
Copyright © 2011 Tech Science Press CMC, vol.21, no.3, pp.187-208, 2011

Hybrid Finite Element Method Based on Novel General
Solutions for Helmholtz-Type Problems

Zhuo-Jia Fu1,2, Wen Chen1 and Qing-Hua Qin2,3

Abstract: This paper presents a hybrid finite element model (FEM) with a new
type of general solution as interior trial functions, named as HGS-FEM. A varia-
tional functional corresponding to the proposed general solution is then constructed
for deriving the element stiffness matrix of the proposed element model and the
corresponding existence of extremum is verified. Then the assumed intra-element
potential field is constructed by a linear combination of novel general solutions at
the points on the element boundary under consideration. Furthermore, the indepen-
dent frame field is introduced to guarantee the intra-element continuity. The present
scheme inherits the advantages of hybrid Trefftz FEM (HT-FEM) over the conven-
tional FEM and BEM, and avoids the difficulty in choosing appropriate terms of
Trefftz functions in HT-FEM and also removing the troublesome for determining
fictitious boundary in hybrid fundamental solution-based FEM (HFS-FEM). The
efficiency and accuracy of the proposed model are assessed through several numer-
ical examples.

Keywords: Hybrid finite element, general solution, Helmholtz-type problem, non-
linear functionally graded material

1 Introduction

Hybrid finite element method (HFEM) proposed by Pian [Pian (1964); Pian and
Tong (1969)] is a robust finite element method, which is based on Hellinger-Reissner
variational formulation and the assumed stress fields satisfying the equilibrium
equations. In contrast to conventional FEM, HFEM [Pian (1995)] has greater
flexibility in obtaining accurate stress distribution, and it employs both assumed
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displacement and stress polynomials as trial functions to avoid choosing the high-
order polynomials. In virtue of its merits, HFEM was applied to various elasticity
and structural mechanics problems [Atluri (1971), (1973); Atluri et al. (1975);
Pian (1983); Tong et al. (1973); Ying and Atluri (1983)]. Whereafter hybrid crack
elements [Atluri et al. (1978); Piltner (1985); Tong (1977); Xiao and Karihaloo
(2007)] have been formulated to deal with the region around the crack in fracture
elasticity problems. In developing special crack elements, they employ truncated
asymptotic crack tip displacement and stress expansions as trial functions, which
satisfy all governing equations in advance.

On the other hand, the HT-FEM, introduced in 1977 [Jirousek and Leon (1977)],
has been considerably improved and has now become a highly efficient and well
established computational tool in the solution of various engineering problems [Qin
(1994), (2003a), (2003b)]. Unlike the conventional FEM, HT-FEM is based on a
hybrid method which includes imposing intra-element continuity to link up a non-
conforming internal field with the inter-element frame field [Qin (2000)]. Such
intra-element fields are chosen as suitable T-complete functions so as to a priori
satisfy the governing equation of the problem under consideration. It should be
mentioned that, unlike hybrid crack elements, in HT-FEM the trial functions satisfy
all governing equations in advance at element level. Moreover, HT-FEM combines
the advantages of Hybrid FEM and boundary element method, its main advantages
are: 1) it only needs numerical integration along the element boundaries, which en-
ables arbitrary polygonal or even curve-sided shapes to be generated, 2) it permits
great liberty in element geometry and provides the possibility of accurate perfor-
mance without requiring annoying mesh adjustment to various local effects due to
loading and/or geometry changes [Dhanasekar et al. (2006)].

However, the terms of Trefftz functions should be carefully chosen in obtaining
desired results [Qin (2000)]. Moreover, it is difficult to derive Trefftz functions
for some practical engineering problems. Recently, Wang and Qin [Wang and Qin
(2010), (2009)] developed a hybrid finite element method based on the fundamen-
tal solution (HFS-FEM), which overcomes the drawback of HT-FEM and uses a
linear combination of fundamental solutions at points on the fictitious boundary
outside the elemental domain under consideration to construct the intra-element
field. Nevertheless, selecting the appropriate fictitious boundary becomes a new
headache in the HFS-FEM as in the method of fundamental solution [Fairweather
and Karageorghis (1998); Wang and Qin (2006)], which has a significant effect on
the numerical accuracy.

This paper follows the works of HTFEM and HFS-FEM. To remove the drawback
of HT-FEM and HFS-FEM mentioned above, a novel type of nonsingular general
solutions [Chen et al. (2010); Chen et al. (2005)] is firstly applied to hybrid finite
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element model (FEM), named as HGS-FEM, which replaces the singular funda-
mental solutions by the nonsingular general solutions as the interior trial functions
and thus enables to place the source points on the element boundary under con-
sideration. The independent frame field is defined along the element boundary to
guarantee the intra-element continuity which is the same as that of HFS-FEM. Fi-
nally, a variational functional is employed to construct the final stiffness equation
and link the boundary frame field with intra-element field. Similar to the HFS-
FEM, the proposed HGS-FEM retains all advantages of HT-FEM and removes the
difficulty in choosing appropriate terms of Trefftz functions. It is should be men-
tioned that the nonsingular general solution has one term only, rather than many
terms of Trefftz functions in HT-FEM, which makes the corresponding derivation
simple. Further, the proposed HGS-FEM avoids determining the position of ficti-
tious boundary, which is required in the HFS-FEM. In addition, it should be pointed
out that, in contrast to boundary element method (BEM) [Qin (1993); Sladek and
Sladek (1998)], the present approach removes the weakness of dealing with singu-
lar or hyper-singular integrals in the BEM.

A brief outline on the structure of paper is as follows: Section 2 presents a detailed
derivation of the proposed HGS-FE model. In Section 3, three typical examples
are considered to demonstrate the numerical efficiency and accuracy of the pro-
posed HGS-FEM in comparison with the HFS-FEM and the boundary knot method
(BKM) [Fu et al. (2011)]. Finally, Section 4 presents some conclusions and poten-
tial extensions of the proposed model.

2 HGS Finite element model

2.1 Basic equation of Helmholtz equation

For a practical engineering problem, its physical behavior is generally governed by
the following field equations:

Ru+ b̄ = 0 (in Ω, governing equation) (1)

subjected to the boundary conditions

u = ū (on Γu, essential boundary condition) (2a)

t = Bu = t̄ (on Γt , natural boundary condition) (2b)

where R and B are differential operators, b̄ denotes inner heat source.

As an illustration of the proposed HGS-FEM, let us consider two-dimensional
isotropic Helmholtz problem in the absence of inner sources (b̄ = 0), where R =
∆+λ 2 and B = ∂

∂x1
nx1 + ∂

∂x2
nx2 , in which ∆ is the Laplace operator, λ denotes wave
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number, u, t represent the potential and flux, ū, t̄ are the corresponding prescribed
functions, and (nx1 ,nx2) the outward unit normal vector at natural boundary Γt .

2.2 Assumed fields

In performing HGS-FE analysis, the whole domain Ω is divided into a number of
elements. For a particular element, say element e, occupying a sub-domain Ωe

with the element boundary Γe, two groups of independent fields are assumed in the
following way:

1) A non-conforming intra-element field is defined by

ue (x) =
Ns

∑
j=1

Ne (x,y j)ce j = Ne (x)ce ∀x ∈Ωe,y ∈ ∂Ωe (3)

where ce stands for unknown parameters and Ns represents the number of source
points located on the element boundary. Ne (x,y j) is the nonsingular general solu-
tions of two-dimensional isotropic Helmholtz problem [Chen and Tanaka (2002)]:

Ne (x,y) =
1

2π
J0 (λ r)

in which J0 denotes the zero-order Bessel function of first kind, and r is the Euclid-
ian distance between the collocation point {x} and source point {y}. Some useful
nonsingular general solutions [Chen et al. (2010); Chen et al. (2005)] are listed in
Appendix 1. Unlike in the HFS-FEM, the proposed HGS-FEM places the source
points coinciding with the collocation points on the element boundary, usually on
the same set of boundary nodes displayed in Fig. 1. Additionally, it should be
mentioned that the assumed intra-element temperature field is defined in a local
reference system x = (x1,x2) whose axis remains parallel to the axis of the global
reference system X = (X1,X2) (see Fig. 1).

The corresponding outward normal derivative of ue on Γe is defined by

te =
2

∑
i, j=1

∂ue

∂x j
nxi = Qece (4)

where

Qe =
2

∑
i, j=1

∂Ne

∂x j
nxi = ATe (5)

with

A =
[
n1 n2

]
, Te =

[
∂Ne
∂x1

∂Ne
∂x2

]T
(6)
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The undetermined coefficients c, here, may be calculated in many different ways
(variational approach, least square, etc.) that enable the prescribed boundary con-
ditions and the inter-element continuity to be approximately fulfilled. The simplest
way to enforce the inter-element continuity conditions

ue = u f on Γe∩Γ f conformity (7a)

te + t f = 0 on Γe∩Γ f reciprocity (7b)

and to express the unknown coefficients c in terms of conveniently chosen nodal
parameters is a hybrid procedure based on using a frame function representing an
independent temperature ũ. So the second independent temperature field should be
introduced in the following way.

2) An auxiliary exactly and minimally conforming frame field

ũe (x) = Ñe (x)de, x ∈ Γe (8)

is independently assumed along the element boundary Γe in terms of nodal degrees
of freedom (DOF) de, where Ñe represents the conventional finite element interpo-
lating functions. The frame field on any side with Nf nodes of a particular element
can be given in the form

ũ =
N f

∑
i=1

Ñi (ξ )ui (9)

where Ñi (ξ ) denotes shape functions in terms of natural coordinate ξ . Making use
of the properties of the shape functions for a one-dimensional line element [Qin
and Wang (2009)]:

Ñi (ξi) = 1

Ñ j (ξi) = 0 f or i 6= j

N f

∑
i=1

Ñi (ξ ) = 1

a series of shape functions with different nodes can be constructed as follows:
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(1) shape function of an element edge with 2 nodes

ξ = {−1,1}

Ñ1 (ξ ) =
1−ξ

2
,

Ñ2 (ξ ) =
1+ξ

2

(2) shape function of an element edge with 3 nodes

ξ = {−1,0,1}

Ñ1 (ξ ) =−ξ (1−ξ )
2

,

Ñ2 (ξ ) = 1−ξ
2,

Ñ3 (ξ ) =
ξ (1+ξ )

2

(3) shape function of an element edge with 4 nodes

ξ =
{
−1,−1

3
,
1
3
,1
}

Ñ1 (ξ ) =
1
16

(1−ξ )
(
−10+9

(
ξ

2 +1
))

,

Ñ2 (ξ ) =
9
16
(
1−ξ

2)(1−3ξ ) ,

Ñ3 (ξ ) =
9
16
(
1−ξ

2)(1+3ξ ) ,

Ñ4 (ξ ) =
1
16

(1+ξ )
(
−10+9

(
ξ

2 +1
))

.
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2.3 Modified variational principle

The HGS FE formulation for Helmholtz problem can be established by the varia-
tional approach [Qin (2005); Qin and Wang (2009)]. The approach is based mainly
on a modified variational principle. The terminology “modified principle” refers
here to the use of conventional potential functional and some modified terms for
the construction of a special variational principle. The reason for employing the
modified terms is that satisfaction of continuity displacement and flux between ele-
ments (Eq. (7)) and natural boundary conditions cannot be guaranteed in the HGS-
FEM due to the use of general solutions as the intra-element function within an
element. Following the procedure given in [Qin and Wang (2009)], the functional
corresponding to the problem defined in Eqs. (1) and (2) is constructed as

Πm = ∑
e

Πme (10)

with

Πme =
1
2

∫
Ωe

(
u,iu,i−λ

2u2)dΩ−
∫

Γte

t̄ ũdΓ+
∫

Γe

t (ũ−u)dΓ (11)

It should be mentioned that in functional (11), the governing equation (1) is sat-
isfied, a priori, due to the use of general solutions in the HGS FE model. The
boundary Γe of a particular element consists of the following parts:

Γe = Γue∪Γte∪ΓIe and Γue∩Γte = Γte∩ΓIe = Γue∩ΓIe = /0 (12)

where ΓIe represents the intra-element boundary of the element ‘e’.

Next we prove that the stationary condition of the functional (10) leads to the gov-
erning equation (1), boundary conditions (2) and continuity conditions (7). The
first-order variational of the functional (11) yields

δΠme =
∫

Ωe

(
u,iδu,i−λ

2uδu
)

dΩ−
∫

Γte

t̄δ ũdΓ

+
∫

Γe

δ t (ũ−u)dΓ+
∫

Γe

t (δ ũ−δu)dΓ

(13)

By using the divergence theorem∫
Ω

(
f,ih,i + h∇

2 f
)

dΩ =
∫

Γ

h f,inidΓ (14)
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for any smooth functions f and h in the solution domain, functional (13) can be
expressed as

δΠme =−
∫

Ωe

(
u,ii +λ

2u
)

δudΩ−
∫

Γte

(t̄− t)δ ũdΓ

+
∫

Γe

δ t (ũ−u)dΓ+
∫

ΓIe

tδ ũdΓ+
∫

Γue

tδ ũdΓ

(15)

For the displacement-based method, the potential conformity is satisfied in ad-
vance, that is

δ ũ = δ ū = 0 on Γue (ũ = ū)

δ ũe = δ ũ f on ΓIe f
(
ũe = ũ f ) (16)

Then, Eq. (15) can be rewritten as

δΠme =−
∫

Ωe

(
u,ii +λ

2u
)

δudΩ−
∫

Γte

(t̄− t)δ ũdΓ

+
∫

Γe

δ t (ũ−u)dΓ+
∫

ΓIe

tδ ũdΓ

(17)

from which the governing equation (1) and boundary conditions (2) can be obtained
using the stationary condition δΠme = 0(
∆+λ

2)u = 0, x ∈Ω (18)

u = ū, x ∈ Γu (19a)

t = t̄,x ∈ Γt (19b)

We can produce the field continuity requirement Eq. (7) in the following way.
When assembling elements ‘e’ and ‘f’, we have

δΠm(e+ f ) =−
∫

Ωe+ f

(
u,ii +λ

2u
)

δ ũdΩ−
∫

Γte+t f

(t̄− t)δ ũdΓ

+
∫

Γe

δ t (ũ−u)dΓ+
∫

Γ f

δ t (ũ−u)dΓ+
∫

ΓIe f

tδ ũe f dΓ+ · · ·
(20)

From which the vanishing variation of δΠm(e+ f ) leads to the reciprocity condition
(7b) te + t f = 0 on the intra-element boundary ΓIe f .

Theorem: existence of extremum
To prove the existence of extremum of the above variational functional, let us give
a proposition first.
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Proposition: Suppose the expression

Λ =
∫

Γt

δ tδ ũdΓ+∑
e

(∫
Γe

δ te (δ ũe−δue)dΓ+
∫

ΓIe

δ teδ ũedΓ

)
(21)

is uniformly positive (or negative) in the neighborhood of {u}0, where the displace-
ment {u}0 has such a value that Πm

(
{u}0

)
= Π0

m, and in which Π0
m denotes the

stationary value of Πm, namely,

Πm ≥Π
0
m or Πm ≤Π

0
m (22)

where the following relationship has been employed

{ũ}e = {ũ} f on Γe∩Γ f (23)

The expression (23) is due to the definition in Eq. (7a). This proposition can be
proved by way of “second variational approach” [Simpson and Spector (1987)].
Therefore, by performing variation of δΠm and using the above-mentioned propo-
sition, we obtain

δ
2
Πm =

∫
Γt

δ tδ ũdΓ+∑
e

(∫
Γe

δ te (δ ũe−δue)dΓ+
∫

ΓIe

δ teδ ũedΓ

)
= Λ (24)

In other words, δ 2Πm is uniformly positive (or negative). Thus it has been proved
from the sufficient condition of a local extreme existence of a functional. This
concludes the proof.

2.4 Generation of the element stiffness equation

The above modified variational approach links the intra-element field with bound-
ary frame field and then generates the element stiffness equation below. Applying
the divergence theorem again to the functional (11), we have the final functional
for the HGS-FE model

Πme =−1
2

∫
Γe

tudΓ−
∫

Γte

t̄ ũdΓ+
∫

Γe

tũdΓ (25)

Substituting Eqs. (3), (4) and (8) into the functional (25) yields

Πe =−1
2

cT
e Hece−dT

e ge + cT
e Gede (26)

in which[
He =

∫
Γe

QT
e NedΓ Ge =

∫
Γe

QT
e ÑedΓ ge =

∫
Γte

ÑT
e t̄dΓ

]
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To enforce inter-element continuity on the common element boundary, the un-
known vector ce should be represented in terms of the nodal DOF de. An optional
relationship between ce and de in the sense of variation can be obtained by mini-
mization of the functional Πe with respect to ce

∂Πe

∂cT
e

=−Hece +Gede = 0 (27)

which leads to

ce = H−1
e Gede (28)

and then yields the expression Πe only in terms of de and other known matrices

Πe =
1
2

dT
e GT

e H−1
e Gede−dT

e ge (29)

Therefore, by taking the vanishing functional Πe with respect to de

∂Πe

∂dT
e

= GT
e H−1

e Gede−ge = 0 (30)

the stiffness equation can be expressed as

Kede= ge (31)

where Ke= GT
e H−1

e Ge stands for the element stiffness matrix.

It is worth noting that the evaluation of the right-hand vector ge in Eq. (31) is the
same as that in conventional FEM, which is obviously convenient for the imple-
mentation of HGS-FEM into existing FEM programs.

2.5 Recovery of rigid-body motion

Similar to the HT-FEM and HFS-FEM, it is necessary to recover the missing rigid-
body motion modes from the above results in the proposed HGS-FEM.

Following the method presented by [Qin (2000)], the missing rigid-body motion
can be recovered by writing the internal potential field of a particular element e as

ue = Nece + c0 (32)

where the undetermined rigid-body motion parameter c0 can be calculated using
the least square matching of ue and ũe at element nodes

n

∑
i=1

(Nece + c0− ũe)
2
∣∣∣
node i

= min (33)
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which finally gives

c0 =
1
n

n

∑
i=1

∆uei (34)

in which ∆uei = (ũe−Nece)|node i and n is the number of element nodes.

Once the nodal field is determined by solving the final stiffness equation, the co-
efficient vector ce can be evaluated from Eq. (31), and then c0 is evaluated from
Eq. (34). Finally, the potential field u at any internal point in an element can be
obtained by means of Eq. (32).

3 Numerical results and discussions

In this section, the efficiency, accuracy and convergence of the HGS-FEM are as-
sessed by considering three numerical examples. The performance of the proposed
method is assessed by comparing the present results with those from HFS-FEM
with different fictitious parameters, boundary knot method (BKM) and analytical
solution. To provide a more quantitative understanding of the results, the average
relative error Rerr(u), Rerrx(tx) and Rerry(ty) defined, respectively, by

Rerr(u) =

√
1

NT

NT

∑
i=1

∣∣∣∣u(i)− ū(i)
ū(i)

∣∣∣∣2, (35a)

Rerrx(tx) =

√
1

NT

NT

∑
i=1

∣∣∣∣ tx (i)− t̄x (i)
t̄x (i)

∣∣∣∣2, (35b)

Rerry(ty) =

√
1

NT

NT

∑
i=1

∣∣∣∣ ty (i)− t̄y (i)
t̄y (i)

∣∣∣∣2, (35c)

are employed in numerical analysis, where t = txnx1 + tynx2 and t̄ = t̄xnx1 + t̄ynx2 ,
ū(i), t̄x (i) and t̄y (i) are the analytical solutions at xi, and u(i), tx (i) and ty (i) the
related numerical solutions at xi, respectively. NT denotes the total number of uni-
form test points in the domain of interest. In addition, unless otherwise specified,
the number of source points in intra-element field is equal to number of interpola-
tion nodes in frame field, namely, Ns = N f in all the following numerical compar-
isons.

Example 1: First we verify the accuracy of the proposed formulation and investi-
gate the effect of different nodes in an element on the accuracy displayed in Fig.1.
Consider 2D homogeneous Helmholtz problem

(
∆+λ 2

)
u = 0in a square domain

subjected to mixed boundary condition (Fig. 2a), where wave numberλ =
√

2.
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Figure 1: Configuration of different number of nodes in an element (Nf=4,8,12)
used in the proposed HGS-FEM method

 

Figure 2: Configuration of different physical domains in this study

The analytical solution is u = sin(x1)cos(x2), the corresponding mixed boundary
conditions can be easily derived from the analytical solution.

Fig. 3a displays the condition number of stiffness matrix K in example 1 with re-
spect to the number of elements by using the proposed HGS-FEM with different
number of nodes in an element as shown in Fig 1. Figs. 3b-d show the numer-
ical accuracy of temperature and heat flux varies against the number of elements
from the proposed method with different number element nodes. Condition num-
ber Cond in Fig 3a is defined as the ratio of the largest and smallest singular value.
It should be mentioned that, in general, the increasing node number in a particu-
lar element in the proposed method can improve the numerical accuracy; however,
the accuracy with 12-node element becomes worse along with refinement of the
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Figure 3: (a)The condition number of the interpolation matrix, and accuracy varia-
tion of (b) temperature, heat flux in (c) x1 and (d)x2 directions of example 1 against
the number of elements by HGS-FEM with different-nodes elements (4,8,12)

element meshes due to the rapid increase of condition number. Therefore, the 8-
node element is the suitable choice in the proposed HGS-FEM. Unless otherwise
specified, we use the proposed HGS-FEM with 8-node element in all the following
numerical assessments.

Example 2: This example compares the present method with HFS-FEM in 2D
modified Helmholtz problem

(
∆−λ 2

)
u = 0, where λ =

√
2. The physical domain

is formed from a quarter annulus with an outer radius ro = 10 and an inner radius
ri = 5 (Fig. 2b). The analytical solution is u = ex1+x2 , the corresponding mixed
boundary conditions also can be easily derived from the analytical solution.

Fig. 4a plots the condition numbers from the proposed method and HFS-FEM
with different fictitious boundary parameter d = 4,6,10 varying against the ele-
ment number, where d characterizes the distance between the fictitious and real
boundaries. It can be observed from Fig. 4a, that both these two schemes above
have similar trends that condition number increases along with an increase in the el-
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Figure 4: (a)The condition number of the interpolation matrix, and accuracy of (b)
temperature and heat flux in (c) x1 and (d)x2 directions of example 2 vary against the
number of elements by HGS-FEM and HFS-FEM with different fictitious boundary
parameters (d=4,6,10)

ement number. Figs. 4b-d present the convergent rate of temperature and heat flow
from the proposed method and HFS-FEM with d=4,6,10 against with the number
of elements. It can be seen from these figures that the proposed method behaviors
better than HFS-FEM when the number of elements is less than 150, and the param-
eter d in HFS-FEM has a remarkable influence on numerical accuracy, In general,
the larger parameter dprovides the more accurate results, however, the results from
HFS-FEM is unstable when d = 10 and the number of elements is less than 50.
Moreover, it should be mentioned that the solution may not be correct by using
HFS-FEM with d = 2. Therefore, it can be concluded that the fictitious boundary
parameter d in HFS-FEM is a problem-dependent parameter, and still quite tricky
and often troublesome to select it appropriately. Therefore, the proposed method
has the advantage over the HFS-FEM in that no fictitious boundary is required at
all.
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Example 3: Consider 2D heat conduction problem
2
∑

i, j=1

∂

∂xi

(
Ki j (x,T ) ∂u(x)

∂x j

)
=

0 in a L-shape FGM (Fig 2c) with nonlinear thermal conductivity Ki j (x,T ) =

a(T ) K̄i je
2
∑

i=1
2βixi

, where a(T ) = 1+ T
2 ,(K̄i j) =

(
2 0
0 1

)
, β1 = 0, β2 = 1. The tested

solution [Marin and Lesnic (2007)] is

u(x) =−2+2
√

1+T (x) (36)

in which

T (x) =

√
1−T x/Tr

2Tr
sinh(Tr)e−Ty (37)

where T x = x1√
2
− 1, Ty = x2, Tr =

√
T x2 +Ty2. The corresponding Dirichlet

boundary conditions also can be easily derived from the analytical solution.

By implementing the Kirchhoff transformation in conjunction with various vari-
able transformations, the original governing equation transforms into the following
Helmholtz-type equation(

2

∑
i, j=1

(
K̄i j

∂ 2T (x)
∂xi∂x j

+2βiK̄i j
∂T (x)

∂x j

))
e

2
∑

i=1
2βixi

= 0, x ∈Ω (38)

The corresponding nonsingular general solution [Fu et al. (2011)] of Eq.(38) is

uG (x,y) =− I0 (λRG)
2π
√

∆K̄
e
−

2
∑

i=1
βi(xi+yi)

(39)

in which ∆K̄ = det(K̄)= K̄11K̄22−K̄2
12 > 0, RG =

√
2
∑

i=1

2
∑
j=1

riK̄−1
i j r j,r1 = x1−y1,r2 =

x2− y2, where x,y are collocation points and source points, respectively, and I0 de-
notes the zero-order modified Bessel function of first kind. The more details about
this derivation can be found in Appendix 2.

We compare the proposed method with boundary knot method in this case. Nu-
merical results of example 3 by the proposed HGS-FEM are displayed in Table 1.
Table 2 shows the result obtained by BKM. It can be observed from Table 1 that
the proposed method can provide acceptable numerical accuracy with only 3 ele-
ments. Furthermore, the HGS-FEM converges obviously to the analytical solution
when increasing mesh density up to a critical value (108 in this example). But the
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increase of convergence rate slowdown slowly when approaching the critical and
even diverging when the element number is greater than the critical value due to
the ill condition of matrix He. From Table 2, it can be found that the numerical
accuracy has less improvement through increasing boundary knots due to the large
BKM condition number. Having compared the convergent performance of these
two methods, it can be concluded that the HGS-FEM has the similar accuracy with
that from BKM when the number of knots in less than 60, and becomes more ac-
curate than BKM when the knot number is greater than 60.

4 Conclusions

In this paper, we apply a new type of nonsingular general solution as an interior
trial function in the hybrid finite element model (HGS-FEM). The present scheme
inherits the advantages of the HT-FEM over the conventional FEM and BEM, and
removes the difficulty in constructing and choosing appropriate terms of Trefftz
functions used in the HT-FEM, and the difficulty for determining the fictitious
boundary used in the HFS-FEM. Numerical demonstration shows that the proposed
HGS-FEM is a competitive numerical method for solving engineering problems. In
comparison with HFS-FEM and BKM, the HGS-FEM performs more accurately
and stably, and converges faster to analytical solution. Furthermore, the proposed
method can be easily extended to other engineering problems by employing the cor-
responding general solution and constructing the related variational functional, and
it is also easily combined with dual reciprocity technique [Partridge et al. (1992)]
and multiple reciprocity technique [Fu and Chen (2009); Nowak and Neves (1994)]
for solving inhomogeneous and nonlinear problems. This work is under way.
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Appendix 1

The nonsingular general solutions to commonly used differential operators are
listed in Table 3. In the table, ∆ denotes Laplacian, ∇ the gradient operator, D
the diffusivity coefficient, λ a real number known as the wave number, v and r are

the velocity vector and distance vector, µ =
((

|v|
2D

)2
+ λ

D

) 1
2

and r the Euclidean

norm between the point x and the origin. Furthermore, I0 and J0 are the Bessel and
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Table 3: Nonsingular general solutions to commonly used differential operators.

ℜ 2D 3D
∆+λ 2 1

2π
J0(λ r) sin(λ r)

4πr

∆−λ 2 1
2π

I0(λ r) sinh(λ r)
4πr

D∆+v•∇−λ 2 1
2π

I0(µr)e−
v•r
2D

sinh(µr)
4πr e−

v•r
2D

modified Bessel functions of the first kind of order zero.

Appendix 2

Consider the heat conduction problem in example 3

2

∑
i, j=1

∂

∂xi

(
Ki j (x,T )

∂T (x)
∂x j

)
= 0, x ∈Ω (A1)

with the boundary conditions:

Dirichlet/Essential condition

T (x) = T̄ , x ∈ ΓD (A2a)

Neumann/Natural condition

q(x) =−
2

∑
i, j=1

Ki j
∂T (x)

∂x j
ni(x) = q̄, x ∈ ΓN (A2b)

Robin/Convective condition

q(x) = he(T (x)−T∞), x ∈ ΓR (A2c)

By employing the Kirchhoff transformation

ϕ (T ) =
∫

a(T )dT (A3)

Eqs. (A1) and (A2) can be reduced as the following form(
2

∑
i, j=1

(
K̄i j

∂ 2ΦT (x)
∂xi∂x j

+2βiK̄i j
∂ΦT (x)

∂x j

))
e

2
∑

i=1
2βixi

= 0, x ∈Ω (A4)

ΦT (x) = ϕ(T̄ ), x ∈ ΓD (A5a)
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q(x) =−
2

∑
i, j=1

Ki j
∂T (x)

∂x j
ni(x) =−e

2
∑

i=1
2βixi

2

∑
i, j=1

K̄i j
∂ΦT (x)

∂x j
ni(x) = q̄, x ∈ ΓN

(A5b)

q(x) = he (ΦT (x)−φ (T∞)) , x ∈ ΓR (A5c)

where ΦT (x) = φ(T (x))and the inverse Kirchhoff transformation

T (x) = φ
−1 (ΦT (x)) (A6)

And then we derive the nonsingular general solution of Eq. (A4) by two-step vari-
able transformations:

Step1: To simplify the expression of Eqs. (A4), let ΦT = Ψe
−

2
∑

i=1
βi(xi+si)

. Eqs. (A4)
can then be rewritten as follows:(

2

∑
i, j=1

K̄i j
∂Ψ(x)
∂xi∂x j

−λ
2
Ψ(x)

)
e

2
∑

i=1
βi(xi+si)

= 0, x ∈Ω (A7)

where λ =

√
2
∑

i=1

2
∑
j=1

βiK̄i jβ j. Since e
2
∑

i=1
βi(xi+si)

> 0. The Trefftz functions of Eq.

(A7) are equal to those of anisotropic modified Helmholtz equation.

Step2: To transform the anisotropic equation (A7) into isotropic one, we set(
y1
y2

)
=

(
1/
√

K̄11 0
−K̄12/

√
K̄11∆K̄

√
K̄11/

√
∆K̄

)(
x1
x2

)
(A8)

where ∆K̄ = det(K̄) = K̄11K̄22− K̄2
12 > 0.

It follows from Eq. (A7) that(
2

∑
i=1

∂ 2Ψ(y)
∂yi∂yi

−λ
2
Ψ(y)

)
= 0, y ∈Ω (A9)

Therefore, Eq. (A9) is the isotropic modified Helmholtz equation, the correspond-
ing nonsingular solution can be found in [Chen and Tanaka (2002)]. Then the
nonsingular solution of Eq. (A7) can be obtained by using inverse transformation
(A8),

uG (x,s) =− 1
2π
√

∆K̄
I0 (λR) (A10)
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in which R =

√
2
∑

i=1

2
∑
j=1

riK̄−1
i j r j,r1 = x1− s1,r2 = x2− s2, where x,s are colloca-

tion points and source points, respectively, and I0 denotes the zero-order modified
Bessel function of first kind.

Finally, by implementing the variable transformation ΦT = Ψe
−

2
∑

i=1
βi(xi+si)

, the non-
singular solution of Eq. (A4) is in the following form

uG (x,s) =− I0 (λR)
2π
√

∆K̄
e
−

2
∑

i=1
βi(xi+si)

(A11)
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