newton method and scalar homotopy method

Before introducing the OVDA, we first consider the following NAEs:

F(x) = 0,

where x = (x1,x2, ...,xn)T , and F = (F1,F2, ...,Fn)T (17)

Traditionally, the classic Newton-Raphson method for solving these NAEs is given
by

xk+1 = xk−B−1(xk)F(xk) (18)

Where B denotes the Jacobian matrix of F(x), and xk+1 is the (k + 1)th iteration
for x. Newton’s method has an advantage, in that it is quadratically convergent.
However, its convergence depends on the initial guess of the solution. If the initial
guess is beyond the attracting zone, the Newton’s method fails. In addition, in
Newton’s method it is numerically expensive to compute the inverse of the Jacobian
matrix at every iteration step.
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Many contributions have been made to avoid the shortcomings of Newton’s method.
Davidenko (1953) first developed a homotopy method to solve NAEs by numeri-
cally integrating ẋ(t) = −H−1

x Ht(x, t), x(0) = a, where H is a vector homotopy
function. Thus, it is called a vector homotopy method. This vector homotopy
method is global convergent. However, it suffers a slow convergence speed due to
the inverse of Jacobian matrix and a required small time step.

To take advantage of the global convergence of the homotopy method and also to
avoid computing the inverse of the Jacobian matrix, the scalar homotopy method
(SHM), was developed by Liu, Yeih, Kuo and Atluri (2009). In their study, instead
of using a vector function, they introduced a scalar function

h(x, t) =
1
2

[
t ‖F(x)‖2− (1− t)‖x−a‖2

]
= 0 (19)

Based on this scalar function and the consistency condition, they derived the fol-
lowing evolution equation:

ẋ =−
∂h
∂ t∥∥∥ ∂h

∂x

∥∥∥2
∂h
∂x

(20)

Where
∂h
∂ t

=
1
2

[
‖F(x)‖2 +‖x‖2

]
(21)

∂h
∂x

= tBTF− (1− t)x (22)

The scalar homotopy method basically aims to construct a path from the solution
of the auxiliary scalar function to the solution of the desired function continuously.
The SHM shows many merits to deal with a variety of problems [Liu, Yeih, Kuo
and Atluri (2009), Fan, Liu, Yeih and Chan (2010)]. Furthermore, Liu, Ku, Yeih
and Atluri (2011) combined this idea with an exponentially convergent scalar ho-
motopy function, and developed a manifold-based exponentially convergent scalar
homotopy method (ECSHA) [Liu, Ku, Yeih, Fan and Atluri (2011)]. The ECHSA
shows a better performance in solving a large system of NAEs. The evolution
equation of the ECSHA is:

ẋ =
−v

2(1+ t)m
‖F(x)‖2

‖BTF(x)‖2 BTF(x) (23)

However, the ECHSA is not faultless. Two major drawbacks appear in the ECSHA:
irregular bursts and flattened behavior appearing in the trajectory of the residual-
error (Numerical illustrations in section 5 confirm these drawbacks).
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3.2 Optimal vector-driven method

Recently, Liu and Atluri (2011b) overcame the limitations of the residual-norm
based algorithms, and proposed a thoroughly novel optimal vector-driven algo-
rithm, of purely iterative nature, which can be easily implemented to solve nonlin-
ear algebraic equations (NAEs). In the work by Liu and Atluri (2011b), they start
from a continuous manifold defined in terms of a residual-norm, and arrive at a
system of ODEs driven by a vector, which is a combination of residual vector and
gradient vector. Then a scalar equation is derived to keep the discretely iterative or-
bit on the manifold. Finally, two parameters—bifurcation parameter γ and optimal
α are introduced, which guarantee the automatic convergence of the residual error.

To begin with, they formulate a scalar Newton homotopy function for the nonlinear
algebraic equations in Eq. (17):

h(x, t) =
1
2

Q(t)‖F(x)‖2− 1
2
‖F(x0)‖2 = 0 (24)

Where, x is a function of a fictitious time-like variable t, and its initial value is
x(0) = x0. When Q > 0, the dynamical system h(x(t), t) = 0 makes sense. Hence,
differentiate the Eq. (24) with respect to t, obtaining

1
2

Q̇(t)‖F(x)‖2 +Q(t)(BTF) · ẋ = 0 (25)

We suppose that the evolution of x is driven by a vector u, that is

ẋ = λu (26)

Where,

u = αF+(1−α)BTF (27)

We can see that vector u is a combination of the residual vector F and the gradient
vector BTF. Upon substituting Eq. (26) to Eq. (24), we have

ẋ =−q(t)
‖F‖2

FTv
u (28)

Where

A = BBT (29)

v = Bu = v1 +αv2 = AF+α(B−A)F (30)
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q(t) =
Q̇(t)

2Q(t)
(31)

Therefore, in the present algorithm, once the Q(t) is guaranteed to be monoton-
ically increasing with time t, we may have an absolutely convergent property in
solving the NAEs as below:

‖F(x)‖2 =
‖F(x0)‖

2

Q(t)
(32)

From Eq. (32), we can see that if the Q(t) is chosen to be a monotonically increas-
ing function of t, when t is large, the above equation will enforce the residual error
to vanish. In this situation, the approximate solution of x will be obtained.

However, we expect to derive a discrete time dynamics system in order to perform
the numerical iteration. Therefore, the continuous time dynamics system of Eq.
(28) is discretized into a discrete time dynamics system by applying Euler scheme

x(t +∆t) = x(t)−β
‖F‖2

FTv
u (33)

Where

β = q(t)∆t (34)

is the steplength. In order to keep x on the manifold of Eq. (32), we can consider
the evolution of F along the path x(t), which represents

Ḟ = Bẋ =−q(t)
‖F‖2

FTv
v (35)

Or transforming into a discrete form by applying Euler scheme,

F(t +∆t) = F(t)−β
‖F‖2

FTv
v (36)

Taking the square-norms of both sides of Eq. (36), and using Eq. (32) we obtain

C
Q(t +∆t)

=
C

Q(t)
−2β

C
Q(t)

+β
2 C

Q(t)
‖F‖2

(FTv)2 ‖v‖
2 (37)

Thus, we can derive the following scalar equation

a0β
2−2β +1− Q(t)

Q(t +∆t)
= 0 (38)
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Where

a0 =
‖F‖2 ‖v‖2

(FTv)2 (39)

As a result, the discrete time dynamical system h(x(t), t) = 0 remains to be an
invariant manifold in the space of (x, t).
Now, we specify the discrete time dynamics h(x(t), t) = 0, t ∈ {0,1,2...}, through
specifying the discrete time dynamics Q(t), t ∈ {0,1,2...}. Note that the discrete
time dynamics is an iterative dynamics which amounts to an iterative algorithm.

Let

s =
Q(t)

Q(t +∆t)
=
‖F (x(t +∆t))‖2

‖F (x(t))‖2 (40)

Which is an important quantity to assess the convergence property of numerical
algorithm for solving NAEs. From Eq. (38) and Eq. (40), we can derive

a0β
2−2β +1− s = 0 (41)

From Eq. (39) we know a0 ≥ 1 (Cauchy-Schwarz inequality). If we let

1− (1− s)a0 = γ
2 ≥ 0, (so that s = 1− 1− γ2

a0
) (42)

Then we can solve the Eq. (41), and obtain

β =
1−
√

1− (1− s)a0

a0
=

1− γ

a0
(43)

and from Eqs. (33) and (39) we can derive the following algorithm

x(t +∆t) = x(t)− (1− γ)
FTv
‖v‖2 u (44)

Where 0≤ γ < 1 is a bifurcation parameter enabling us to switch the slow conver-
gence to a new situation wherein the residual-error is quickly decreased. Eqs. (40)
and (42) prove that

‖F (x(t +∆t))‖
‖F (x(t))‖

=
√

s < 1 (45)

which guarantees the new algorithm to be absolutely convergent to the true solution.



The Global Nonlinear Galerkin Method 169

Until now, the parameter α in Eq. (27) is still undetermined. The algorithm Eq.
(44) does not specify how to choose α . One simple way is to choose the parameter
α by user. However, make a closer investigation, we can determine a suitable α to
minimize s (see Eq. (42)). Since Eq. (45) indicates that a smaller s may speed up
the convergence. Upon inserting Eq. (39) to Eq. (42), we obtain

s = 1− (1− γ2)(F ·v)2

‖F‖2 ‖v‖2 (46)

As we wrote in Eq. (30), v is defined to include the parameter α . Therefore, let
∂ s/∂α = 0, we can obtain

α =
(v1 ·F)(v1 ·v2)− (v2 ·F)‖v1‖2

(v2 ·F)(v1 ·v2)− (v1 ·F)‖v2‖2 (47)

The parameter α can be called the optimal α , because it can bring us a new strategy
to select the best orientation to search the solution of NAEs. Furthermore, we
have an explicit form of optimal α which can be easy to implement in numerical
program.

Since the fictitious time is now discrete, we finally get a purely iterative optimal
vector-driven algorithm (OVDA) by Eq. (44):

Select 0≤ γ < 1, and give an initial guess value x0 for the vector.

For k = 0,1,2... repeat the following procedures

vk
1 = AkFk (48)

vk
2 = (Bk−Ak)Fk (49)

αk =

[
vk

1,v
k
2,Fk

]
·vk

1[
vk

2,v
k
1,Fk

]
·vk

2
(50)

uk = αkFk +(1−αk)BT
k Fk (51)

vk = Bkuk (52)

xk+1 = xk− (1− γ)
FT

k vk

‖vk‖2 uk (53)

If xk+1 converges to a given stopping criterion ‖Fk+1‖ < ε , then stop; otherwise
repeat (ii). Where B is the Jacobian matrix of F(x), A is BBT by definition, αk is
an elegant Jordan algebra form of Eq. (47).

In summary, a thoroughly novel algorithm is given above for solving NAEs. In the
present OVDA [Liu and Atluri (2011b)], the parameter γ is a very important factor,
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which is a bifurcation parameter and enables us to switch the slow convergence
to a new situation wherein the residual-error is quickly decreased. The optimal
parameter of α was derived exactly in terms of a Jordan algebra, and thus it is very
time saving to implement the optimization technique into the numerical program.
Therefore, for the novel OVDA, we have two mechanisms γ and α to accelerate the
convergence speed of the residual error of the NAEs. Specifically, the bifurcation
parameter γ should be chosen according to the given NAEs, while the optimization
parameter α will be exactly calculated according to every iteration step (see Eq.
(50)). The optimal α can bring us a new strategy to select the best orientation
to search the solution of NAEs in every iteration step. In application, since the
suitable bifurcation parameter γ is not a constant value, we set γ to be zero in every
example. Although we use only one mechanism to speed up the convergence speed
in the illustrations, the OVDA with optimal parameter α still shows a much better
performance than the ECSHA.

4 Selection of the Initial Guess Solution

When an iterative method is employed to solve the NAEs, the initial guess of the
solution is of great importance. In general, when an initial guess is in the vicinity
of a solution, it may significantly reduce the number of iterations and also avoid
deviating from the current solution. Consider a simple case, a rectangular plate
subjected to uniaxial compression load P. The Eq. (16) is its governing equations.

When P is small compared with Pcr, the linear terms of Eq. (16) play a dominate
role in the whole equation since the deflection is small and the nonlinear terms can
be quite small. Based on this observation, one can throw off the nonlinear terms in
Eq. (16), and solve the linear part of the NAEs quite easily. Intuitively, the solution
of the linear equations is taken as a reasonable initial guess for the NAEs, when the
applied loads are small. However, with the increase of P, the nonlinear terms grow
large quickly. When it reaches a certain level, the magnitude of the nonlinear terms
becomes comparable to that of the linear terms. Thus, the solution of the linear
equations may not be a good initial guess any more. Therefore, this approach fails
when the plate deflects finitely.

Another approach to construct a proper initial guess for the NAEs is to take the
solution of the last load step as the initial guess of the current step when the two
loads are reasonably close to each other. For instance, we can use the solution of the
NAEs with load P as the initial guess for the NAEs with load P + ∆P where ∆P is
relatively small compared with P. It makes sense since a small change of the load
will results in a small change of the deflection, thus, a small difference between
the solutions. This approach makes use of the approximation between solutions
of two close loads. Theoretically, this load-tracking approach is applicable to any
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situation when the plate deflects finitely so we use this approach to keep track of
the physical solution in each load step in the numerical illustrations. Although we
take the compression load as an example, this approach still makes sense when the
plate is subjected to a combination of loading conditions. In practical applications,
we employ the load-tracking approach to provide the initial guess for the NAEs
with M×N terms to keep track of the physical solutions.

5 Numerical illustrations

In this section, several numerical examples are provided to demonstrate efficiency
of the optimal vector-driven algorithm (OVDA) by comparing it with the exponen-
tially convergent scalar homotopy algorithm (ECSHA). In addition, the accuracy
of the proposed global nonlinear Galerkin method, which is applying the global
Galerkin method directly to the highly nonlinear PDEs and directly solving the re-
sultant NAEs at every load step, is also validated. These examples make the global
nonlinear Galerkin method, the current state-of-science in symbolic computation,
and algorithms for directly solving the NAEs such as the OVDA presented in this
paper, as viable tools for solving nonlinear structural mechanics problems. Also,
because of the extremely high accuracy provided at a very modest cost, the methods
presented in this paper may also provide the much needed highly accurate bench-
mark solutions against which other numerical methods may be validated.

In the following examples, the Young’s modulus and Poisson’s ratio are assumed to
be E = 205.8 GPa and υ = 0.3, respectively. For applying the OVDA, the param-
eter γ is set to be 0 in all examples. The parameter may influence the convergence
property of the OVDA, which as mentioned above is a bifurcation parameter that
enables us to switch the slow convergence to a new situation that the residual er-
ror is quickly decreased. Since the NAEs are changing with the applied load, the
suitable bifurcation parameter is always changing, for simplicity we set γ to be
zero.

5.1 A square plate under uniaxial compression

In this example, a simply supported square plate under uniaxial compression is
analyzed. The dimensions of this plate are a = 1, b = 1, t = 0.009, where a, b, t
represent length, width and thickness respectively. All dimensions in this study are
in metres unless otherwise mentioned. According to Eq. (4) and Eq. (5), the initial
deflection is assumed to consist of M×N terms,

w0 =
M

∑
m=1

N

∑
n=1

A0mnsx(m)sy(n)
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Where, A0mn are the known coefficients with A011 being 0.45× 10−3 and other
elements being zeros. The deflection function with M×N terms is,

w =
M

∑
m=1

N

∑
n=1

Amnsx(m)sy(n)

The global Galerkin method is applied to deal with five cases wherein the deflection
functions are assumed with 1×1 term, 2×2 terms, 3×3 terms, 4×4 terms and 5×
5 terms, respectively. A case of the incremental global Galerkin method developed
by Ueda, Rashed and Paik (1987) is used to compare with the present global direct
nonlinear Galerkin method. Figure 1 displays curves that plot the compression load
against the maximum deflection of the plate. The compression load acting on the
plate varies from 0 to 2 ( Pcr ) with load step being 0.1. Therefore, for each case,
there are 20 load steps (if we exclude load=0), hence 20 sets of NAEs to solve.

It may be seen from Figure 1 that the results of the present nonlinear global Galerkin
method and the incremental global Galerkin method are in good agreement. Fig-
ure 1 also provides the comparison of the results of the present global nonlinear
Galerkin method with different order trigonometric functions. We only plot three
of the five cases for sake of visual clarity. We can see that all the three cases with
1×1, 3×3 and 5×5 terms are in very good agreement, which confirms the accu-
racy of the global nonlinear Galerkin method.

Table 2 provides the sizes of NAEs of different cases. We see from Table 2 that
the number of nonlinear terms in the NAEs becomes large dramatically with the
increase of the number of terms of the deflection function. The OVDA is employed
to solve the resultant sets of NAEs and the load-tracking approach is adopted to
provide the initial guess.

Table 3 gives the comparison of the iteration numbers and computational time for
solving1× 1, 2× 2, 3× 3, 4× 4, and 5× 5 cases by using OVDA and ECSHA in
MATLB. It can be seen that the computational effort of the OVDA for solving the
resultant NAEs is several times less than that of the ECSHA. For example, for the
case with 3×3 terms, the effort of solving 20 sets of NAEs by using OVDA is 1911
steps and 621.7s compared with the ECSHA which requires up to 24302 steps and
5969.17s (both in PC Core2). The results given indicate that the OVDA is roughly
10-20 times faster than the ECSHA in the sense of iteration numbers, when the
system of NAEs is not small (M×N ≥ 4).

To further investigate the convergence trajectory of the residual-error of the optimal
vector-driven algorithm, we take out the cases with 2× 2 terms for example. As
we mentioned above, the external load is applied to the plate through 20 steps
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Figure 1: Comparison of the load-deflection curves for the present global nonlinear
Galerkin method and the incremental global Galerkin method

which correspond to 20 sets of NAEs. Without losing generality, we investigate the
residual error of the OVDA of the 10th set of NAEs by comparing with the ECHSA.

Figure 2 shows that the convergence rate of the OVDA is much steeper and direct.
While for the ECSHA, the residual-error trajectory zigzags its way full of twists and
turns, which verifies the two major drawbacks of the ECSHA as we mentioned in
section 3: irregular bursts and flattened behavior in the trajectory of residual error.
Specifically, for solving the present system of NAEs corresponding to the 10th load
step (M=2, N=2; load =1), the iteration numbers by using ECSHA and OVDA are
711 and 40 respectively (ratio 17.78). The results confirm the high efficiency of the
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Table 2: The sizes of the NAEs
Cases(M×N) Neqs N3th N2th N1th

1×1 1 1 1 1
2×2 4 64 16 4
3×3 9 729 81 9
4×4 16 4096 256 16
5×5 25 15625 625 25

Neqsis the number of equations; N1th N2th N3th
are the number of first order terms, second or-
der terms and third order terms, respectively
in one equation.
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Figure 2: Comparison of the residual-error trajectory for solving the NAEs corre-
sponding to M=2, N=2 and load=1 by the OVDA and the ECSHA in the case of a
square plate under uniaxial compression
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OVDA.

5.2 A rectangular plate under uniaxial compression

In this example, a simply supported rectangular plate under uniaxial compression
is considered. Its dimensions are a = 1.68, b = 0.98, t = 0.011. The pattern of the
initial deflection and the deflection function is given by Eq. (4) and Eq. (5). Here
A0mn = 0 is taken except A011 = 1.1× 10−3 and A021 = 0.22× 10−3. The present
global nonlinear Galerkin method is applied to solve this rectangular plate under
uniaxial compression. For comparison the analysis is also carried out by the FEM
using rectangular, four node, and nonconforming plate elements with five degrees
freedom at each node; 7×18 elements for half of the plate [Ueda, Rashed and Paik
1987]. Figure 3 displays curves that plot the compression load against the deflec-
tions of two points A and B whose positions are (0.25a, 0.5b) and (0.75a, 0.5b)
respectively, if we set the lower left corner of the plate (0, 0) and upper right corner
(a, b).
It may be seen from Figure 3 that the results of the present global nonlinear Galerkin
method and that of the tangent stiffness FEM are in good agreement, which con-
firms the accuracy of the global nonlinear Galerkin method. Table 4 provides the
computational information of the OVDA and the ECSHA for solving the NAEs.
The applied loads are 0:1:7 and 8:0.5:14 and 15:1:18 in this example. Thus, there
are 24 load steps (if we exclude load=0) and correspondingly 24 sets of NAEs to
solve.

Table 4 gives the comparison of the iteration numbers and computational time for
solving 2× 1, 2× 2, 3× 2 and 3× 3 cases by using OVDA and ECSHA. It can
be seen from Table 4 that the computational effort of OVDA for solving the re-
sultant NAEs is much less than that of ECSHA. In general, we see again that the
computational effort of the iterations of the OVDA is roughly ten to twenty times
less than that of the ECSHA for solving even 9 NAEs. As the number of NAEs
increases, OVDA can be seen to be several orders of magnitude faster than EC-
SHA. To closely investigate the property of the two methods, we plot the curve of
the residual-error trajectory of the current set of NAEs, which corresponds to the
load=9 (M=3, N=2).

Figure 4 shows that the convergence trajectory of the OVDA is much steeper and
direct than that of the ECSHA. Specifically, for solving the present system of NAEs
corresponding to load=9 (M=3, N=2), the iteration numbers by using the ECSHA
and the OVDA are 1312 and 73 respectively, which verifies the high efficiency of
the OVDA. For the particular set of NAEs, the ratio of the number of iterations
between OVDA and ECSHA is 17.97. In summary, the results obtained confirm
the accuracy and efficiency of the present scheme in the case of rectangular plates.
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Figure 3: Comparison of the stress versus the deflection of points A and B for the
global nonlinear Galerkin method and the finite element method

5.3 A square plate subjected to lateral load

A square plate subjected to a uniformly distributed lateral load Q is considered in
this example. Its dimensions are a = 1, b = 1, t = 0.009. The deflection function is
in the same pattern as before. The initial deflection is assumed to be zero such that
A0mn = 0. The present global nonlinear Galerkin method with the aid of optimal
vector-driven algorithm to solve NAEs is applied to solve the several cases. The
lateral loads are 0:2:50 ( Et4

b4 ).

The deflection curves of the current global nonlinear Galerkin method and other
methods are not given in this example since the accuracy of the proposed global
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Figure 4: Comparison of the residual-error trajectory for solving the NAEs corre-
sponding to M=3, N=2 and load=9 by the OVDA and the ECSHA in the case of a
rectangular plate under uniaxial compression

nonlinear Galerkin method is illustrated in the first two examples as well as the
paper by Dai, Paik and Atluri (2011a), and we concentrate on the validation of the
efficiency of the OVDA below. Table 5 indicates that the computational effort of
the OVDA for solving the same cases is several times less than the ECSHA. Specif-
ically, for solving the present NAEs (M=3, N=3, load=24), the iteration number of
the ECSHA is 360, while the iteration number of the OVDA is 69 (ratio 5.22). Fig-
ure 5 displays the convergence rate of the two methods, from which we can see that
the OVDA is much direct and steeper.

5.4 A square plate subjected to lateral pressure combined with uniaxial com-
pression

In this example, a square plate subjected to lateral pressure combined with uniaxial
compression is considered. The compression load acting on the plate is a constant
value 0.6Pcr. The lateral pressures acting on the plate are 0:2:50 ( Et4

b4 ). The di-
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Figure 5: Comparison of the residual-error trajectory for solving the NAEs corre-
sponding to M=3, N=3 and load=24 by the OVDA and the ECSHA in the case of a
square plate subjected to lateral load

mensions of the plate are a = 1, b = 1, t = 0.02. The deflection function is in the
same form as the above examples. The initial deflection is assumed to be zero. The
present global nonlinear Galerkin method with OVDA is applied to solve several
cases.

Table 6 provides the results of the computational efforts for the optimal vector-
driven algorithm and the exponentially convergent scalar homotopy algorithm in
the case of a simply supported square plate subjected to lateral pressure com-
bined with uniaxial compression. It can be seen that the OVDA is roughly 10-20
times faster (iterations) than the ECSHA in this current case. Figure 6 displays
the residual-error trajectory of solving the NAEs (M=3, N=3, load=24) for the two
methods, from which we can see that the curve of OVDA goes direct and steeper
down. The residual-error trajectory of ECSHA oscillates a lot and converges much
slower. The iteration number of the ECSHA for the current NAEs is 594, while the
iteration number of the OVDA is 36 (ratio 16.50).
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Figure 6: Comparison of the residual-error trajectory for solving the NAEs corre-
sponding to M=3, N=3 and load=24 by the OVDA and the ECSHA in the case of a
square plate subjected to lateral pressure combined with uniaxial compression

6 Conclusions

In this paper, the efficiency of the global nonlinear Galerkin method for solving von
Karman equations is highly improved by introducing a thoroughly novel optimal
vector-driven algorithm (OVDA) [Liu and Atluri (2011b)].

In the global nonlinear Galerkin method, the global Galerkin method is applied
directly to the governing highly nonlinear PDEs to derive a system of third order
coupled NAEs. The external load is applied incrementally to the plate and the resul-
tant NAEs are solved directly at each load increment. Solving the resultant series
of NAEs is thought to be an impossible task until the work by Dai, Paik and Atluri
(2011a), where they use the exponentially convergent scalar homotopy algorithm
(ECSHA) to solve the series of highly nonlinear third order coupled NAEs. In the
present study, a much faster OVDA using ẋ = λ [αF+(1−α)BTF], is employed to
solve the series of coupled NAEs. The investigation on the convergence rate of the
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residual error is also carried out, which shows that the OVDA has a much steeper
and direct convergence trajectory than the ECSHA. Several numerical examples
of nonlinear von Karman plates are presented to show that the present algorithm
for directly solving the NAEs is several orders of magnitude faster than those in
Dai, Paik and Atluri (2011a). In addition, the present global nonlinear Galerkin
method yields results which are in excellent agreement with the tangent-stiffness
FEM method. However, the FEM requires degrees of freedom which are about
two orders of magnitude larger in number than the number of coupled NAEs in the
present nonlinear global Galerkin method.

In summary, the efficiency of recently developed methods (such as the present
OVDA which can directly solve NAEs without inverting Jacobian matrices) and
the state of the science in symbolic computation makes the resurgence of simple
global Galerkin methods, as alternatives to the finite element method, to directly
solve nonlinear structural mechanics problems without piecewise linear formula-
tions, entirely feasible. Also, because of the extremely high accuracy provided at
a very modest cost, the method presented in this paper may also provide the much
needed highly accurate benchmark solutions against which other numerical meth-
ods may be validated.
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