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A Coupled Magnetic-Elastic-Thermal Free-Energy Model
with Hysteretic Nonlinearity for Terfenol-D Rods
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Abstract: Based on the thermodynamic theory and the postulates of Jiles and
Atherton, a general coupled magnetic-elastic-thermal free-energy model with hys-
teretic nonlinearity is established for Terfenol-D rods, in which the effect of Weiss
molecular field is incorporated. The quantitative agreement between numerical
simulation results predicted by the free-energy model and existing experimental
data confirms the validity and reliability of the obtained nonlinear theoretical model,
and indicates that the free-energy model can accurately capture the nonlinear hys-
teresis characteristic of Terfenol-D. Meanwhile, the free-energy model is employed
to investigate the influences of mechanical stress and the temperature on the mag-
netostrictive effect of Terfenol-D in detail, and its predictions are coincident with
some well-known experimental results including the temperature-dependent satu-
ration nonlinearity and “overturn phenomenon”. It indicates that the free-energy
model can also effectively capture the nonlinear magnetic-elastic-thermal coupling
characteristic of Terfenol-D. Some important physical parameters, such as the max-
imum magnetostrictive strain, the maximum piezomagnetic coefficient, are sum-
marized, which can be used to optimize the performance of Terfenol-D in practical
application. In addition, the free-energy model uses simple differential equation
and algebraic equations, in which all of parameters have definite physical implica-
tions and can be easily determined by experiments. Thus, the free-energy model
established in this article has very strong and wide practicability.
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1 Introduction

Terfenol-D (Tb0.3Dy0.7Fe1.93), which is widely used in micro-sensors, robotics, ul-
trasonic transducers, resonators, active vibration absorbers, linear motors, micro-
pumps, micro-valves, micro-positioners, etc, has stimulated an increasing number
of research activities due to its distinct characteristics such as high magnetostrictive
strain, fast response, simple driving, high energy coupling factor, wide frequency
rang, good low frequency character and so on [Olabi and Grunwald (2008); Zhou,
Li, Ye, Zhao, Xia, Tang, and Wei (2010)]. Like any other smart material, however,
many experiments have shown that the magnetostrictive effect of magnetostric-
tive materials (e.g., Terfenol-D) exhibits nonlinear hysteresis and magnetic-elastic-
thermal coupling constitutive behavior [Clark, Teter, and McMasters (1988); Gao,
Pei, and Fang (2008); Liang and Zheng (2007); Moffett, Clark, Wun-Fogle, Lin-
berg, Teter, and McLaughlin (1991)], which make it difficult to accurately model
the magnetostrictive effect and hinder their wider applicability in practice. That
is, both magnetization-applied field curve and magnetostrictive strain-applied field
curve are nonlinear, highly sensitive to the mechanical stress and environmental
temperature, and irreversible duo to hysteresis. This is due to inherent magnetic
properties of the materials and is particularly pronounced at higher drive levels.
Therefore, from both the fundamental perspective of material characterization and
future material development, and the practical perspective of transducer design and
model-based control development, it is quite significant and necessary to establish
a general theoretical model simultaneously incorporating nonlinear hysteresis and
magnetic-elastic-thermal coupling constitutive behavior inherent to Terfenol-D.

Initial models quantifying the magnetostrictive effect of Terfenol-D are based on
the linear constitutive piezomagnetic equations [Clark (1980)], which, however,
are single value relationships and accurate only within a small operating rang. In
order to effectively reflect nonlinear characteristics of magnetostrictive effect, some
nonlinear constitutive models have been developed including the standard square
model [Carman and Mitrovic (1995)], the hyperbolic tangent model [Wan, Fang,
and Hwang (2003)], the model based on density of domain switching [Wan, Fang,
and Hwang (2003)] and the Zheng-Liu model [Zheng and Liu (2005)] as well as
the model derived by Duenas et al [Duenas, Hsu, and Carman (1996)]. Among
these nonlinear constitutive models, it should be emphasized that the Zheng-Liu
model can quantitatively predict all nonlinear magnetic-elastic coupling character-
istics and has wider applicability and higher precision than any other nonlinear
model listed above, which has been successfully used in the magnetoelectric com-
posites and the beams laminated with giant magnetostrictive actuators [Wang and
Zhou (2010); Zhou, Zhou, and Zheng (2007)]. However, the Zheng-Liu model can
not describe temperature effect and hysteretic nonlinearity inherent to materials.
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Hysteresis models for Terfenol-D can be roughly classified into physics-based mod-
els and phenomenological models. The most popular phenomenological hysteresis
model used to characterize hysteretic phenomenon of Terfenol-D is the Preisach
model [Bergqvist and Engdahl (1991)]. Whereas this model can efficiently de-
scribe the nonlinear magnetic-elastic effect of Terfenol-D, it lacks physical mean-
ing and requires a large number of nonphysical parameters to be identified, and
thus is not easily adapted to changing operating conditions. Physics-based models
are built on first principles of physics, examples of which are the Jiles-Atherton
model [Jiles and Atherton (1983)] for ferromagnetic hysteresis and its extended
models [Calkins, Smith, and Flatau (2000)]. The characteristics of these models,
including the use of few physically related material parameters and computational
efficiency, make them applicable to a broader performance space. However, all
of these physics-based models do not sufficiently consider the nonlinear magnetic-
elastic-thermal coupling constitutive behavior exhibited by Terfenol-D, especially
for the effect of temperature. Since the intelligent devices designed with Terfenol-
D are unavoidably operated in an environment of varied temperature in practice,
the influence of temperature on the magnetostrictive effect can not be neglected.
Although Smith et al. [Smith, Seelecke, Dapino, and Ounaies (2006)] investigate
thermally activated relaxation characteristics for ferromagnetic materials, they fo-
cus solely on the effect of heat on the relaxation behavior of the materials, and the
effect of temperature on the magnetic-elastic-thermal coupling constitutive behav-
ior itself of Terfenol-D is not taken into account in their theory. Thus, a general
physics-based theoretical model with the capability for simultaneously and conve-
niently describing the nonlinear hysteresis and magnetic-elastic-thermal coupling
constitutive behavior of Terfenol-D is still lacking.

In this article, we focus on the nonlinear characteristics of hysteresis and magnetic-
elastic-thermal coupling constitutive behavior inherent to Terfenol-D. Based on the
thermodynamic theory and the postulates of Jiles and Atherton, a general coupled
magnetic-elastic-thermal free-energy model with hysteretic nonlinearity is devel-
oped in Sec. 2. The validity and reliability of the obtained theoretical model are
verified in Sec. 3 by comparing its predicted results with those existing experi-
mental data, wherein the effect of Weiss molecular field, and the influences of the
mechanical stress and the temperature on the magnetostrictive effect of Terfenol-D
are also discussed. The conclusions are summarized in Sec. 4.

2 Theoretical framework

In this section, we briefly display the derivation process of the coupled magnetic-
elastic-thermal free-energy model with hysteretic nonlinearity for Terfenol-D. Con-
sidering Terfenol-D is often prepared in the form of rod, which is usually subjected
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to an axial external stress and an axial applied magnetic field as well as work-
ing temperature for practical application, here, a one-dimension model is mainly
investigated for Terfenol-D rods. However, the method used in this article can
also be generalized to the corresponding three-dimension model, which has been
successfully implemented in the single value constitutive model used to describe
magnetic-elastic coupling constitutive behavior for giant magnetostrictive materials
and deformable magnetized medium without consideration of temperature effect
[Liu and Zheng (2005); Zhou, Zhou, Zheng, and Wei (2009)]. The one-dimension
free-energy model for Terfenol-D rods consists of a magnetostriction model with a
magnetization model.

2.1 Magnetostriction model

As a kind of magnetostrictive material, a Terfenol-D rod is generally supposed to be
a thermodynamics system. For this thermodynamics system, the total differential of
the internal energy density function U can be expressed as follows [Wang (1992)]:

dU = T dS +σdε−µ0MdH (1)

Here, T is the temperature, S is the entropy density, σ is the stress, ε is the strain,
µ0 = 4π×10−7H / m is the vacuum permeability, H and M are the applied magnetic
field and the corresponding magnetization, respectively. Then, the corresponding
Gibbs free energy density function G for this thermodynamics system can be writ-
ten as

G = U−T S−σε + µ0MH (2)

Thus, its total differential is

dG = dU−T dS−SdT −σdε− εdσ + µ0MdH + µ0HdM (3)

Substituting Eq. (1) into Eq. (3), then gives

dG =−εdσ −SdT + µ0HdM (4)

Thereby, in term of a Legendre transform, the strain is given by

ε =−∂G
∂σ

(5)

Choosing the stress σ , the temperature T and the magnetization M as independent
variables, the Gibbs free energy density function G(σ ,M,T ) can be rewritten by a
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Taylor series expansion around the reference point (σ ,M,T ) = (0,0,Tr), where Tr

is the spin reorientation temperature and Tr = 0 ◦C for Terfenol-D [AI-Jiboory and
Lord (1990)], i.e.,

G(σ ,M,T ) = G(0,0,Tr)

+
∞

∑
n=1

1
n!

[
∂

∂σ
σ +

∂

∂M
M +

∂

∂T
(T −Tr)

]n

0
G(σ ,M,T )

(6)

where G(0,0,Tr) is supposed to be zero. Then, by substituting Eq. (6) into Eq. (5),
the polynomial strain expansions can be obtained based on the truncated polyno-
mial energy density expansion:

ε (σ ,M,T ) =−∂ 2G
∂σ2 σ − 1

2
∂ 3G
∂σ3 σ

2− 1
3!

∂ 4G
∂σ4 σ

3−·· ·

− 1
2

(
∂ 3G

∂σ∂M2 +
∂ 4G

∂σ2∂M2 σ + · · ·
)

M2

− ∂ 2G
∂T ∂σ

(T −Tr)−
1
2

∂ 4G
∂T ∂σ∂M2 (T −Tr)M2

(7)

Here, the symmetric properties on the magnetization M are taken into account in
the above expansions [Clark (1980)]. It should be noted that the partial derivatives
before the independent variables are all calculated at the reference point (0,0,Tr).
Thus, all the partial derivatives in the above strain expansions are coefficients or
constants. In order to rationally characterize these coefficients, we firstly rewrite
Eq. (7) in a compact form

ε (σ ,M,T ) =
σ

Es
+λ0 (σ)+

λmax (σ)
M2

s
M2 +α (T −Tr)−

B̃
M2

s
(T −Tr)M2 (8)

Here,

σ

Es
+λ0 (σ) =−∂ 2G

∂σ2 σ − 1
2

∂ 3G
∂σ3 σ

2− 1
3!

∂ 4G
∂σ4 σ

3−·· · (9)

λmax (σ)
M2

s
=−1

2

(
∂ 3G

∂σ∂M2 +
∂ 4G

∂σ2∂M2 σ + · · ·
)

(10)

α =− ∂ 2G
∂T ∂σ

(11)

B̃
M2

s
=

1
2

∂ 4G
∂T ∂σ∂M2 (12)
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in which Ms represents the saturation magnetization when T = Tr, Es is the intrinsic
Young’s modulus at the saturation segment, α is the constant of thermal expansion,
and B̃ is the slope determined by the saturation magnetostrictive strain-temperature
curve, which is a constant independent on the temperature due to the linear depen-
dence of the saturation magnetostrictive strain on the temperature for Terfenol-D
[Clark and Crowder (1985)].

Some well-known experiments have indicated the main characteristics of stress-
strain curve for Terfenol-D rods [Butler (1988); Kellogg and Flatau (1999)]. Based
on these main characteristics, the nonlinear strain λ0 (σ) and the maximum strain
λmax (σ) can be respectively chosen as

λ̄0 (σ̄) =

{
tanh(σ̄) (σ̄ ≥ 0)
tanh(2σ̄)/2 (σ̄ < 0)

(13)

λmax (σ) = λs−λ0 (σ) (14)

in which λ̄0 (σ̄) = λ0(σ)
λs

and σ̄ = σ

σs
are, respectively, the dimensionless quantities

of λ0 (σ) and σ , λs is the saturation magnetostrictive coefficient, and σS = λSESE0
(ES−E0)

is the reference stress, in which E0 is the initial Young’s modulus. The detailed dis-
cussion about these two nonlinear functions can be found in the case of magnetic-
elastic coupling constitutive behavior for giant magnetostrictive materials without
consideration of temperature effect [Zheng and Liu (2005)].

Direct substitution of Eqs. (13) and (14) into Eq. (8) yields the following analytical
formula of the magnetostriction model,

ε (σ ,M,T ) =
σ

Es
+α (T −Tr)−

B̃
M2

s
(T −Tr)M2

+

λstanh
(

σ

σs

)
+ [1−tanh( σ

σs )]λs

M2
s

M2 ( σ

σs
≥ 0)

λs
2 tanh

(
2σ

σs

)
+ [2−tanh( 2σ

σs )]λs

2M2
s

M2 ( σ

σs
< 0)

(15)

According to Eq. (15), it is obvious that the magnetostriction model is nonlin-
ear and consists of four kinds of terms, i.e., elastic strain term, magnetic-elastic
coupling term and thermal expansion term as well as magnetic-thermal coupling
term. That is, the nonlinear magnetic-elastic-thermal coupling constitutive behav-
ior inherent to Terfenol-D is sufficiently reflected in the magnetostriction model,
especially for the effect of temperature. Thus, the model is suitable for magne-
tostrictive materials under various mechanical and magnetic loading conditions as
well as working temperature. Meanwhile, this model only involves six material
constants, i.e., Es,α, B̃,Ms,λs and σs, which have definite physical implications
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and can be easily determined by experiments. Therefore, the model can be directly
and conveniently used in engineering application. Here, the strain which is induced
by the applied magnetic field H is specially defined as magnetostrictive strain de-
noted as λ (σ ,M,T ), which is dependent on the magnetization M in Eq. (15). And
it can be expressed as follows:

λ (σ ,M,T ) =− B̃
M2

s
(T −Tr)M2

+


[1−tanh( σ

σs )]λs

M2
s

M2 ( σ

σs
≥ 0)

[2−tanh( 2σ

σs )]λs

2M2
s

M2 ( σ

σs
< 0)

(16)

2.2 Magnetization model

As a prelude to constructing any energy-based magnetization models, it is nec-
essary to at least qualitatively understand the basic physical mechanisms which
produce hysteresis. The magnetization of magnetostrictive materials in response to
applied magnetic fields is primarily due to two related mechanisms: movement of
domain wall and rotation of magnetic moments [Jiles and Atherton (1986); Smith,
Seelecke, Dapino, and Ounaies (2006)]. For a material that is defect free, the above
mechanisms produce an anhysteretic (hysteresis-free) magnetization Man that is
conservative and completely reversible. Such magnetization curves are rarely ob-
served in actual materials, however, due to the presence of defects or second-phase
materials (e.g., Dysprosium in Terfenol-D) which provide minimum energy states
that impede domain wall movement and subsequent rotation of magnetic moments.
At low magnetic field levels, the magnetization is reversible, denoted as Mrev, since
the domain walls remain pinned. As the field is increased, the domain walls attain
sufficient energy to break the pinning sites and intersect with remote pinning sites
where the energy configuration is favorable. This leads to an irreversible change in
magnetization, denoted as Mirr, and is the fundamental cause of hysteresis behavior
in magnetostrictive materials [Dapino, Smith, Faidley, and Flatau (2000)].

To quantify the anhysteretic magnetization Man and the total magnetization M com-
posed of the reversible magnetization Mrev and the irreversible magnetization Mirr,
it is necessary to first determine the effective field He f f which acts upon magnetic
moments in the Terfenol-D rod.

Effective magnetic field

For the thermodynamics system which the present work is concerned with, the
Helmholtz free energy density function A(σ ,M,T ), which is the basis to quantify
the effective field He f f in the subsequent development, can be generally expressed
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as follows [Jiles (1995)]:

A(σ ,M,T ) = µ0HM +
µ0

2
ηM2 +

3
2

σλ +T S (17)

in which the dimensionless parameter η is the Weiss molecular field coefficient,
which is used to quantify the amount of interaction between neighbouring magnetic
moments. As mentioned above, the effective magnetic field He f f causes a change in
magnetization. Therefore, it can be determined by the derivative of the Helmholtz
free energy density function A(σ ,M,T ) with respect to magnetization M, i.e.:

He f f (σ ,M,T ) =
1
µ0

dA(σ ,M,T )
dM

= H +ηM +
3
2

σ

µ0

dλ

dM

(18)

Here, the derivative of entropy density S with respect to magnetization M in magne-
tostrictive materials is negligible in the cases under consideration because the fields
applied here do not increase the ordering within the domain, although they do lead
to a change in the magnetization M.

Substituting Eq. (16) into Eq. (18) yields the final expression of the effective
magnetic field He f f

He f f (σ ,M,T ) = H +ηM− 3B̃σM (T −Tr)
µ0M2

s

+


3[1−tanh( σ

σs )]λs

µ0M2
s

σM
(

σ

σs
≥ 0
)

3[2−tanh( 2σ

σs )]λs

2µ0M2
s

σM
(

σ

σs
< 0
) (19)

From Eq. (19), one can find that besides the applied magnetic field and Weiss
molecular field, the effective magnetic field He f f includes the contribution of field
relate to magnetic-elastic interactions as well as the contribution of field relate to
magnetic-elastic-thermal interactions. Thus, the effective magnetic field He f f de-
rived from the Helmholtz free energy density function A(σ ,M,T ) sufficiently re-
flects the dependences of the effective magnetic field He f f on stress σ and tem-
perature T . Here, it is worth emphasizing that the temperature dependence of the
effective magnetic field which is ignored in previous studies, to our knowledge, is
firstly taken into account in our theoretical model. And the final expression of the
effective magnetic field He f f can be expressed in a compact form

He f f (σ ,M,T ) = H + η̄M (20)
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where

η̄ = η− 3B̃σ (T −Tr)
µ0M2

s
+


3[1−tanh( σ

σs )]λsσ

µ0M2
s

(
σ

σs
≥ 0
)

3[2−tanh( 2σ

σs )]λsσ

2µ0M2
s

(
σ

σs
< 0
) (21)

Differentiating Eq. (20) with respect to applied magnetic field H gives

dHe f f

dH
= 1+ η̄

dM
dH

(22)

Anhysteretic magnetization

For a given effective magnetic field He f f , Boltzmann statistics are used to quantify
the anhysteretic magnetization Man in term of the Langevin function

Man = Ms (T )
[

coth(κHe f f )−
1

κHe f f

]
(23)

Here, κ = 3χm
Ms(T ) is the relaxation factor, χm stands for the magnetic susceptibility

in the initial linear region. According to the theory of ferromagnetic materials
[Callen (1965)], one knows that the saturation magnetization Ms (T ) depends on
the temperature in the form

Ms (T ) = D
(

1− T
Tc

)x

(24)

where the exponent x and coefficient D are constants, and Tc stands for the Curie
temperature of ferromagnetic materials.

When T = Tr, the Eq. (24) can be expressed as follows:

Ms = Ms (Tr) = D
(

1− Tr

Tc

)x

(25)

The combination of Eqs. (24) and (25) yields

Ms (T ) = Ms
(Tc−T )x

(Tc−Tr)
x (26)

in which x = 1
2 for the Weiss molecular field theory and Tc = 383.3◦C for Terfenol-

D [Dhilsha and Rama Rao (1993)].
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Substituting Eq. (26) into Eq. (23) yields the final expression of the anhysteretic
magnetization Man

Man = Ms
(Tc−T )x

(Tc−Tr)
x

×
[

coth
(

3χm (Tc−Tr)
x

Ms (Tc−T )x He f f

)
− Ms (Tc−T )x

3χm (Tc−Tr)
x He f f

] (27)

Differentiating Eq. (27) with respect to efficient magnetic field He f f gives

dMan

dHe f f
=

M2
s (Tc−T )2x

3χm (Tc−Tr)
2x H2

e f f

− 3χm

sinh2
(

3χm(Tc−Tr)
x

Ms(Tc−T )x He f f

) (28)

Total magnetization composed of reversible and irreversible magnetization

As indicated previous and elsewhere [Calkins, Smith, and Flatau (2000)], the an-
hysteretic magnetization Man can only be used to model the magnetization for ideal
or perfect magnetostrictive materials. As a kind of typical magnetostrictive materi-
als, however, Terfenol-D rods have defects or second-phase materials which impede
the change in magnetization. The present work is not concerned with the nature of
these defects and they will be referred to collectively as pinning sites. These pin-
ning sites are the fundamental causes of hysteresis behavior and energy loss in the
magnetization progress. The energy loss δLmag per unit volume to these pinning
sites is modeled assuming a friction-type mechanism which opposes changes in
magnetization, and expressed as a function of the irreversible magnetization Mirr

[Jiles and Atherton (1986)] by the equation

δLmag = µ0

∫
ςK (1− c)dMirr (29)

where the non-negative constant K is a micro-structural parameter with dimensions
of magnetic field, which is proportional to the pinning sites density and pinning
sites energy, and provides a measure for the average energy required to break a
pinning site. The dimensionless parameter c is a reversibility coefficient and can be
estimated from the ratio of the initial and anhysteretic differential susceptibilities.
The parameter ς takes the value +1 when the applied magnetic field H increases
and−1 when the applied magnetic field H decreases to ensure that the pinning sites
always oppose changes in magnetization.

For this thermodynamics system, the energy balance principle can be generally
expressed as

δWbat = δWmag +δLmag (30)
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Here, δWbat stands for the work done per unit volume by the applied magnetic field
H, δWmag stands for the change in the energy density of the materials, and they can
be respectively expressed as follows [Iyer and Krishnaprasad (2005)]

δWbat =−µ0

∫
MdHe f f (31)

δWmag =−µ0

∫
MandHe f f (32)

Substituting Eqs. (29), (31) and (32) into Eq. (30) yields

−µ0

∫
MdHe f f =−µ0

∫
MandHe f f + µ0

∫
ςK (1− c)dMirr (33)

Differentiating Eq. (33) with respect to the effective magnetic field He f f , and then
dividing by µ0 gives

dMirr

dHe f f
=

Man−M
ςK (1− c)

(34)

According the postulates of Jiles and Atherton, the following relationship [Iyer and
Krishnaprasad (2005)] can be obtained

dM
dH

= δM (1− c)
dMirr

dH
+ c

dMan

dH
(35)

in which

δM =


0 : Ḣ < 0andMan−M > 0,

0 : Ḣ > 0andMan−M < 0,

1 : otherwise.

(36)

Here, the parameter δM is used to guarantee that the calculation results are co-
incident with the physical properties of Terfenol-D. Without this parameter, the
incremental susceptibility at the reversal points dM

dH will become negative, which is
a nonphysical behavior for Terfenol-D. This can be checked by numerical simula-
tions.

Multiplying both sides of Eq. (35) by dH
dHe f f

, and applying the chain rule, Eq. (35)
can be modified as follows:

dM
dHe f f

= δM (1− c)
dMirr

dHe f f
+ c

dMan

dHe f f
(37)
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Substituting Eqs. (28) and (34) into (37) yields

dM
dHe f f

=
δM (Man−M)

ςK

+
cM2

s (Tc−T )2x

3χm (Tc−Tr)
2x H2

e f f

− 3cχm

sinh2
(

3χm(Tc−Tr)
x

Ms(Tc−T )x He f f

) (38)

Multiplying both sides of Eq. (38) by dHe f f
dH , and applying the chain rule, Eq. (38)

can be rewritten as follows:

dM
dH

=

[
δM (Man−M)

ςK
+

cM2
s (Tc−T )2x

3χm (Tc−Tr)
2x H2

e f f

− 3cχm

sinh2
(

3χm(Tc−Tr)
x

Ms(Tc−T )x He f f

)
 dHe f f

dH

(39)

Substituting Eq. (22) into Eq. (39) and after some mathematical manipulations, the
differential equation of the magnetization model (i.e., the differential susceptibility
of the total magnetization M) can be obtained as follows

dM
dH

=
{[

3δMχm (Tc−Tr)
2x H2

e f f (Man−M)+ ςKcM2
s (Tc−T )2x

]
×sinh2

(
3χm (Tc−Tr)

x

Ms (Tc−T )x He f f

)
−9ςKcχ

2
m (Tc−Tr)

2x H2
e f f

}
÷
{[

3χm (Tc−Tr)
2x H2

e f f (ςK−δMη̄Man +δMη̄M)

−η̄ςKcM2
s (Tc−T )2x

]
× sinh2

(
3χm (Tc−Tr)

x

Ms (Tc−T )x He f f

)
+9η̄ςKcχ

2
m (Tc−Tr)

2x H2
e f f

}
(40)

which after numerical integration gives the total magnetization M from the appli-
cation of a magnetic field H.

The magnetization model (40) and the magnetostriction model (15) can be com-
bined to constitute a general coupled magnetic-elastic-thermal free-energy model
with hysteretic nonlinearity for Terfenol-D rods, in which the variables He f f and
Man are given by Eqs. (19) and (27), respectively. From the viewpoint of numerical
solutions for this free-energy model, it is most convenient to first solve Eq. (40)
via Adams-type predictor-corrector method for the total magnetization M, and then
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the magnetostrictive strain λ under a variety of conditions of mechanical stress and
applied field as well as working temperature can be obtained from Eq. (16). The
magnetic flux density B in Terfenol-D rods can be determined by

B = µ0 (M +H) (41)

At the end of this section, it should be noted that the free-energy model established
here does not incorporate the eddy-current losses so, to avoid simulation inaccu-
racies, it should be employed in low frequency drive regimes. The inclusion of
eddy-current losses can be addressed by adding appropriate terms in the energy re-
lations, and the extension of this model to incorporate eddy-current losses is under
current investigation. In this article, we mainly investigate the symmetric major
loops of Terfenol-D under quasi-static operating conditions. However, the free-
energy model established in this article can also be extended to accurately predict
minor loops of Terfenol-D, which will be discussed in another article in details.
For the operating conditions targeted in this article, the validity and reliability of
the free-energy model are illustrated in the next section.

3 Experimental verification and discussion

In order to verify the validity and reliability of the free-energy model established
in Sec. 2, in this section, comparisons between its predictions and Slaughter et
al. [Slaughter, Dapino, Smith, and Flatau (2000)] experimental data are firstly
given. After that, the effect of the Weiss molecular field, and the influences of the
mechanical stress and the temperature on the magnetostrictive effect of Terfenol-D
are discussed in detail by using this free-energy model.

3.1 Experimental verification

To comply with the experimental conditions [Slaughter, Dapino, Smith, and Flatau
(2000)], the compressive stress and temperature are respectively taken as 1500psi
and 18◦C, and the amplitude of applied magnetic field is taken as 110kA / m. The
parameters appeared in the free-energy model are respectively chosen as Ms =
7.65×105A / m, λs = 1950×10−6, σs = 200×106Pa, B̃ = 2.5×10−6◦C−1, χm =
20.4, K = 6000A / m, c = 0.1 and η = 0.082, which are also in accordance with
the parameters given in the reference [Slaughter, Dapino, Smith, and Flatau (2000)]
and are used in succeeding numerical simulations. The comparisons of relative
magnetization hysteresis loop and magnetostrictive strain hysteresis loop for Terfenol-
D between the numerical simulation results predicted by the free-energy model es-
tablished in this article and Slaughter et al. [Slaughter, Dapino, Smith, and Flatau
(2000)] experimental data are, respectively, shown in Figs. 1(a) and 1(b). As is
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evident in these two figures, the calculated results are perfectly coincident with
the experimental data not only in quality but also in quantity. It indicates that the
free-energy model established in this article can accurately capture nonlinear hys-
teresis characteristics for Terfenol-D not only in the region of the low and moderate
magnetic fields but also in the region of the high magnetic field, especially for the
nonlinear hysteresis and saturation present in the region of the high magnetic field.

3.2 The effect of Weiss molecular field

According to Weiss molecular field theory, there is strong interaction between
neighboring magnetic moments of Terfenol-D, and it is modeled by Weiss molec-
ular field. In order to reflect the effect of Weiss molecular field, here, we ignore
Weiss molecular field effect (i.e., taking η = 0) and compare its predictions with
Slaughter et al. [Slaughter, Dapino, Smith, and Flatau (2000)] experimental data
in Figs. 2(a) and 2(b), in which the original predictions with Weiss molecular field
effect (i.e., taking η = 0.082) are also illustrated for reference. From the com-
parisons, it can be found that the theoretical predictions without Weiss molecular
field effect markedly underestimate the experimental data of both relative magne-
tization hysteresis loop and magnetostrictive strain hysteresis loop for Terfenol-D,
especially for magnetostrictive strain hysteresis loop. These large discrepancies in-
dicate the necessity of incorporating Weiss molecular field into the effective mag-
netic field He f f and support the conclusion of Weiss molecular field theory.

3.3 The influence of the compressive stress

Mechanical stress is considered one of the primary factors, along with magnetic
field and temperature, which influences the magnetostrictive effect of Terfenol-D
[Tremolet and Etienne (1993)]. Therefore, it is of particular importance to thor-
oughly investigate the influence of stress on the magnetostrictive effect of Terfenol-
D. Because Terfenol-D is often operated in compressive stress conditions, here, the
free-energy model established in this article is used to investigate the influence of
compressive stress on the magnetostrictive effect of Terfenol-D in detail. How-
ever, the present free-energy model can also be used to investigate the influence
of tensile stress as mentioned above. Figs. 3(a) and 3(b) give out the hysteresis
loops of relative magnetization M

Ms
versus applied magnetic field H and magne-

tostrictive strain λ versus applied magnetic field H under different compressive
stress from 1.5 ksi to 6.0 ksi (as the arrow indicates) with fixed temperature of
T = 18◦C, respectively. From Fig. 3(a), it can be found that the values of the rel-
ative magnetization M

Ms
increase with the applied magnetic field H under different

compressive stress, and will reach a same constant in the region of the high field,
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Figure 1: (a) Comparison of relative magnetization hysteresis loop between experi-
mental measurements and theoretical predictions. (b) Comparison of magnetostric-
tive strain hysteresis loop between experimental measurements and theoretical pre-
dictions.

which means that the maximum magnetization is independent on the compressive
stress. At the same time, the slopes of the relative magnetization hysteresis loops
decrease with an increasing compressive stress in the region of the low and mod-
erate magnetic fields, which implies that the relative magnetization M

Ms
induced by
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Figure 2: (a) Comparison of relative magnetization hysteresis loop between exper-
imental measurements and theoretical predictions without Weiss molecular field
effect. The theoretical predictions with Weiss molecular field effect are illustrated
for reference. (b) Comparison of magnetostrictive strain hysteresis loop between
experimental measurements and theoretical predictions without Weiss molecular
field effect. The theoretical predictions with Weiss molecular field effect are illus-
trated for reference.
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per unit applied magnetic field H gradually decreases as the compressive stress in-
creases. For Terfenol-D, an explanation for this phenomenon could be that when
the compressive stress is high the domain movement requires more magnetic en-
ergy, and therefore the material is unable to respond to the applied magnetic field
H as well as it can when the compressive stress is lower. Both the values of mag-
netostrictive strain and the slopes of magnetostrictive strain hysteresis loops shown
in Fig. 3(b) decrease with an increasing compressive stress in the region of the
low and moderate magnetic fields. It is similar to the relative magnetization hys-
teresis loops shown in Fig. 3(a). However, the similarity only takes place in the
region of the low and moderate fields. When the applied magnetic field H is in the
high field region, the magnetostrictive strain of Terfenol-D will reach the different
maximum values from 1830× 10−6 at −1.5ksi to 2040× 10−6 at −6.0ksidue to
the fact that more magnetic domains are aligned perpendicular to the external force
to keep the minimum energy state when a higher compressive stress is applied on
the Terfenol-D. It is the well-known “overturn phenomenon” observed in the ex-
periments [Butler (1988); Clark, Teter, and McMasters (1988); Liang and Zheng
(2007); Moffett, Clark, Wun-Fogle, Linberg, Teter, and McLaughlin (1991)], which
can not be predicted by the previous physics-based hysteresis model. The detailed
information about the maximum magnetostrictive strain is listed in Tab. 1. All
of above results predicted by the free-energy model established in this article are
consistent with the observed experimental phenomena [Butler (1988); Clark, Teter,
and McMasters (1988); Liang and Zheng (2007); Moffett, Clark, Wun-Fogle, Lin-
berg, Teter, and McLaughlin (1991)], especially for “overturn phenomenon”, which
confirms that the present free-energy model can adequately capture the nonlinear
magnetic-elastic coupling characteristic with hysteresis for Terfenol-D.

As noted in previous discussion, the compressive stress has obvious influence on
the slopes of magnetization hysteresis loops and magnetostrictive strain hysteresis
loops. In order to quantify this kind of influence in detail, the susceptibility (i.e.,
the derivative of magnetization M with respect to the applied magnetic field H) and
the piezomagnetic coefficient (Note that the derivative of magnetostrictive strain λ

with respect to the applied magnetic field H is named the piezomagnetic coefficient

Table 1: Physical parameters for Terfenol-D rods

σ (ksi)
(dM

dH

)
max λmax(10−6) Aloss(A / m)

(
dλ

dH

)
max

(10−9A - 1 ·m) Hmax(kA / m)

-1.5 18.66639 1830 39.71496 29.46469 15.86
-3.0 6.74907 1910 41.67342 15.17966 63.44
-4.5 4.04562 1980 43.19914 10.78696 116.86
-6.0 2.81783 2040 44.43571 8.46397 177.12
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Figure 3: (a) Hysteresis loops of relative magnetization versus applied magnetic
field under different compressive stress from 1.5 ksi to 6.0 ksi with fixed temper-
ature of T = 18◦C. (b) Hysteresis loops of magnetostrictive strain versus applied
magnetic field under different compressive stress from 1.5 ksi to 6.0 ksi with fixed
temperature of T = 18◦C. (c) Hysteresis loops of susceptibility versus applied
magnetic field under different compressive stress from 1.5 ksi to 6.0 ksi with fixed
temperature of T = 18◦C. (d) Hysteresis loops of piezomagnetic coefficient versus
applied magnetic field under different compressive stress from 1.5 ksi to 6.0 ksi
with fixed temperature of T = 18◦C.

in order to be consistent with the nomenclature adopted in the reference [Moffett,
Clark, Wun-Fogle, Linberg, Teter, and McLaughlin (1991)], despite that there is not
true piezomagnetism in the Terfenol-D discussed in this article.) as functions of the
applied magnetic field H under different compressive stress from 1.5 ksi to 6.0 ksi
with fixed temperature of T = 18◦C are respectively plotted in Figs. 3(c) and 3(d),
which are obtained by differential calculations for Figs. 3(a) and 3(b), respectively.
As is evident in these two figures, the susceptibility dM

dH has an even symmetry with
respect to the applied magnetic field H, while the piezomagnetic coefficient dλ

dH is
of odd symmetry with respect to the applied magnetic field H. Meanwhile, both
the susceptibility dM

dH and the piezomagnetic coefficient dλ

dH are not constants, and
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Figure 4: (a) Hysteresis loops of relative magnetization versus applied magnetic
field under different temperature from 0◦C to 90◦C with fixed compressive stress of
σ = −1.5ksi. (b) Hysteresis loops of magnetostrictive strain versus applied mag-
netic field under different temperature from 0◦C to 90◦C with fixed compressive
stress of σ =−1.5ksi.
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dependent on the compressive stress, the applied magnetic field and the magneti-
zation history. The maximum susceptibility (denoted as

(dM
dH

)
max) is obtained near

zero magnetic field. Both the maximum susceptibility and the maximum piezo-
magnetic coefficient (denoted as

(
dλ

dH

)
max

) decrease with an increasing compres-
sive stress, especially for the maximum susceptibility, while the applied magnetic
fields (denoted as Hmax) associated with the maximum piezomagnetic coefficient
increase from 15.86kA / m to 177.12kA / m with an increasing compressive stress,
which is in agreement with the experimental measurement and theoretical predic-
tion without considering hysteresis of single-crystal iron-gallium alloys in quality
[Atulasima, Flatau, and Cullen (2008)]. However, the range of applied magnetic
field H, in which the higher susceptibility and piezomagnetic coefficient are ob-
tained, enlarges with an increasing compressive stress. The detailed information
about the maximum susceptibility and the maximum piezomagnetic coefficient as
well as the corresponding applied magnetic field is summarized in Tab. 1. Except
the information mentioned previous, Tab. 1 also shows the areas of the magne-
tostrictive strain hysteresis loops under different compressive stress (denoted as
Aloss), all of which are important parameters considered in practical application.
Finally, it is worth noting that these laws described by the free-energy model es-
tablished in this article are coincident with the experimental results of Terfenol-D
in qualitatively [Gao, Pei, and Fang (2008); Moffett, Clark, Wun-Fogle, Linberg,
Teter, and McLaughlin (1991)].

3.4 The influence of the temperature

Discussing the influence of the temperature by the free-energy model established in
this article comprises the final component of this investigation. Figs. 4(a) and 4(b)
show the hysteresis loops of relative magnetization M

Ms
versus applied magnetic field

H and magnetostrictive strain λ versus applied field H under different temperature
from 0◦C to 90◦C with fixed compressive stress of σ = −1.5ksi, respectively. As
shown in these two figures, the temperature does not have remarkable influence
on the slops of the relative magnetization hysteresis loops and the magnetostrictive
strain hysteresis loops in the region of the low and moderate magnetic fields. When
the applied magnetic field H is in the high field region, however, both the relative
magnetization dM

dH and the magnetostrictive strain λ of Terfenol-D decrease fairly
linearly with an increasing temperature, just like the results shown in experiment
[Clark, and Crowder (1985); Clark, Teter, and McMasters (1988)]. It indicates that
the free-energy model established in this article can efficiently capture the influence
of the temperature on the magnetostrictive effect of Terfenol-D.
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4 Conclusions

In this article, a novel free-energy model simultaneously incorporating nonlinear
hysteresis and magnetic-elastic-thermal coupling constitutive behavior inherent to
Terfenol-D is established on the basis of the thermodynamic theory and the postu-
lates of Jiles and Atherton, in which the effect of Weiss molecular field is incorpo-
rated. After that, the validity and reliability of the obtained free-energy model are
verified by comparing its predicted results with existing experimental data, and the
comparison results also indicate that the free-energy model can accurately capture
the nonlinear hysteresis characteristic of Terfenol-D not only in the region of the
low and moderate magnetic fields but also in the region of the high magnetic field.
Meanwhile, the influences of mechanical stress and the temperature on the magne-
tostrictive effect of Terfenol-D are thoroughly investigated by using this free-energy
model. The numerical simulation results are consistent with some well-known
experimental results in quality or in quantity, such as the temperature-dependent
saturation nonlinearity and “overturn phenomenon”, which indicates that the free-
energy model can also effectively capture the nonlinear magnetic-elastic-thermal
coupling characteristic of Terfenol-D. Moreover, some important physical param-
eters, such as the maximum magnetostrictive strain, the maximum piezomagnetic
coefficient, are predicted by the proposed free-energy model, which can be used to
optimize the performance of Terfenol-D in practical application. Finally, it should
be noted that there are only a small number of parameters appeared in the free-
energy model. All of them have definite physical implications, and can be eas-
ily determined by experiments. Therefore, the free-energy model established in
this article provides the capability for simultaneously and conveniently capturing
nonlinear hysteresis and magnetic-elastic-thermal coupling constitutive behavior
inherent to Terfenol-D, and can be conveniently used in the practical engineering
application.
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