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Stress Distribution in an Infinite Body Containing Two
Neighboring Locally Curved Nanofibers

Surkay D. Akbarov1,2, Resat Kosker3 and Nihan T. Cinar3

Abstract: In the present paper, the stress distribution in an infinite elastic body
containing two neighboring nanofibers is studied. It is assumed that the midlines of
the fibers are in the same plane. With respect to the location of the fibers according
to each other the co-phase and anti-phase curving cases are considered. At infinity
uniformly distributed normal forces act in the direction of the nanofibers, location.
The investigations are carried out in the framework of the piecewise homogeneous
body model with the use of the three-dimensional geometrically non-linear exact
equations of the theory of elasticity. The normal and shear self-equilibrated stresses
arising as a result of the nanofiber curving are analyzed. In particular, the influence
of the interaction between the fibers on the distribution of these stresses is studied.
A lot of numerical results on the effect of the geometrical non-linearity to the values
of the self balanced shear and normal stresses are presented.

Keywords: Nanocomposite, nanofibers, Self balanced stresses, geometrical non-
linearity, local curving.

1 Introduction

One of the basic factors determining the strength of unidirectional fibrous compos-
ites along the fiber direction is the curvature of the fibers. The curvature may occur
as a result of design (see: Akbarov and Guz (2000), Chou, Cullough and Pipes
(1986), Feng, Allen and Moy (1998), Ganesh and Naik (1996), Tarnopolsky, Ji-
gun and Polyakov (1987)) or as a consequence of some technological process (see:
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Corten (1967), Tomashevskii and Yakovlev (2004)). The curvature caused by de-
sign features is modeled as a periodical, whereas the curvature caused by the tech-
nological process is modeled as a local one. An efficient practical employment of
unidirectional fibrous composite materials under service conditions requires inten-
sive systematic investigations to determine the stress-strain state in these materials,
with account of curving in reinforcing fibers. For this purpose, within the frame-
work of a piecewise homogenous body model by the use of the three dimensional
exact equations of the theory of the elasticity, a method is developed to investigate
the stress-strain state in the unidirectional composites (Akbarov and Guz (1985a,
1985b)). This method is employed in the case where the curving of the fibers is
periodic. The reviews of the results obtained by this method are detailed in the
papers by Akbarov and Guz (2002, 2004).

The method considered in Akbarov and Guz (1985a) is presented for the case where
the concentration of the fibers is too small and the interactions between them are
neglected. In Kosker and Akbarov (2003), this method is developed for two neigh-
boring periodically curved fibers and some numerical results are given. In Akbarov
and Kosker (2003a, 2003b), the mentioned method is extended to the geometrical
nonlinear statement and numerical results obtained for one and two neighboring pe-
riodically curved fibers are presented. The problem regarding to the corresponding
stability problems is studied in Akbarov and Kosker (2004) and the review of the
investigations mentioned stability problems is giving in Akbarov (2007). In Ak-
barov, Kosker and Ucan (2004, 2006) the foregoing approach was developed for a
periodically located row of fibers in an infinite matrix and corresponding numerical
results were presented. In the paper Akbarov, Kosker and Ucan (2004) (Akbarov,
Kosker and Ucan (2006)) it was assumed that the curving of the fibers relative to
each other is sinphase (antiphase) one and the investigations were made within the
framework of the linear theory of elasticity. In connection with this in Akbarov,
Kosker and Ucan (2010) the investigation carried out in Akbarov, Kosker and Ucan
(2004, 2006) is developed for the geometrical non-linear statement.

Local curving of the fibers is considered also in Djafarova (1992, 1994, 1995) in
the case of low fiber concentration and when their interaction is neglected. More-
over, the linear theory of elasticity was used in these investigations. According
to well-known mechanical considerations and the results obtained in Akbarov and
Kosker (2003a, 2003b), it is seen that the geometrical nonlinearity affects the self-
balanced stresses caused by fiber carvings’. Therefore in Akbarov, Kosker and
Simsek (2005), geometrical nonlinear statement is adopted as in Djafarova (1992,
1994, 1995). It is assumed that the fiber concentration is smaller and any interac-
tion between the fibers is disregarded. Therefore, the composite is modeled as an
infinite body containing a single locally curved fiber and some numerical results on
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the distribution of the self-balanced stress which are as a result of the local curving
of the fiber are presented.

The changeover from the microlevel to the nanolevel in the science of materials
broke new ground in the mechanics of materials and structures. This was preceded
by important events in the physics and chemistry of nanoformations, which were
partially described in Guz (2006), Guz, Rushchitsky and Guz (2007), a basic ap-
proach to study the mechanical properties of nanocomposite materials with poly-
mer matrix was proposed and the deformation of nanocomposites and structural
members made of them. Nanofibers are differed from the microfibers by the value
of ratio E( f )/E(m) where E( f ) (E(m)) is a modulus of elasticity of the fibers (matrix)
material. If its value is 300 ≤ E( f )

/
E(m) ≤ 1000, then fibers are defined as the

polymer matrix+nanofiber (see: Qian, Dickey, Andrews and Rantell (2000), Zhuk
and Guz (2007), Guz and Dekret (2008), Maligino, Warrior and Long (2009)).

However, in papers Kosker and Cinar (2009) and Cinar, Kosker, Akbarov and Akat
(2010) the stress distributions in an infinite elastic body containing two neighboring
cophase locally curved fibers (which are located along two parallel lines in the same
plane (Kosker and Cinar (2009)) and in the out of plane (Cinar, Kosker, Akbarov
and Akat (2010))) and between which the interaction is taking into account. It was
considered the case where the fibers are micro-fibers. In the present paper the inves-
tigations carried out in Kosker and Cinar (2009) and Cinar, Kosker, Akbarov and
Akat (2010) is extended for the case where the fibers are nanofibers and assumed
that the middle lines of the fibers lie on the same plane. It is considered not only
cophase curving case (as in Kosker and Cinar (2009), Cinar, Kosker, Akbarov and
Akat (2010)), but also antiphase curving case. The investigations are carried out in
the framework of the piecewise homogeneous body model, with the use of the three
dimensional geometrically nonlinear exact equations of the theory of elasticity for
determination of the stress distribution (the normal and shear stresses acting along
the nanofibers) in the nanocomposites with unidirectional locally curved two neigh-
boring nanofibers. The numerical results related to stress distribution in considered
body and influence of geometrical nonlinearty to this distribution are presented and
interpreted.

Throughout the investigations, repeated indices are summed over their ranges; how-
ever, underlined repeated indices are not summed. Furthermore, to simplify the
consideration we will use the tensor notation and physical components of tensors
simultaneously.
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Figure 1: The geometry of material structure a) co-phase curving; b) antiphase
curving and c) chosen coordinates

2 Formulation of the problem

We consider an infinite body containing two nanofibers with an initial local imper-
fection. With respect to the location of the nanofibers according to each other the
following two cases are considered: (I) cophase curving and (II) antiphase curving
in plane. Here under “in plane” it is understood that the

midlines of the fibers lie in the same plane. With the middle line of each fiber
we associate Lagrangian rectilinear Okx1kx2kx3k and cylindrical Okrkθkzk system
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of coordinates (Fig. 1). Here k=1, 2 is related to the first and second nanofiber
in turn in order. The body is compressed or stretched as |xk3| → ∞ by uniformly
distributed normal forces with intensity p acting along the Oxk3 axis and the cross
section of the each nanofiber normal to its axial line is a circle of constant radius R
along the entire length. Below the values related to the nanofibers will be denoted
by upper indices (21), (22); but those related to the matrix by upper index (1).
For the nanofibers and matrix, in the geometrical nonlinear statement, we have the
following governing field equations:

∇i

[
σ (m)in

(
g j

n +∇nu(m) j
)]

= 0,

2ε
(m)
jn = ∇ ju

(m)
n +∇nu(m)

j +∇ ju(m)i∇nu(m)
i ,

σ (m)
(i j)

= λ (m)(e(m)δ
j

i )+2µ(m)ε
(m)
(i j) , e(m) = ε

(m)
rr + ε

(m)
θθ

+ ε
(m)
zz

(1)

Also, perfect contact conditions are assumed at the fibers-matrix interfaces Sk:

σ
(2q)in

(
g j

n +∇nu(2q) j
)∣∣∣

Sq
nq( j) = σ (1)in

(
g j
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u
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∣∣∣
Sq

= u(1)
j

∣∣∣
Sq

(2)

In equations (1) and (2), the conventional tensor notation is used and the subscripts
in parentheses denote the physical components of the corresponding tensors. It is
known that

σ(i j) = σ
i jHiH j = σi j

1
H iH j

,ε(i j) = ε
i jHiH j = εi j

1
HiH j

,

u(i) = uiHi = ui
1
Hi

, (3)

where (i j) = rr,θθ ,zz,rθ ,rz,zθ , (i) = r,θ ,z. Hi are the Lamé coefficients, and n(k) j
are the covariant components of the unit normal vector to the surfaces Sk (Fig.1).
We define the initial imperfection form of the fiber by an equation of its axial line
(Fig.1).

xk1 = Fk(xk3) = εδk(xk3),xk2 = 0,

|δk(xk3)| ,
∣∣∣∣dδk(xk3)

dxk3

∣∣∣∣→ 0 for |xk3| → ∞ (4)

where ε is a small parameter (0 ≤ ε < 1) whose geometric meaning will be indi-
cated upon specification of this function.
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3 Method of Solution

The equations of the interfaces Sk can be represented as~gk(rk,θk,xk3)= rk(θk, t3)~er +
xk3(θk, t3)~e3, in the cylindrical system of coordinates Okrkθkzk, where~er and~e3 are
the unite ort vectors, t3 is a parameter and t3 ∈ (−∞,+∞). According to the equa-
tion (4) and to the condition on the fiber cross section, the functions rk(θk, t3) and
xk3(θk, t3) must satisfy simultaneously the following equations

εδk(t3)
(
rk cosθk− εδk(t3)

)
+ xk3− t3 = 0,

r2
k sin2

θk +
(
1+ ε

2(δ ′k)
2)(rk cosθk− εδk(t3)

)2 = R2,δ ′k(t3) =
dδk(t3)

dt3
The first of them is the equation of the plan, the normal vector of which coin-
cides with the tangent vector of middle line of the fiber. But the second equation
represents the condition of the fiber cross-section described under problem formu-
lation. Consequently from these equations we obtain the following expressing for
the functions rk(θk, t3) and xk3(θk, t3)

rk(θk, t3) =
εδk(t3)

(
1+ ε2(δ ′k(t3))

2
)

cosθk

1+(δ ′k(t3))2ε2 cos2 θk
+

{
ε2(δk(t3))2

(
1+ ε2(δ ′k(t3))

2
)2 cos2 θk(

1+(δ ′k(t3))2ε2 cos2 θk
)2 +R2− (δk(t3))2

ε
2 (1+ ε

2(δ ′k(t3))
2)}1/2

,

xk3(θk, t3) = t3− εδ
′
k(t3)(rk(θk, t3)− εδk(t3)) (5)

Using the well-known operations of the differential geometry, we also obtain the
expression for the components nkr, nkθ and nk3 of the unit normal vector to the
surface Sk from equations ~gk(rk,θk,xk3) = rk(θk, t3)~er + xk3(θk, t3)~e3 and (5). As
these expressions are cumbersome, therefore they are not given here.

Taking into account that the degree of the local curving (i.e. the values of
∣∣εδ ′k(t3)

∣∣<<
1) is small, we seek quantities characterizing the stress-strain state of the matrix and
the fibers in the form of series in positive powers of the small parameter ε:

σ
(k)
rr =

∞

∑
q=0
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q
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(k),q
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∞

∑
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∞
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r , .. (6)

The quantities rk, zk, nkr, nkθ and nkz are also presented in series form:

rk = R+
∞

∑
q=1

ε
qarq(R,θk, t3),zk = t3 +

∞

∑
q=1

ε
qazq(R,θk, t3),
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nkr = 1+
∞

∑
q=1

ε
qbrq(R,θk, t3),nkθ =

∞

∑
q=1
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qbθq(R,θk, t3),

nkz =
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ε
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The expressions for the coefficients of the εq in (7) can be determined by employing
some routine operations and the details are omitted.

Substituting the expression (6) in equation (1) and grouping terms with identical
powers, we obtain a complete equation system for each approximation. In this
case, equation (1) holds for the zeroth approximation and the equations derived for
the first and subsequent approximations contain the values of the previous approx-
imations. We assume that the materials of the matrix and fibers are comparatively
rigid, and therefore the nonlinear terms can be neglected in the equations obtained
for the zeroth approximation and the term (g j

n +∇nu(k) j,0) can be replaced by δ
j

n in
the first and subsequent approximations.

With these assumptions, the following equations are obtained for the first approxi-
mation.
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which coincide with the equations of the Three-Dimensional Linearised Theory of
Elasticity (TDLTE) (Guz (1999)). It should be noted that the homogeneous parts
of the equations obtained for the second and the subsequent approximations also
coincide with the equations of the TDLTE.

Now we consider the contact conditions for each approximation, which are derived
from equation (2). For this purpose, we substitute the expressions (6) and (7) into
equation (2) and expand the components of each approximation of equation (6),
i.e. expand the σ

(k),q
rr , ...,u(k),q

r in equation (6) in vicinity of (R,θk, t3) into Taylor
series. Then, grouping the terms with identical powers of the parameter ε and
taking into account the foregoing assumptions, we derive the contact conditions for
each approximation, e.g.,

1. for the zeroth approximation

[σrr]
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1,0 = [σrz]
2k,0
1,0 = 0, [ur]

2k,0
1,0 = [uθ ]2k,0
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2. for the first approximation
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In equations (11) and (12) the following notation is used:

[X]2k,q
1,q = X(1),q (R,θk, t3)−X(2k),q (R,θk, t3), q=0,1,

f1k = δk(t3)sinθk,φ1k =−R
dδk(t3)

dt3
sinθk, (13)
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γrk =
(

δk(t3)
R
− d2δk(t3)

dt2
3

R
)

sinθk,γθk =−δk(t3)
R

cosθk,γzk =−dδk(t3)
dt3

sinθk.

In equation (12), only the contact relations for radial force (σrrnr +σrθ nθ +σrznz)
and radial displacement ur are presented: the remaining ones are obtained by cyclic
permutation of the indices r,θ and z in the components of the stress tensor (only
the first index is replaced) and the displacement vector.

The zeroth approximation. Assume that the materials of each fiber are the same and
Poisson coefficient of this material ν (21) = ν (22) (ν(2k) denotes Poisson coefficient
of k.th fiber) is equal to Poisson coefficient of matrix material denoted by ν (1).).
This approximation has an exact analytical solution, which is given in Akbarov and
Guz (2000), Guz (2003), Akbarov and Guz (1985), Akbarov and Mamedov (2009).
According to these references, for ν (1) = ν(2k), we have the following relations:
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The first approximation. According to equations (14), equations (8) have the fol-
lowing form:
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The constitutive and geometrical relations (9) and (10) are remaining the same.

As for equations (14), the contact conditions for the first approximation assume the
form
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For a solution to the problem (15), (9), (10), and (16), we employ the representa-
tions Guz (1999)
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We apply the exponential Fourier transform with respect to z, i.e.
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to the equations (9), (10), (15)- (18). After some mathematical manipulations we
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L
)exp(inθk)

χ
(1),1
F = i

[
∞

∑
n=−∞

2

∑
k=1

(
A(1)k

n (s)Kn(ξ
(1)
2 s

rk

L
)+B(1)k

n (s)Kn(ξ
(1)
3 s

rk

L
)
)

exp(inθk)

]
(22)

where In(x) are Bessel functions of a purely imaginary argument and Kn(x)are the
Macdonald functions. Moreover the unknowns A(2k)

n , ...,C(2k)
n are the complex con-

stant and satisfy the relations:

A(2k)
n = A(2k)

−n , B(2k)
n = B(2k)

−n , C(2k)
n = C(2k)

−n , Im A(2k)
0 = Im B(2k)

0 = Im C(2k)
0 = 0,
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A(1)
n = A(1)

−n, B(1)
n = B(1)

−n, C(1)
n = C(1)

−n, Im A(1)
0 = Im B(1)

0 = Im C(1)
0 = 0. (23)

Now we attempt to satisfy the Fourier transforms of contact condition (16). For this
purpose we must represent the expressions (22) and (23) in the k-th (k=1,2) cylin-
drical coordinate system to satisfy the contact conditions on the k-th fiber-matrix
interface Sk. The expressions (21) are already presented in the k-th cylindrical sys-
tem of coordinates. To make these operations for the expressions (22) we use the
summation theorem (Watson (1962)) for the Kn(x) function, which can be written
for the case at hand as follows

rm exp iθm = Rmn exp iφmn + rn exp iθn,

Kν(crn)exp iνθn =
∞

∑
k=−∞

(−1)ν Ik(crm)Kν−k(cRmn)exp [i(ν− k)φmn]exp ikθm,

mn = 12;21; m;n = 1,2;rm < Rmn; R12 = R21; φ12 = 0; φ21 = π (24)

Now we specify equation (4) as

for cophase curving

xk1 = Aexp
(
−
(xk3

L

)2
)

cos
(

m
xk3

L

)
= εLexp

(
−
(xk3

L

)2
)

cos
(

m
xk3

L

)
,

for antiphase curving

xk1 = (−1)k+1Aexp
(
−
( xk3

L

)2
)

cos
(
m xk3

L

)
=

(−1)k+1εLexp
(
−
( xk3

L

)2
)

cos
(
m xk3

L

) ,

xk2 = 0,ε =
A
L

,k = 1, 2 (25)

It is assumed that L > A, and the small parameter ε in (25) is introduced. Moreover,
in (25) the following notation is used: A is the maximum value of the lift of the
local curving and L is the introduced to be the geometrical parameter as shown in
Fig. 1. In (25) the parameter m depicts the oscillatory character of the local mode
of curvature.

Using (21)-(24) we obtain from Fourier transforms of (16) an infinite system of
algebraic equations with respect to the unknown constants (23). Introducing the
notation

C(1)k
n Kn(ξ

(1)
1 s

rk

L
) = y(1)k

n1 + iz(1)k
n1 ,A(1)k

n Kn(ξ
(1)
2 s

rk

L
) = z(1)k

n2 + iy(1)k
n2 ,

B(1)k
n Kn(ξ

(1)
3 s

rk

L
) = z(1)k

n3 + iy(1)k
n3 ,C(2k)

n In(ξ
(2)
1 s

rk

L
) = y(2)k

n1 + iz(2)k
n1 ,
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A(2k)
n In(ξ

(2)
2 s

rk

L
) = z(2)k

n2 + iy(2)k
n2 ,B(2k)

n In(ξ
(2)
3 s

rk

L
) = z(2)k

n3 + iy(2)k
n3 ,

Z(k)q
n =

∥∥∥∥∥∥∥
z(k)q

n1

z(k)q
n2

z(k)q
n3

∥∥∥∥∥∥∥ ,Y (k)q
n =

∥∥∥∥∥∥∥
y(k)q

n1

y(k)q
n2

y(k)q
n3

∥∥∥∥∥∥∥ ;

D(1)q
nv =

∥∥∥d(1)q
rs (n,v)

∥∥∥ ,D(2)q
n =

∥∥∥d(2)q
rs (n)

∥∥∥ ,

F(1)q
nv =

∥∥∥ f (1)q
rs (n,v)

∥∥∥, F(2)q
n =

∥∥∥ f (2)q
rs (n)

∥∥∥, i =
√
−1, q = 1,2; k= 1,2; r;s = 1,2,3,

(26)

we can unite this infinite set of equations in the following form:

Z(1)1
n +

∞

∑
v=0

D(1)2
nv Z(1)2

v +D(2)1
n Z(2)1

n = 0,Z(1)2
n +

∞

∑
v=0

D(1)1
nv Z(1)1

v +D(2)2
n Z(2)2

n = 0 (27)

Y (1)1
n +∑

∞
v=0 F(1)2

nv Y (1)2
v +F(2)1

n Y (2)1
n =

δ 3
n (σ (1),0

zz −σ
(21),0
zz )s

√
π

2 (exp(−( s+m
2 )2)− exp(−( s−m

2 )2))
,

Y (1)2
n +∑

∞
v=0 F(1)1

nv Y (1)1
v +F(2)2

n Y (2)2
n =

δ 3
n (σ (1),0

zz −σ
(22),0
zz )s

√
π

2 (exp(−( s+m
2 )2)− exp(−( s−m

2 )2))
(28)

where n = 1,2, ...,∞, δ 3
3 = 1 and δ 3

n = 0for n 6= 3. Note that the component of
the matrixes D(k)q

nv , F(k)q
nv , D(2)q

n , F (2)q
n are obtained from the formulae Fourier trans-

forms of (12)-(17) and (21)- (23). Due to cumbersome we omit here their detailed
expressions.

It follows from (28) that Z(k)q
n = 0, k = 1,2; q = 1,2. Moreover, it follows from

the mechanical consideration and from the (23) the folllowing relations must be
satisfied:

for co-phase curving case of the nanofibers

Y (1)1
n = Y (1)2

n , (29)

for antiphase curving case of the nanofibers

Y (1)1
n =−Y (1)2

n , (30)
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Taking the relations, (29) and (30) into account from (28) we obtain for co-phase
curving case

that Y (k)1
n = Y (k)2

n . Taking this into account, from (28) we obtain

Y (1)1
n +∑

∞
v=0 F(1)2

nv Y (1)1
v +F(2)1

n Y (2)1
n =

δ 3
n (σ (1),0

zz −σ
(2),0
zz )s

√
π

2 (exp(−( s+m
2 )2)− exp(−( s−m

2 )2))
(31)

and for antiphase curving case

Y (1)1
n −∑

∞
v=0 F(1)2

nv Y (1)1
v +F(2)1

n Y (2)1
n =

δ 3
n (σ (1),0

zz −σ
(2),0
zz )s

√
π

2 (exp(−( s+m
2 )2)− exp(−( s−m

2 )2))
. (32)

For numerical investigations the infinite system of algebraic equations (31) and
(32) must be approximated by corresponding finite system. To validate of such a
replacement, it must be shown that the determinant of the infinite system of equa-
tions is of normal type (Kantarovich and Krilov (1962)). Such is the case if the
series

M =
∞

∑
n=0

∞

∑
v=0

∣∣∣F(1)2
nv

∣∣∣ (33)

converges. For investigating this series, we use the following asymptotic estimates
of the functions In(x) and Kn(x):

In(x) < c1
1
n!

(
|x|
2

)n

,c1 = const.;Kn(x)≈ c2 (n−1)!
(

2
|x|

)n

,c2 = const. (34)

These relations hold for large n and fixed x. Let

R
R12−2L

>
R

R12
,
R12

R
> 2 (35)

which means that the fibres do not contact with each other. Then, taking into ac-
count equations (34) and (35) and analysing the expressions of F (1)2

nν , we obtain the
following estimate for series (33):

M < c3

∞

∑
n=0

nc4 (ρ−1)−n ;c3,c4 = const.,ρ =
R12

R
(36)

As the series on the right hand side converges, so does series (33). Note that such a
proof was also performed in Guz (1990), Guz, Rushchitsky and Guz (2007).
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Consequently, for numerical investigations, the infinite system of algebraic equa-
tions (31) and (32) can be replaced with

Y (1)1
n +∑

Nν

v=0 F(1)2
nv Y (1)1

v +F(2)1
n Y (2)1

n =
δ 3

n (σ (1),0
zz −σ

(2),0
zz )s

√
π

2 (exp(−( s+m
2 )2)− exp(−( s−m

2 )2))
(37)

for the cophase curving case and with

Y (1)1
n −∑

Nν

v=0 F(1)2
nv Y (1)1

v +F(2)1
n Y (2)1

n =
δ 3

n (σ (1),0
zz −σ

(2),0
zz )s

√
π

2 (exp(−( s+m
2 )2)− exp(−( s−m

2 )2))
. (38)

for the antiphase curving case, where n = 1,2, ...,Nν in equations (37) and (38). The
values of Nν in these equations are determined from the convergence requirement
of numerical results.

Using the Fourier transforms to equations. (9), (10) we obtain the expressions for
σ̄

(1),1
rrF , ..., σ̄ (2),1

zzF . The inverse transform for the stresses, for example, for the stress
σ

(1),1
rr is determined by

σ
(1),1
rr =

1
2π

∫ +∞

−∞

σ̄
(1),1
rrF eiszds (39)

Equation (25) shows that the selected function δk(t3) is even one and therefore the
expression (37) can be replaced with

σ
(1),1
rr =

1
π

∫ +∞

0
σ̄

(1),1
rrF coszds (40)

By similar manner we obtain the expressions to calculate the other sought values.

Thus, by the above-described method we determine completely the values of the
first approximation. Note that the values of the second and subsequent approxima-
tions in equation (6) can also be determined by this method. According to the inves-
tigations analyzed in Akbarov and Guz (2000) the main effect of the fibers curving
on stress distribution arises within the framework of the first approximation. The
second and subsequent approximations give only some insignificant quantitative
corrections to these results. However, to determine of the values of these approx-
imations requires some very complicated and cumbersome mathematical proce-
dures. Taking the above stated into account the investigations in the present paper
are made only within the framework of the zeroth and first approximations.

4 Numerical Results and Discussions

First, we consider some remarks on the calculation of the improved integral (40).
Note that under the calculation procedure these improved integrals are replaced by
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the corresponding definite ones, i.e. we use the relation
∫ +∞

0 (.)ds ∼=
∫ S∗

0 (.)ds =
∑

N
i=0
∫ Si+1

Si
(.)ds, S0 = 0, SN = S∗. The values of N and S∗ are determined from

the convergence criterion of the improved integrals. Further, for the calculation
of the integrals

∫ Si+1
Si

(.)ds the Gauss integration algorithm is employed. All these
procedures are made automatically in PC by using programmes written in FTN77.

As follows from the present investigations and those carried out in the monograph
Akbarov and Guz (2000) that in the sinphase (antiphase) curving case the shear
(normal) stress σnτ (σnn) has dominating values. Taking above-stated into account
we consider the influence of the problem parameter to the values of σnτ in the
cophase curving case, but in the antiphase curving case we investigate this influ-
ence for the normal stress σnn. Moreover, the aforementioned investigations show
that the stresses σnn and σnτ have a maximum at the point θ = 0 determined by
equation (5). In view of corresponding symmetry we consider the distribution of
these stresses only for x3 ≥ 0 and 0 ≤ θ ≤ π (Fig. 1). Note that the stresses σnτ

and σnn act along the tangent vectors τ and the normal vector n to the surface of the
fiber, respectively. If ε = 0 (i.e. if the curving is absent), the stresses σnn and σnτ

coincide with σrr and σrz, respectively.

We introduce the parameters κ = R
/

L, ρ = R12
/

R where R is a radius of the cross-
section of the fibers, R12 is a distance between two neighboring fibers (Fig. 1), and
unless otherwise specified, assume that ε = 0.07, m = 1, x3

/
L = 0.7 in calculating

the values of σnτ

/
|p|, x3

/
L = 0 in calculating the values of σnn

/
|p|, ν (1) = ν (2) =

0.3, E(2)
/

E (1) = 500 where E (2)and E (1) (ν (2)and ν (1)) are Young’s moduli (Poisson
ratio) of nanofibers and matrix materials, respectively. To illustrate the influence of
the geometrical nonlinearity on the distribution of the considered stresses we will
use the parameter α = p

/
E (1).

Thus, consider the graphs given in Figs. 2 and 3 which show the dependencies
between the σnτ

/
|p| and the parameter κ for ρ = 2.1 and 2.5, respectively, for

various suitible values of the parameter α . The graphs of the dependencies between
σnn
/
|p| and κ with the same sequencies of the problem parameters are given in

Figs. 4 and 5. In these figures the graphs denoted by (a) and (b) correspond to
the tension and compression of the consireded body, respectively. Note that under
the consideration of compression we assume that |α| < |αcr.|, where αcr. is the
critical values of the parameter α obtained for the stability loss problem of the two
neighboring locally curved of fibers in an infinite matrix. The numerical results
given in the foregoing figures show that the dependencies among σnτ

/
|p|, σnn

/
|p|

and κ have non-monotonic character, i.e. there is such value of the parameter κ

(denote it by κ∗) under which the absolute values of the considered stresses have
its absolute maximum.

According to the numerical results, the values of κ∗ decrease with increasing ρ (i.e.
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Figure 2: The graphs of the dependencies between σnτ

/
|p| and parameter κ for

various values of α under ρ = 2.1 a) tension b) compression
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Figure 4: The graphs of the dependencies between σnn
/
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with increasing the distance between the two neighboring fibers). Absolute maxi-
mum values of σnτ

/
|p| in the cophase curving case and absolute maximum values

of σnn
/
|p| in the antiphase curving case increase with decreasing ρ . In this case, as

a result of the geometrical non-linearity the absolute values of σnτ

/
|p| and σnn

/
|p|

decrease (increase) under tension (compression) with the parameter |α|. It follows
clearly from the foregoing numerical results that the maximum effect of the influ-
ence of the geometrical non-linearity arise for the cases where κ = κ∗. Moreover,
this effect increases with increasing ρ . Note that the numerical results obtained un-
der compression and tension in the case where α = ±0.00005 coincide with each
other. This situation also agree well with the mechanical consideration and con-
firm the trustness of the algorithm and programms used in the present numerical
investigations.

Consider the influence of the parameter m (Eq. (25)) which characterises the os-
cillation of the local curving form of the fibers on the distrubitions of the stress
σnτ

/
|p| and σnn

/
|p| with respect to x3

/
L. This influence is shown by the graphs

given in Figs. 6 and 7 under κ = 0.25, ρ = 2.1 (a) α = 0.01, (b) α = −0.01. It
follows from these graphs that the absolute maximum value of the considered nor-
mal and shear stresses increase with m. These results agree in the qualitative sense
with the corresponding ones analyzed in monograph Akbarov and Guz (2000).

Consider the graphs given in Figs. 8 and 9 which illustrate the influences of the
interaction between the fibers to considered stress distribution. These figures show
us the dependencies between σnτ

/
|p|, σnn

/
|p| and ρ under m = 1, x3

/
L = 0.7

(forσnτ

/
|p| ), x3

/
L = 0 (for σnn

/
|p|), κ = 0.25. It follows from the foregoing

numerical results that absolute value of σnτ and σnn increase with decreasing ρ . In
this case, as a result of the geometrical non-linearity the absolute values of σnn and
σnτ decrease (increase) under tension (compression) with increasing the parameter
|α|. Note that the numerical results obtained under compression and tension in
the case where α = ±0.00005 coincide with each other and with increasing ρ ,
these results approach to the corresponding ones obtained in Akbarov, Kosker and
Simsek (2005) for a single locally curved fiber. According to the values stresses
attained for microfibers+polymer matrix system and for nanofibers+polymer matrix
system, to compare which results approach to the values of stresses obtained for a
single locally curved fiber faster, we investigate the effect of parameter E (2)

/
E (1)on

considered stresses distributions.

For this purpose, figs. 10 and 11 are given. These figures show the dependen-
cies between σnτ

/
|p|, σnn

/
|p| and parameter E (2)

/
E (1)under m = 1, x3

/
L = 0.7

(forσnτ

/
|p| ), x3

/
L = 0 (for σnn

/
|p|), κ = 0.25., a) α = 0.01 b) α =−0.01. It fol-

lows from these figures that the values of self-balanced normal and shear stresses
obtained for microfibers+polymer matrix system approach to the corresponding
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|p| and parameter x3

/
L

for various values of m under ρ = 2.1, κ = 0.25, a) α = 0.01, b) α =−0.01
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Figure 8: The graphs of the dependencies between σnτ

/
|p| and parameter ρ for

various values of α under κ = 0.25, a) tension b) compression.
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(a)                                                                   (b) 

Figure 9: The graphs of the dependencies between σnn
/
|p| and parameter ρ for

various values of α under κ = 0.25 a) tension b) compression.
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ones attained for a single locally curved fiber, faster than the values of stresses
obtained for nanofibers+polymer matrix system.

Consider Tables 1 and 2 which show the values of σnτ

/
|p| (for the cophase curving

case) and σnn
/
|p| (for the antiphase curving case) respectively obtained for various

α , ρ and E (2)
/

E (1) under κ = 0.25, m = 1,x3
/

L = 0.7 (forσnτ

/
|p| ), x3

/
L = 0

(for σnn
/
|p|). It follows from these tables that the influence of the geometrical

non-linearity to the values of the considered stresses increase and the interaction
between the fibers becomes more considerable with E (2)

/
E(1).

Moreover, table 3 illustrates the convergence of the numerical results in the first
approximation with respect to the number of the selected equations (Nν in equa-
tions (37) and (38)). The numerical results given in this table are obtained under
E (2)
/

E (1) = 500, ρ = 2.1, α = 5.10−5, κ = 0.25, m = 1,x3
/

L = 0.7 (forσnτ

/
|p| ),

x3
/

L = 0 (for σnn
/
|p|). It follows from these table that the convergence of the used

solution method is adequate.

5 Conclusions

In the present paper, the stress distribution in an infinite elastic body containing
two neighboring nanofibers is studied. The nanofiber is modeled within the scope
of the continuum approach with high modulus of elasticity. It is assumed that
the midlines of the fibers are in the same plane. With respect to the location of
the fibers according to each other the co-phase and anti-phase curving cases are
considered. At infinity uniformly distributed normal forces act in the direction
of the nanofibers, location. The investigations are carried out in the framework
of the piecewise homogeneous body model with the use of the three-dimensional
geometrically non-linear exact equations of the theory of elasticity.

The numerical results, related to the self-balanced shear (for the cophase curving
case) and normal (for the antiphase curving case) stresses which act on the interface
and arises as a result of the fiber curving, are given. In this case, the influence of
the geometrical non-linearity to these stresses is analyzed. From the analyses of
these results are derived the following conclusions:

1. As a result of the geometrical non-linearity, the absolute values of the con-
sidered stresses increase in compression but decrease in tension.

2. The maximum effect of the geometrical non-linearity to the stresses arises
under certain values of κ .

3. The effect of the geometrical non-linearity to the considered stresses in-
creases with E (2)

/
E (1) (where E (2) (E (1)) Young’s moduli of the fibers (ma-

trix) material).
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Table 1: The values of n p  obtained in the cophase curving case for various 
values of (2) (1)E E ,  and  under 0.25 , m 1, 3x L 0.7 . 

 

 
(1)
p

E
 

(2) (1)E E  
300 400 500 

2.1 

0.00005 7.14461 8.20092 8.45786 
0.00050 7.09760 8.13822 8.38757 
0.00500 6.66738 7.57202 7.75901 
0.01000 6.47241 7.04842 7.46980 
0.01500 6.10766 6.60863 6.96901 

-0.00005 -7.15516 -8.21502 -8.47369 
-0.00050 -7.20314 -8.27925 -8.54587 
-0.00500 -7.73263 -9.00035 -9.36711 
-0.01000 -8.77625 -10.0219 -11.06459 
-0.01500 -9.74652 -11.4035 -12.90081 

2.5 

0.00005 2.03918 2.30525 2.34981 
0.00050 2.02503 2.28676 2.32943 
0.00500 1.89607 2.12059 2.14807 
0.01000 1.83678 1.96813 2.06352 
0.01500 1.72885 1.84093 1.92091 

-0.00005 -2.04236 -2.30941 -2.35440 
-0.00050 -2.05682 -2.32838 -2.37535 
-0.00500 -2.21733 -2.54262 -2.61532 
-0.01000 -2.53516 -2.85061 -3.11534 
-0.01500 -2.83912 -3.27657 -3.67646 

3 

0.00005 1.34896 1.51895 1.54638 
0.00050 1.33966 1.50686 1.53309 
0.00500 1.25497 1.39816 1.41470 
0.01000 1.21532 1.29835 1.35868 
0.01500 1.14438 1.21503 1.26547 

-0.00005 -1.35104 -1.52167 -1.54938 
-0.00050 -1.36054 -1.53406 -1.56304 
-0.00500 -1.46588 -1.67403 -1.71945 
-0.01000 -1.67352 -1.87494 -2.04392 
-0.01500 -1.87241 -2.15213 -2.40744 

4. The absolute values of the self-balanced normal and shear stresses arising
as a result of the local curving of the neighboring two nanofibers are sig-
nificantly greater than the corresponding values obtained for the microfibers
(Akbarov, Kosker and Simsek (2005)).

5. The values of κ (κ = R
/

L, R is a radius of the cross-section of the fibers, L
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Table 2:  The values of nn p  obtained in the cophase curving case for various 
values of (2) (1)E E ,  and  under 0.25 , m 1, 3x L 0 . 

 

 
(1)
p

E
 

(2) (1)E E  
300 400 500 

2.1 

0.00005 7.39540 8.97866 10.3803 
0.00050 7.38575 8.96494 10.3625 
0.00500 7.29089 8.83050 10.1884 
0.01000 7.18894 8.68675 10.0030 
0.01500 7.09041 8.54854 9.82557 

-0.00005 -7.39755 -8.98172 -10.3843 
-0.00050 -7.40724 -8.99550 -10.4025 
-0.00500 -7.50593 -9.13625 -10.5854 
-0.01000 -7.61950 -9.29916 -10.7984 
-0.01500 -7.73747 -9.46944 -11.0223 

2.5 

0.00005 3.16556 3.73519 4.22442 
0.00050 3.15743 3.72432 4.21094 
0.00500 3.07863 3.61943 4.08119 
0.01000 2.99615 3.51042 3.94710 
0.01500 2.91854 3.40853 3.82247 

-0.00005 -3.16738 -3.73761 -4.22744 
-0.00050 -3.17557 -3.74857 -4.24104 
-0.00500 -3.26027 -3.86229 -4.38274 
-0.01000 -3.36070 -3.99823 -4.55330 
-0.01500 -3.46856 -4.14559 -4.73692 

3 

0.00005 2.19619 2.5610 2.87103 
0.00050 2.18872 2.5512 2.85904 
0.00500 2.11700 2.4576 2.74489 
0.01000 2.04319 2.3621 2.62922 
0.01500 1.97486 2.2744 2.52372 

-0.00005 -2.19785 -2.5632 -2.87371 
-0.00050 -2.20359 -2.5731 -2.88584 
-0.00500 -2.28411 -2.6769 -3.01367 
-0.01000 -2.37391 -2.8039 -3.17130 
-0.01500 -2.48390 -2.9450 -3.34843 
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Table 3:  The values of n p  ( nn p ) obtained in the cophase (antiphase) 
curving case for various values of N  in equations (37) and (38) in the case 

where (2) (1)E E 500 , 2.1, 55.10 , 0.25 , m 1, 3x L 0.7  
 

stresses 
Number of equations ( N ) 

28 40 52 64 76 88 94 

n p  6.0412 7.2438 7.8445 8.1828 8.3470 8.4302 8.4579 

nn p  6.6527 8.3327 9.3171 9.8688 10.1693 10.3306 10.3804 

is a geometrical parameter as shown in Fig.1), under which the considered
stresses have its absolute maximum values obtained for the system consisting
of nanofiber and polymer matrix, are significantly less than corresponding
ones obtained for the microfibers+polymer matrix system.

6. It follows from the numerical results that the stresses caused by the local
curving of the nanofibers can be debonded from matrix material.

7. The obtained numerical results can be used for estimation of the adhesion
strength of the nanofiber+polymer composite materials.

8. The values of self-balanced normal and shear stresses obtained for microfibers+polymer
matrix system approach to the corresponding ones attained for a single lo-
cally curved fiber, faster than the values of stresses obtained for nanofibers+polymer
matrix system.

Obtained numerical results agree well with the well-known mechanical considera-
tion and in the particular cases coincide with the corresponding known results.
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