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A Meshless Numerical Method for Kirchhoff Plates under
Arbitrary Loadings

Chia-Cheng Tsai1

Abstract: This paper describes the combination of the method of fundamental
solutions (MFS) and the dual reciprocity method (DRM) as a meshless numeri-
cal method to solve problems of Kirchhoff plates under arbitrary loadings. In the
solution procedure, a arbitrary distributed loading is first approximated by either
the multiquadrics (MQ) or the augmented polyharmonic splines (APS), which are
constructed by splines and monomials. The particular solutions of multiquadrics,
splines and monomials are all derived analytically and explicitly. Then, the comple-
mentary solutions are solved formally by the MFS. Furthermore, the boundary con-
ditions of lateral displacement, slope, normal moment, and effective shear force are
all given explicitly for the particular solutions of multiquadrics, splines and poly-
nomials as well as the kernels of MFS. Finally, numerical experiments are carried
out to validate these analytical formulas. In these numerical experiments, homo-
geneous problems are first considered to find the best location of the MFS sources
by the way proposed by Tsai, Lin, Young and Atluri (2006). Then the correspond-
ing nonhomogeneous problems are solved by the DRM based on both the MQ and
APS. The numerical results demonstrate that the MQ is in general more accurate
than the thin plate spline, or the first order APS, but less accurate than the high
order APSs. Overall, this paper derives a meshless numerical method for solving
problems of Kirchhoff plates under arbitrary loadings with all kinds of boundary
conditions by both the MQ and APS.

Keywords: method of fundamental solutions, dual reciprocity method, multi-
quadrics, polyharmonic spline

1 Introduction

There is a traditional interest in the analysis of a Kirchhoff plate in equilibrium,
which is governed by the biharmonic equation. The reasons are not only the re-
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duction of dimensionalities but also the mathematical attractions themselves. An-
alytical treatments have been intensively studied for over one hundred years. A
comprehensive survey for these studies can by found in an excellent review paper
of Meleshko (2003). Using the words of Jeffery (1920), all these problems “seem
to be a branch of mathematical physics in which knowledge comes by the patient
accumulation of special solutions rather than by the establishment of great general
propositions.” Although analytical methods are so powerful, numerical methods
are inevitable when arbitrary domains are considered.

In the recent years, the meshless methods have received a considerable attention to
solve various partial differential equations. Roughly speaking, the meshless meth-
ods can be divided into two categories. The first one is domain-type methods in
which both the differential equations and boundary conditions are approximated,
such as the Kansa’s method (or multiquadrics (MQ) method) [Kansa (1990A, 1990B),
Young, Chen and Wong (2005)] as well as the meshless local Petrov-Galerkin
method (MLPG) [Wordelman, Aluru and Ravaioli (2000), Lin and Atluri (2000),
Kim and Atluri (2000), Atluri (2004), Han and Atluri (2004)]. The second one
is boundary-type methods where only boundary conditions are collocated, such as
the boundary knot method [Chen and Tanaka (2002), Chen and Hon (2003)], the
boundary particle method [Chen (2002)] and the method of fundamental solutions
(MFS) [Kupradze and Aleksidze (1964), Mathon and Johnston (1977), Bogomolny
(1985), Tsai, Young and Cheng (2002), Chen, Fan, Young, Murugesan and Tsai
(2005), Hon and Wei (2005), Tsai, Lin, Young and Atluri (2006), Young and Ruan
(2005), Young, Tsai, Lin and Chen (2006)]. Excellent reviews of the MFS are
available in the recent literatures [Fairweather and Karageorghis (1998), Golberg
and Chen (1998), Fairweather, Karageorghis, and Martin (2003), Cho, Golberg,
Muleshkov, and Li (2004)].

The MFS has also been applied to the biharmonic equation [Fairweather and Kara-
georghis (1998)]. However, previous studies mainly concentrated on the essential
boundary conditions and did not consider a meshless treatment for the particular
solutions. For nonhomogeneous partial differential equations, Golberg (1995) first
proposed the combination of the MFS and the dual reciprocity method (DRM) as a
meshless numerical method to solve Poisson’s equation. Later, Golberg and Chen
(1998) generalized the MFS-DRM for Helmholtz and diffusion problems. In their
studies, the nonhomogeneous terms were first approximated by augmented poly-
harmonic splines (APS) [Duchon (1977)], which are constructed by the polyhar-
monic splines (PS) and monomials. Then, the corresponding particular solutions
could be derived analytically. Muleshkov, Golberg, and Chen (1999) and Cheng
(2000) gave reviews on these particular solutions for the splines. For monomials,
Cheng, Lafe and Grilli (1994) as well as Golberg, Muleshkov, Chen and Cheng
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(2003) studied their particular solutions. On the other hand, Golberg, Chen, Karur
(1996) further improved the accuracy by replacing the thin plate spline (TPS), or
the first order APS, by the MQ of Hardy (1971).

In this paper, we extend the MFS-DRM formulations to Kirchhoff plates in equi-
librium, which are governed by the nonhomogeneous biharmonic equation. The
particular solutions of the MQ, PS and monomials are all reviewed. Samaan and
Rashed (2007) derived the particular solutions of the MQ for solving two-dimensional
elastodynamic problems. For the PS and monomials, their particular solutions were
studied respectively by Cheng (2000) and the author’s recent study [Tsai (2008)]. It
should be noted that the particular solutions of monomials are also applicable when
the Chebyshev method [Golberg, Muleshkov, Chen and Cheng (2003); Reutskiy
and Chen (2006); Tsai (2008)] is applied. Furthermore, the boundary conditions of
lateral displacement, slope, normal moment, and effective shear force are all given
explicitly and analytically in forms suitable for numerical implementations for the
particular solutions as well as the kernels of MFS. Numerical results demonstrate
that the MQ is more accurate than the TPS but less accurate than the high order
APS.

A brief outline of the paper is as follows. We introduce the formulations of MFS-
DRM for solving problems of Kirchhoff plates under arbitrary loading in Section
2. In Section 3, some numerical experiments are preformed and the issues of prac-
tically implementing the MFS-DRM are stated. Finally, the conclusions are sum-
marized in Section 4.

2 MFS-DRM Formulation

2.1 Governing equations

Consider a Kirchhoff, or thin, plate in bending, with thickness h and midplane in the
x1-x2 plane. According to the basic assumption of the Kirchhoff theory, the lateral
deflection u is considered to be independent of x3, and the transverse stressed are
ignored. For homogeneous, isotropic, elastic plate, it is governed by the biharmonic
equation [Timoshenko and Woinowsky-Krieger (1959)]

D∇
2
∇

2u(x) = q(x) in Ω (1)

where is q(x) is the density of lateral force at x = (x1,x2) and D = Eh3

12(1−ν) with E
the Young’s Modulus and ν the Poisson’s ratio of elasticity.

Also, some proper boundary conditions should be imposed:

B1u(x) = ū1(x) on Γ

B2u(x) = ū2(x) on Γ
(2)
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where ū1(x) and ū2(x) are the given boundary data and the boundary operators B1
and B2 are any two of the following operators:

Ku(•) = 1 (3a)

Kθ (•) =
∂ (•)
∂nx

(3b)

Km(•) = ν∇
2
x(•)+(1−ν)

∂ 2(•)
∂n2

x
(3c)

Kv(•) =
∂∇2

x(•)
∂nx

+(1−ν)
∂

∂ tx

∂ 2(•)
∂nx∂ tx

(3d)

where ∂

∂nx
and ∂

∂ tx
are the normal and tangential derivatives, respectively, on the

boundary point x. In the above equations we denote Ku(u(x)), Kθ (u(x)), Km(u(x)),
and Kv(u(x)) the lateral displacement, the slope, the normal moment, and the ef-
fective shear force respectively. Practically, (3a)&(3b) are selected for clamped
boundary condition, (3a)and(3c) for simply-supported boundary condition, and
(3c)&(3d) for free boundary condition.

In the MFS-DRM formulation, we linearly decompose the solution into

u(x) = uh(x)+up(x) (4)

where the particular solution, up(x), satisfies

D∇
2
∇

2up(x) = q(x) in Ω (5)

and the homogenous solution, uh(x), satisfies

∇
2
∇

2uh(x) = 0 in Ω (6)

with the following boundary conditions:

B1uh(x) = ū1(x)−B1up(x) on Γ

B2uh(x) = ū2(x)−B2up(x) on Γ
(7)

In the MFS-DRM formulation, the particular solution is first approximated by the
DRM [Golberg (1995); Golberg and Chen (1998)]. Then, the homogeneous prob-
lem (6) & (7) become well posed and thus can be solved formally by the MFS
[Fairweather and Karageorghis (1998)].
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2.2 Dual reciprocity method

Now, we are in a position to introduce the DRM. First of all, the force term q(x)
should be approximated by

q(x;α
j,β j)∼=

M

∑
j=1

α
j p j(x)+

N

∑
j=1

β
j f (r j) (8)

where monomial basis consists of the family

{p1, p2, ..., pM}= {1,x1,x2,x2
1,x

2
2,x1x2,x3

1, ...} (9)

and f (r j) is equal to the MQ
√

r2
j + c2 or the n-th order PS r2n

j lnr j. In the above
statement, c is a shape parameter [Hardy (9171); Golberg, Chen, Karur (1996)],
and r j =

∥∥x−x j
∥∥ is the Euclidean distance between the coordinates x and the

prescribed points x j as depicted in Fig. 1.

Then, the M +N unknown coefficients, α j and β j, can be determined by the collo-
cation and constraint conditions as follows

q(xi;α
j,β j)∼=

M

∑
j=1

α
j p j(xi)+

N

∑
j=1

β
j f (ri j) for i = 1,2, ...,N (10a)
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N

∑
j=1

β
j pi(x j) = 0 for i = 1,2, ...,M (10b)

where ri j =
∥∥xi−x j

∥∥. Based on the theory of APS [Duchon (1977)], the PS in
Eq. (8) should be augmented with n-th order monomials to ensure the solvability.
On the other hand, Micchelli (1986) proved that the MQ is conditionally positive
definite of order one, which indicates that only constant term is required for the
MQ.

Then, the particular solution up(x) can be approximate as follows:

up(x)∼=
M

∑
j=1

α
jP j(x)+

N

∑
j=1

β
jF(r j) (11)

in which P j(x), F(r j) are governed by

D∇
2
∇

2P j(x) = p j(x) (12a)

D∇
2
∇

2F(r j) = f (r j) (12b)

Details of P j(x) and F(r j) will be given in the later subsection. Then, the boundary
conditions of the particular solutions can be obtained by considering Eqs. (2) and
(3) as follows:

B1up(x)∼=
M

∑
j=1

α
jB1P j(x)+

N

∑
j=1

β
jB1F(r j) (13a)

B2up(x)∼=
M

∑
j=1

α
jB2P j(x)+

N

∑
j=1

β
jB2F(r j) (13b)

More thorough discussion will be followed in the subsection of boundary condi-
tions.

It should be noticed that the convergence of (8) and the solvability of the re-
sulted linear equations from (10) have been mathematically investigated by Duchon
(1977) and Micchelli (1986). However, few theoretical statements are addressed
for the convergence of (11). Therefore, numerical validations are performed in this
study.

2.3 Method of fundamental solutions

After the particular solution is solved, the boundary value problem of (6) & (7)
becomes well posed. Thus, the homogeneous solution can be solved by the well-
known MFS [Fairweather and Karageorghis (1998)]. In the spirits of MFS, the
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2 2
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2 0D G∇ ∇ =                        (15b)  

with ( )δ −x s  the Dirac delta function and j jr = −x s .  

The formula (14) is clear that it satisfies the governing 

equations analytically and has enough freedoms to fulfill any 

boundary conditions. To determine the unknowns, 
1

jγ , 
2

jγ , 

js , boundary conditions in (7) should be imposed in suitable 

ways. Traditionally, the L  source points js  can be treated 

 

Ω Γ

1s  2s  
3s

4s

is  

1x  
2x  

3x
4x  

ix  

c  

Figure 2: Geometry configuration of the MFS

complementary solution is represented approximately by

uh(x;γ
j

1 ,γ
j

2 ,s j)∼=
L

∑
j=1

γ
j

1G1(x,s j)+
L

∑
j=1

γ
j

2G2(x,s j) (14)

where G1(x,s j) = r2
j lnr j and G2(x,s j) = lnr j are the kernels of MFS governed

respectively by [Fairweather and Karageorghis (1998)]:

∇
2
∇

2G1 = 8πδ (x− s) (15a)

∇
2G2 = 2πδ (x− s) (15b)

with δ (x− s) the Dirac delta function and r j =
∥∥x− s j

∥∥.

The formula (14) is clear that it satisfies the governing equations analytically and
has enough freedoms to fulfill any boundary conditions. To determine the un-
knowns, γ

j
1 , γ

j
2 , s j, boundary conditions in (7) should be imposed in suitable ways.

Traditionally, the L source points s j can be treated either as unknown or a priori
known. In which the first case results in a nonlinear optimization with 4L un-
knowns, γ

j
1 , γ

j
2 , s j, [Fairweather and Karageorghis (1998)]. On the other hand, if

the source points are considered as a priori known, the boundary conditions are
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simply collocated at L boundary points xi. It results in a linear equations system as
follows:

ū1(xi)−B1up(xi) =
L

∑
j=1

γ
j

1B1G1(xi,s j)+
L

∑
j=1

γ
j

2B1G2(xi,s j) for i = 1,2, ...,L (16a)

ū2(xi)−B2up(xi) =
L

∑
j=1

γ
j

1B2G1(xi,s j)+
L

∑
j=1

γ
j

2B2G2(xi,s j) for i = 1,2, ...,L (16b)

in which the B1G1, B2G1, B1G2 and B2G2 will be given in the subsection of bound-
ary conditions. In Eq. (16), there are 2L equations with 2L unknowns, γ

j
1 , γ

j
2 , and

thus can be solved, in which the solvability was discussed in [Mathon and Johnston
(1977), Bogomolny (1985)]. In this paper, we typically locate the boundary field
points uniformly and place the source points stipulated out as depicted in Fig. 2
[Tsai, Lin, Young and Atluri (2006)]. In which we define the parameter of source
locationλ by

si = c+λ (xi− c) (17)

where c is the geometric center.

Once the complementary and particular solutions are both obtained, we can get the
desired solution by using (4).

2.4 Particular solutions

In this subsection, we address the particular solutions in (12). To be clearer, we are
going to find particular solutions as follows:

D∇
2
∇

2F(r) = f (r) (18a)

D∇
2
∇

2P(x) = xs
1xt

2 (18b)

For f (r) =
√

r2 + c2, the solution of (18a) can be found in Samaan and Rashed
(2007) as follows:

F(r) ={(−61c4+48r2c2+4r4)
900

√
r2 + c2 +

c3(2c2−5r2)
60 ln c+

√
r2+c2

2c +
c3(61c2−25r2)

900 for r > 0
0 for r = 0

(19)
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And the particular solution of f (r) = r2n lnr has been derived by Cheng (2000) as
follows:

F(r) =
r2n+4

16(n+1)2(n+2)2D
(lnr− 1

n+1
− 1

n+2
) (20)

On the other hand, the particular solutions of (18b) can be found by inspecting the
results of Laplacian given in Cheng, Lafe, and Grilli (1994) and they are

P(x) =
[ t

2 ]

∑
k=0

(−1)k(k +1)s!t!xs+2k+4
1 xt−2k

2
(s+2k +4)!(t−2k)!D

(21)

This result was recently derived by Tsai (2008) by using the fractional calculus.

2.5 Boundary conditions

In practical implementations, the boundary conditions of lateral displacement, slope,
normal moment, and effective shear force of the particular solutions of DRM as
well as the kernels of MFS are required. In other words, we required the B1P j,
B2P j, B1F , B2F , B1G1, B2G1, B1G2 and B2G2.

First of all, we rewrite the boundary conditions in (3) in terms of the outward nor-
mal nx = (n1,n2) as follows [Tsai (2007)]:

Ku(•) = 1 (22a)

Kθ (•) =
∂ (•)
∂x1

n1 +
∂ (•)
∂x2

n2 (22b)

Km(•) = g11
∂ 2(•)
∂x2

1
+g12

∂ 2(•)
∂x1∂x2

+g13
∂ 2(•)
∂x2

2
(22c)

Kv(•) = g21
∂ 3(•)
∂x3

1
+g22

∂ 3(•)
∂x2

1∂x2
+g23

∂ 3(•)
∂x1∂x2

2
+g24

∂ 3(•)
∂x3

2
(22d)

with

g11 = Dn2
1 +νDn2

2 (23a)

g12 = 2(1−ν)Dn1n2 (23b)

g13 = Dn2
2 +νDn2

1 (23c)

g21 = Dn1(1+n2
2)−νDn1n2

2 (23d)

g22 = νDn2(1+n2
1)+2(1−ν)Dn3

2−Dn2
1n2 (23e)
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g23 = νDn1(1+n2
2)+2(1−ν)Dn3

1−Dn2
2n1 (23f)

g24 = Dn2(1+n2
1)−νDn2n2

1 (23g)

To complete the above equations, we require the partial derivatives ∂

∂xi
, ∂ 2

∂xi∂x j
&

∂ 3

∂xi∂x j∂xk
of P j, F , G1 & G2 which are addressed in the Appendix.
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Figure 3: The errors of H Problem (case I).

3 Numerical Results

In order to validate the proposed MFS-DRM formulations, three numerical exper-
iments with clamped, clamped & simply-supported, and clamped & free boundary
conditions are first considered. Then, the method is applied to a problem of peanut-
shaped domain. In order to understand the effect of the DRM, both homogeneous
and nonhomogeneous problems are considered in all the four numerical experi-
ments, and they are denoted by H Problem and NH Problem respectively. The
exact solution of the H Problem is

u(x) = cos(
πx1

2
)sinh(

πx2

2
) (24)
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Figure 4: The errors of NH Problem (case I).

On the other hand, the NH Problem has exact solution

u(x) = sin(
πx1

2
)sin(

πx2

2
) (25)

which is the solution of

D∇
2
∇

2u =
Dπ4

4
sin(

πx1

2
)sin(

πx2

2
) (26)

In all the numerical experiments, boundary conditions are set up according to these
exact solutions. Also, D = 1 and ν = 0.33 are assumed.

Furthermore, the root-mean-square error (RMSE) is defined as√√√√√ N̄
∑
j=1

3
∑

i=1
(unumerical(x j)−uexact(x j))2

3N̄
(27)

where unumerical(x j) is the numerical solutions obtained by the MFS-DRM equation
(4) at x j, uexact(x j) is the corresponding exact solution, and N̄ is the number of total
nodes considered.
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Figure 5: The errors of H Problem (case II).
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Figure 6: The errors of NH Problem (case II).
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Figure 7: The errors of H Problem (case III).
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Figure 8: The errors of NH Problem (case III).
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3.1 Case I: plate with clamped boundary condition

We consider a square plate of size 1×1 suggested to clamped boundary conditions.
Fig. 3 gives the RMSE versus the parameter of source location. It is found that
farther sources give better accuracies before the capacity of the equation solver
achieved, λ = 4 ∼ 8. This phenomenon has been discovered by Tsai, Lin, Young
and Atluri (2006). Furthermore, better accuracies are found for larger ranks, in
which the rank is defined by 2L in Eq. (16). In Fig. 3, the best RMSE is 2.01×
10−16 for λ = 6.4 and 2L = 96. By using this optimal setting, we solve the NH
problem several times by using the DRM based on the TPS, APS and MQ. Table 1
gives the resulted RMSEs, whose optimal value goes to 4.81×10−16 which is only
slightly worse than the accuracy of the H problem. Moreover, it can be observed
that the MQ is in general more accurate than the TPS, but less accurate than the high
order APSs. And, the better accuracy is resulted for the higher order of augmented
monomials within some allowable degree. Then we also solve the NH problem
several times by using the best setting of the DRM and changing the parameters
of the MFS (2L and λ ) as depicted in Fig. 4. It is of great interest that the same
phenomenon also occurs. In other words, the conditioning of matrix resulted from
(16) can be a fair guidance to locate the source for both the H Problem and NH
Problem.

Table 1: RMSEs of different DRM for Case I.

N=81 N=121 N=169
TPS 1.12E-07 1.80E-07 1.03E-07

APS (n=2) 1.12E-08 3.40E-08 1.03E-08
APS (n=4) 4.00E-10 2.53E-10 4.90E-11
APS (n=6) 5.72E-12 5.54E-12 7.47E-13
APS (n=8) 5.53E-14 1.02E-14 2.82E-15
APS (n=10) 2.41E-06 1.53E-15 4.81E-16
APS (n=12) 3.60E-06 9.79E-08 7.32E-16

MQ 1.82E-08 1.47E-08 1.25E-09

Table I: RMSEs of different DRM for Case I.

N=81 N=121 N=169
TPS 1.10E-07 4.87E-08 2.54E-08

APS (n=2) 3.15E-09 4.22E-09 1.64E-09
APS (n=4) 2.85E-10 7.57E-11 2.24E-11
APS (n=6) 7.08E-12 1.17E-12 2.17E-13
APS (n=8) 3.98E-14 1.34E-14 3.89E-15
APS (n=10) 3.45E-06 2.63E-15 3.05E-15
APS (n=12) 2.06E-06 3.22E-07 3.48E-15

MQ 7.08E-09 2.36E-09 3.43E-10

Table II: RMSEs of different DRM for Case II.

N=81 N=121 N=169
TPS 4.26E-08 1.80E-08 8.39E-09

APS (n=2) 1.48E-09 2.83E-09 7.75E-10
APS (n=4) 9.45E-11 2.35E-11 4.77E-12
APS (n=6) 2.66E-12 5.04E-13 6.64E-14
APS (n=8) 1.28E-14 3.33E-15 1.09E-15
APS (n=10) 7.45E-07 8.47E-16 7.61E-16
APS (n=12) 1.26E-06 8.42E-08 7.56E-16

MQ 3.35E-09 1.34E-09 1.20E-10

Table III: RMSEs of different DRM for Case III.

N=21 N=29 N=39
TPS 3.94E-07 3.00E-07 6.42E-08

APS (n=2) 2.73E-09 7.52E-10 9.44E-10
APS (n=4) 9.65E-11 1.64E-11 4.68E-11
APS (n=6) DIV 3.92E-06 1.00E-12

MQ 5.29E-08 9.35E-09 7.81E-10

Table IV: RMSEs for the problem of peanut-shape plate.3.2 Case II: plate with clamped and simply-supported boundary conditions

Then, we consider the same two problems by imposing simply-supported boundary
condition on one edge. Fig. 5 and Fig. 6 describe the errors for the H Problem and
NH Problem, respectively. The best RMSEs are 10−14 ∼ 10−17 and 10−13 ∼ 10−16

when λ = 4∼ 8 for the H Problem and NH Problem, respectively. Similarly, better
accuracies are found for larger rank. Similarly, the accuracy of the NH problem



A Meshless Numerical Method for Kirchhoff Plates under Arbitrary Loadings 211

Table 2: RMSEs of different DRM for Case II.

N=81 N=121 N=169
TPS 1.12E-07 1.80E-07 1.03E-07

APS (n=2) 1.12E-08 3.40E-08 1.03E-08
APS (n=4) 4.00E-10 2.53E-10 4.90E-11
APS (n=6) 5.72E-12 5.54E-12 7.47E-13
APS (n=8) 5.53E-14 1.02E-14 2.82E-15
APS (n=10) 2.41E-06 1.53E-15 4.81E-16
APS (n=12) 3.60E-06 9.79E-08 7.32E-16

MQ 1.82E-08 1.47E-08 1.25E-09
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APS (n=6) 7.08E-12 1.17E-12 2.17E-13
APS (n=8) 3.98E-14 1.34E-14 3.89E-15
APS (n=10) 3.45E-06 2.63E-15 3.05E-15
APS (n=12) 2.06E-06 3.22E-07 3.48E-15

MQ 7.08E-09 2.36E-09 3.43E-10
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APS (n=10) 7.45E-07 8.47E-16 7.61E-16
APS (n=12) 1.26E-06 8.42E-08 7.56E-16

MQ 3.35E-09 1.34E-09 1.20E-10

Table III: RMSEs of different DRM for Case III.

N=21 N=29 N=39
TPS 3.94E-07 3.00E-07 6.42E-08

APS (n=2) 2.73E-09 7.52E-10 9.44E-10
APS (n=4) 9.65E-11 1.64E-11 4.68E-11
APS (n=6) DIV 3.92E-06 1.00E-12

MQ 5.29E-08 9.35E-09 7.81E-10

Table IV: RMSEs for the problem of peanut-shape plate.
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Table II: RMSEs of different DRM for Case II.
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Table IV: RMSEs for the problem of peanut-shape plate.

Table 4: RMSEs of different DRM for Case IV.
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APS (n=10) 2.41E-06 1.53E-15 4.81E-16
APS (n=12) 3.60E-06 9.79E-08 7.32E-16
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Table I: RMSEs of different DRM for Case I.
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APS (n=4) 2.85E-10 7.57E-11 2.24E-11
APS (n=6) 7.08E-12 1.17E-12 2.17E-13
APS (n=8) 3.98E-14 1.34E-14 3.89E-15
APS (n=10) 3.45E-06 2.63E-15 3.05E-15
APS (n=12) 2.06E-06 3.22E-07 3.48E-15

MQ 7.08E-09 2.36E-09 3.43E-10

Table II: RMSEs of different DRM for Case II.

N=81 N=121 N=169
TPS 4.26E-08 1.80E-08 8.39E-09

APS (n=2) 1.48E-09 2.83E-09 7.75E-10
APS (n=4) 9.45E-11 2.35E-11 4.77E-12
APS (n=6) 2.66E-12 5.04E-13 6.64E-14
APS (n=8) 1.28E-14 3.33E-15 1.09E-15
APS (n=10) 7.45E-07 8.47E-16 7.61E-16
APS (n=12) 1.26E-06 8.42E-08 7.56E-16

MQ 3.35E-09 1.34E-09 1.20E-10

Table III: RMSEs of different DRM for Case III.

N=21 N=29 N=39
TPS 3.94E-07 3.00E-07 6.42E-08

APS (n=2) 2.73E-09 7.52E-10 9.44E-10
APS (n=4) 9.65E-11 1.64E-11 4.68E-11
APS (n=6) DIV 3.92E-06 1.00E-12

MQ 5.29E-08 9.35E-09 7.81E-10

Table IV: RMSEs for the problem of peanut-shape plate.

is only slightly worse than that of the H problem by using higher order APS. This
excellent performance of the DRM is discovered for the first time to the best knowl-
edge of the author. Furthermore, Table 2 address the RMSEs obtained by different
DRMs, which also shows that the MQ is more accurate than the TPS, but less ac-
curate than the high order APSs. Overall, these studies demonstrate that the MFS-
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DRM is able to solve the plate loading problems with simply-supported boundary
conditions accurately and stably.

 
Figure 9: The geometry of the peanut-shape plate.

3.3 Case III: plate with clamped and free boundary conditions

Then, we replace the simply-supported boundary condition of the previous case
by free boundary condition. Fig. 7 gives the RMSEs of the H Problems. After
obtaining the best location of source, we fix the MFS sources and solve the NH
problem by various DRM. Table 4 describe the RMSEs of the NH problem obtained
by the DRM based on the TPS, APS and MQ, which is generally similar to the
previous two examples. Then, by using the optimal setting of the DRM (N = 169
and n = 12) we solve the NH problem by different numbers and locations of the
MFS sources as addressed in Fig. 8. These results indicate that the proposed MFS-
DRM is capable of solving plate loading problems with free boundary conditions.

3.4 Case IV: A peanut-shaped plate

In order to demonstrate the flexibility of the proposed numerical method to treat
irregular domains, a peanut-shaped plate, depicted in Fig. 9, subjected to clamped
boundary condition is chosen as the last problem. The exact solution is the same as
the previous cases. Table 4 gives the RMSEs for different DRM based on the opti-
mal settings of the MFS. Also, they behave very similar to the previous examples
and excellent accuracy can be observed.

4 Conclusions

In this paper, the method of fundamental solutions (MFS) and the dual reciprocity
method (DRM) are combined as a meshless numerical method to solve Kirchhoff
plates under arbitrary loadings. In the DRM, the arbitrary distributed loadings are
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approximated by either the multiquadrics or the augmented polyharmonic splines.
Then, the nonhomogeneous solutions can be represented by a series of the analyt-
ical particular solutions of these basis functions. The complementary solutions are
then solved by the MFS. Furthermore, the boundary conditions of lateral displace-
ment, slope, normal moment, and effective shear force are all given explicitly for
the particular solutions of multiquadrics, splines and monomials of the DRM as
well as the kernels of the MFS.

To validate the proposed numerical method, three numerical experiments of clamped,
clamped & simply-supported, and clamped & free boundary conditions are carried
out. Both homogeneous and nonhomogeneous problems are solved by the MFS
and MFS-DRM respectively. From the numerical results, it is found that the strat-
egy of locating sourced proposed in Tsai, Lin, Young, and Atluri (2006) can be
applied to all kinds of boundary conditions for both homogeneous and nonhomo-
geneous problems. Furthermore, we found that the multiquadrics is in general more
accurate than the thin plate spline but less accurate than the high order augmented
polyharmonic splines when a nonhomogeneous problem is solved. However, a
shape parameter has to be determined for the MQ and much effort is required to
implement the particular solutions of the augmented monomials. Then, the method
is applied to a problem of peanut-shaped domain to demonstrate the flexibility of
the proposed numerical method to treat irregular domains. From these results, it
is convinced that the MFS-DRM is a suitable meshless numerical method to solve
Kirchhoff plates under arbitrary loadings without integrations and singularities.
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knowledged for providing financial support to carry out the present work under the
grant NO. NSC NSC 99-2221-E-022 -007.

Appendix

When applying the MFS-DRM, the partial derivatives of F(r), P(x), G1(r) and
G2(r) are required to find the boundary conditions of lateral displacement, slope,
normal moment, and effective shear force. Here, we only consider partial deriva-
tives of radial function since the partial derivatives of the polynomial P(x) is straight-
forward. First of all, we introduce a connection between the partial derivatives and
the radial operation

( d
rdr

)i
on a radial function through G1(r).

∂G1

∂xi
= xi

(
d

rdr

)
G1 (A1)

∂ 2G1

∂xi∂x j
= xix j

(
d

rdr

)2

G1 +δi j

(
d

rdr

)
G1 (A2)
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∂ 3G1

∂xi∂x j∂xk
= xix jxk

(
d

rdr

)3

G1 +
(
δi jxk +δ jkxi +δkix j

)( d
rdr

)2

G1 (A3)

where r =
√

x2
1 + x2

2. Eqs. (A1)∼(A3) indicate that to find the partial derivatives

of a radial function, only the formulas involving its radial operation
( d

rdr

)i
are re-

quired, which are listed in the following.(
d

rdr

)
G1 = 1+2lnr (A4)

(
d

rdr

)2

G1 =
2
r2 (A5)(

d
rdr

)3

G1 =
−4
r4 (A6)

and(
d

rdr

)
G2 =

1
r2 (A7)

(
d

rdr

)2

G2 =
−2
r4 (A8)(

d
rdr

)3

G2 =
8
r6 (A9)

For the particular solutions of the n-th order PS, the formulas are(
d

rdr

)
F =

r2n+2 [2(n+1)(n+2) lnr− (3n+5)]
16D(n+1)3(n+2)2 (A10)

(
d

rdr

)2

F =
r2n [2(n+1)(n+2) lnr− (2n+3)]

8D(n+1)2(n+2)2 (A11)(
d

rdr

)3

F =
r2n−2

[
2n(n+1)(n+2) lnr− (n2−2)

]
4D(n+1)2(n+2)2 (A12)

And if F is the particular solutions of the MQ, we need the following the formulas

(
d

rdr

)
F =

{(−6c4+28c2r2+4r4)
√

r2+c2+c3(6c2−25r2)
180Dr2 − c3

6D ln c+
√

r2+c2

2c for r > 0
0 for r = 0

(A13)
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(
d

rdr

)2

F =

{(2c4+4c2r2+2r4)
√

r2+c2−c3(2c2+5r2)
30Dr4 for r > 0

c
8 for r = 0

(A14)

(
d

rdr

)3

F =

(−4c6−7c4r2−2c2r4+r6)+c3(4c2+5r2)
√

r2+c2

15Dr6
√

r2+c2 for r > 0
1

24c for r = 0
(A15)
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