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Computation of Dyadic Green’s Functions for
Electrodynamics in Quasi-Static Approximation with

Tensor Conductivity

V.G.Yakhno1

Abstract: Homogeneous non-dispersive anisotropic materials, characterized by
a positive constant permeability and a symmetric positive definite conductivity ten-
sor, are considered in the paper. In these anisotropic materials, the electric and mag-
netic dyadic Green’s functions are defined as electric and magnetic fields arising
from impulsive current dipoles and satisfying the time-dependent Maxwell’s equa-
tions in quasi-static approximation. A new method of deriving these dyadic Green’s
functions is suggested in the paper. This method consists of several steps: equa-
tions for electric and magnetic dyadic Green’s functions are written in terms of the
Fourier modes; explicit formulae for the Fourier modes of dyadic Green’s functions
are derived using the matrix transformations and solutions of some ordinary differ-
ential equations depending on the Fourier parameters; the inverse Fourier transform
is applied to obtained formulae to find explicit formulae for dyadic Green’s func-
tions.

Keywords: time-dependent Maxwell’s equations, anisotropic conductivity ten-
sor, dyadic Green’s functions, analytical method, matrix transformations, simula-
tion

1 Introduction

The presence of electrically anisotropic earth materials ( brine, water, oil and gas)
and biological tissues (white and gray matter, outer skull and skin) can have a
profound effect on the interpretation of electromagnetic data. Modelling elec-
tromagnetic wave phenomena using 3D solution of Maxwell’s equations with an
anisotropic conductivity tensor and a constant magnetic permeability is used in a
realistic head model and models of geophysics (see, for example, [Wang and Fang
(2001)]; [Weiss and Newmann (2002)]; [Weiss and Newmann (2003)]; [Sekino
and Yamaguchi (2003)]; [Darvas; Pantazis and Kucukaltun-Yildirim (2004)] ;
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[Young; Chen and Wong (2005)]; [Neuman and Alumbaugh (2002)]; [Commer
et al. (2008)]). The dyadic Green’s functions for electrically and magnetically
isotropic materials have been widely used in different problems of electromagnetic
wave theory (see, for example, [Tai ( 1994)]; [Kong (1986)]; [Lindell; Sihvola;
Tretyakov; Vitanen (2002)]). Green’s functions for equations of mathematical
physics can be considered as a useful tool for different methods in the presentation
of acoustic, electromagnetic, elastic and other fields, in particular, for the method
of moments and boundary element method [Tai ( 1994)]; [Kong (1986)]; [Lindell;
Sihvola; Tretyakov; Vitanen (2002)]; [Chew (1990)]; [Tewary (1995)]; [Tewary
(2004)]; [Ting (2000)]; [ Rashed (2004) ]; [Ting (2005)]; [Nakamura and Tanuma
(1997)]; [Pan and Yuan (2000)]; [Yang and Tewary (2008)]; [Gu; Young and Fan
(2009)]; [Chen; Ke and Fan (2009)]. When the dyadic Green’s functions can be
constructed it leads to the significant simplification of modelling electromagnetic
waves and allows engineers to overcome calculational difficulties [Tewary; Bartolo
and Powell (2002)].

Dyadic Green’s functions of the quasi-static Maxwell’s equations are related to a
singular impulsive electric current dipole source. The field due to a current dipole
is considered in order to find an integral kernel that transforms a time-dependent
distributed electric source Jp(x, t) into the electric field. In eddy-current prob-
lems, the unbounded domain dyadic kernel for a uniform isotropic conductor can
be expressed in terms of a scalar Green’s function satisfying the diffusion equa-
tion (see, for example, [Bowler (1999)]). The quasi-static dyadic Green’s function
for transient fields in a homogeneous conductive isotropic half-space has been de-
rived by [Bowler (1999)] using the inverse Laplace transform by transforming the
frequency domain expression to the time domain. In [Bowler and Fu (2006)]
the time-dependent dyadic kernel has been constructed for an isotropic conductive
plate from electric and magnetic scalar potentials and the inverse Laplace transform
from the frequency domain to the time domain.

In the present paper we suggest a new method to derive the time-dependent dyadic
Green’s functions for quasi-static Maxwell’s equations in conductive anisotropic
media. This method consists of several steps: applying the Fourier transform with
respect to the space variables, equations for electric and magnetic dyadic Green’s
functions are written in the terms of the Fourier images; explicit formulae for the
Fourier images of dyadic Green’s functions are derived using the matrix transfor-
mations and solving some ordinary differential equations depending on the Fourier
parameters; the inverse Fourier transform is applied to obtained formulae to find
explicit formulae for dyadic Green’s functions. We note that the similar approach
for constructing Green’s functions and modelling and simulation electromagnetic
fields in homogeneous anisotropic dielectrics has been successfully applied in the
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works [Yakhno (2005)], [Yakhno (2007)].

Generally, electromagnetic fields propagate with finite velocity. Electromagnetic
fields in quasi-static approximation are time-dependent fields with negligible prop-
agation effects [Dirks (1996)]. In applications where the wavelength of the stud-
ied electromagnetic fields is large compared to the extension of the studied object
the wave propagation phenomena may be neglected. These ’slow-varying’ fields
are called as electromagnetic fields in quasi-static approximation. Looking into
standard text books (see, for example, [Vagner; Lembrikov and Wyder (2004)])
we find that for the quasi-static approximation the displacement current density
has to be neglected in Maxwell’s first equation. Therefore the governing equa-
tions for the distribution of the electric and magnetic fields E = (E1,E2,E3) and
H = (H1,H2,H3) throughout conductive anisotropic media are described by the
time-dependent Maxwell’s equations in the quasi-static approximation (see, for ex-
ample, [Vagner; Lembrikov and Wyder (2004)]):

curlxH = σ0 ¯̄σE+Jp, (1)

curlxE = −µ0
∂H
∂ t

, (2)

divx(H) = 0. (3)

where x = (x1,x2,x3) is a space variable from R3, t is a time variable from R,
E = (E1,E2,E3), H = (H1,H2,H3) are electric and magnetic fields, Ek = Ek(x, t),
Hk = Hk(x, t), k = 1,2,3; Jp = ( j1, j2, j3) is the density of source currents re-
sponsible for the generation of eddy currents throughout a medium characterized
by the electric conductivity tensor σ = σ0 ¯̄σ and the magnetic permeability µ = µ0

¯̄I,
where σ0, µ0 are positive constants, ¯̄σ = (σik)3×3 is a symmetric positive definite
3×3 matrix and ¯̄I is the identity 3×3 matrix.

Equation (1) implies that

divx(σ0 ¯̄σE)+divxJp = 0.

In this paper we suppose that

E = 0, H = 0, Jp = 0, for t < 0. (4)

We note that equality (2) under condition (4) implies (3). We note also that equali-
ties (1), (2) under condition (4) can be written in the form

µ0σ0 ¯̄σ
∂E
∂ t

+ curlxcurlxE =−µ0
∂Jp

∂ t
, E|t<0 = 0, (5)

µ0
∂H
∂ t

= −curlxE, H|t<0 = 0. (6)
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The paper is organized as follows. Equations for electric and magnetic dyadic
Green’s functions of the time-dependent Maxwell’s equations in the quasi-static
approximation in a conductive anisotropic medium are written in Section 2. An
explicit formula for k-th column of the electric dyadic Green’s matrix is obtained
in Section 3. Deriving an explicit formula for k-th column of the magnetic dyadic
Green’s matrix is given in Section 4. Section 5 describes the computational ex-
ample and contains images of elements of electric and magnetic dyadic Green’s
matrices in a conductive anisotropic medium.

2 Equations for Dyadic Green’s Functions

Let us consider a homogeneous conductive space with the conductivity σ = σ0 ¯̄σ
and the permeability µ = µ0

¯̄I satisfying above mentioned conditions. In the quasi-
static regime for the considered homogeneous anisotropic medium, the electric
dyadic Green’s function G E and the magnetic dyadic Green’s function G H are
defined as electric and magnetic fields arising from impulsive current dipoles at
x = x0, t = t0 and satisfying Maxwell’s equations written as

curlxG H(x− x0, t− t0) = σ0 ¯̄σG E(x− x0, t− t0)+ ¯̄Iδ (x− x0)δ (t− t0), (7)

curlxG E(x− x0, t− t0) = −µ0
∂G H(x− x0, t− t0)

∂ t
, (8)

and vanishing for t − t0 < 0 as well as |x| → ∞ for all t. Here x = (x1,x2,x3) is
3-D space variable, x0 = (x0

1,x
0
2,x

0
3) is 3-D parameter, t is the time variable, t0 is

the time parameter; ¯̄I is the unit tensor (the identity matrix of the order 3× 3);
δ (x− x0) = δ (x1− x0

1)δ (x2− x0
2)δ (x3− x0

3), δ (x j− x0
j) is the Dirac delta function

considered at x j = x0
j , j = 1,2,3; δ (t− t0) is the Dirac delta function considered at

t = t0.

We note that G E(x, t) and G H(x, t) are matrices of 3× 3 order. Let Ek(x, t) =
(Ek

1(x, t),E
k
2(x, t),E

k
3(x, t))

T be the kth column of the matrix G E(x, t) and Hk(x, t) =
(Hk

1(x, t),Hk
2(x, t),Hk

3(x, t))T be the kth column of the matrix G H(x, t) then (7)-(8)
can be written in terms of Ek(x, t) and Hk(x, t) for x = (x1,x2,x3) ∈ R3, t ∈ R as
follows

curlxHk(x, t) = σ0 ¯̄σEk(x, t)+ ek
δ (x)δ (t),

curlxEk(x, t) = −µ0
∂Hk(x, t)

∂ t

with the following conditions

Ek
∣∣
t<0 = 0, Hk

∣∣
t<0 = 0,
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where e1 = (1,0,0)T , e2 = (0,1,0)T , e3 = (0,0,1)T ; the upper index T means the
transpose of the row vectors to the column vectors.

Similar to introduction (determining (5), (6) from (1), (2)) we find that Ek(x, t)
satisfies

µ0σ0 ¯̄σ
∂Ek

∂ t
+ curlxcurlxEk =−µ0ek

δ (x)δ ′(t), Ek
∣∣
t<0 = 0, (9)

and Hk(x, t) is defined by

µ0
∂Hk

∂ t
=−curlxEk, Hk

∣∣
t<0 = 0. (10)

We note that the problem of determining the time-dependent electric and magnetic
dyadic Green’s functions is reduced to deriving solutions Ek(x, t) (k = 1,2,3) of (9).
If Ek(x, t) (k = 1,2,3) are found then Hk(x, t) (k = 1,2,3) are derived as solutions
of the initial value problems (10).

3 Deriving the Electric Dyadic Green’s Function

The construction of a solution of (9) consists of several steps.

Step 1: Writing (9) in terms of the Fourier images with respect to x =
(x1,x2,x3) ∈ R3. Let Ẽk(ν , t) be the Fourier transform image of the electric field
Ek(x, t) with respect to x = (x1,x2,x3) ∈ R3, i.e. the components of the Fourier
mode of the electric field Ẽk(ν , t) = (Ẽk

1(ν , t), Ẽk
2(ν , t), Ẽk

3(ν , t)) are defined by
Ẽ j

k(ν , t) = Fx[Ek
j ](ν , t), j = 1,2,3, where the Fourier operator Fx is given by

(see, for example, [Vladimirov (1971)] )

Fx[Ek
j ](ν , t) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

Ek
j (x, t)e

iν ·xdx1dx2dx3,

ν = (ν1,ν2,ν3) ∈ R3; ν · x = x1ν1 + x2ν2 + x3ν3, i2 =−1.

Equations (9) can be written in the form of their Fourier images as follows

µ0 ¯̄σ
∂ Ẽk

∂ t
+A (ν)Ẽk =−µ0ek

δ
′(t), Ẽk

∣∣∣
t<0

= 0, (11)

where A (ν) is the matrix defined by

A (ν)Ẽk(ν , t) = Fx[curlxcurlxEk(x, t)](ν , t). (12)
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Using properties of the Fourier transform we find that A (ν) is the symmetric pos-
itive semi-definite matrix whose elements are defined by

A11 = ν2
2 +ν2

3 , A22 = ν2
1 +ν2

3 , A33 = ν2
1 +ν2

2 ,
A12 = A21 =−ν1ν2, A13 = A31 =−ν1ν3, A23 = A32 =−ν2ν3.

Step 2: Reduction ¯̄σ and A (ν) to diagonal form. The matrix ¯̄σ is symmetric
positive definite and A (ν) is symmetric positive semi-definite. In this step we
construct a non-singular matrix ¯̄T and a diagonal matrix ¯̄D(ν) = diag(d1(ν),d2(ν),
d3(ν),) with non-negative elements such that

¯̄T T (ν) ¯̄σ ¯̄T (ν) = ¯̄I, ¯̄T T (ν)A (ν) ¯̄T (ν) = ¯̄D(ν), (13)

where ¯̄I is the identity matrix, ¯̄T T (ν) is the transposed matrix to ¯̄T (ν). The similar
reduction of pair symmetric matrices to diagonal form by congruence has been
considered before by [Hong; Horn and Johnson (1986)] and [Goldberg (1992)].
Computing ¯̄D(ν) and ¯̄T (ν) can be made explicitly by the following way: firstly
we find ¯̄σ−1/2 and then using the matrix ¯̄σ−1/2A (ν) ¯̄σ−1/2 we construct ¯̄D(ν) and
¯̄T (ν).
Finding ¯̄σ−1/2. We note that for a given diagonal matrix ¯̄σ = diag(σ11,σ22,
σ33) with positive elements on the diagonal the matrix ¯̄σ−1/2 is given by ¯̄σ−1/2 =
diag

(
1√
σ11

, 1√
σ22

, 1√
σ33

)
. For the given positive definite non-diagonal matrix ¯̄σ we

construct an orthogonal matrix ¯̄R by eigenfunctions of ¯̄σ such that ¯̄RT ¯̄σ ¯̄R = ¯̄L ≡
diag(λ1,λ2,λ3), where ¯̄RT is the transpose matrix to ¯̄R and λk > 0, k = 1,2,3
are eigenvalues of ¯̄σ . Then ¯̄σ1/2 is defined by ¯̄σ1/2 = ¯̄R ¯̄L1/2 ¯̄RT , where ¯̄L1/2 =
diag(

√
λ1,
√

λ2,
√

λ3). The matrix ¯̄σ−1/2 is the inverse to ¯̄σ1/2.

Finding ¯̄D(ν) and ¯̄T (ν). Let us take the given positive semi-definite matrix A (ν)
and the matrix ¯̄σ−1/2 which assumed to be found. Let us consider the matrix
¯̄σ−1/2A (ν) ¯̄σ−1/2 which is symmetric positive semi-definite. The diagonal ma-
trix ¯̄D(ν) is constructed by eigenvalues of ¯̄σ−1/2A (ν) ¯̄σ−1/2. The columns of the
orthogonal matrix ¯̄Q(ν) are formed by normalized orthogonal eigenfunctions of
¯̄σ−1/2A (ν) ¯̄σ−1/2 corresponding to eigenvalues dk(ν), k = 1,2,3. The matrix ¯̄T (ν)
is defined by the formula ¯̄T (ν) = ¯̄σ−1/2 ¯̄Q(ν). We note that computing ¯̄D(ν), ¯̄T (ν)
and ¯̄T T (ν) for the reduction of matrices A (ν) and ¯̄σ is similar to the procedure
from the paper [Yakhno (2005)].

Step 3: Deriving a solution of (11). Let ¯̄D(ν) and ¯̄T (ν), satisfying (13), be con-
structed. We find a solution of (11) in the form Ẽk(ν , t) = ¯̄T (ν)Yk(ν , t), where
Yk(ν , t) is unknown vector function. Substituting Ẽk(ν , t) = ¯̄T (ν)Yk(ν , t) into (11)
and then multiplying the obtained differential equation by ¯̄T T (ν) and using (13) we
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find

dYk

dt
+

1
µ0σ0

¯̄D(ν)Yk =− 1
σ0

¯̄T T (ν)ek
δ
′(t), Ỹk

∣∣∣
t<0

= 0. (14)

Using the ordinary differential equations technique (see, for example [Boyce and
DiPrima (1992)]), a solution of the initial value problem (14) is given by

Yk(ν , t) =− 1
σ0

δ (t) ¯̄T T (ν)ek

+θ(t)
1

µ0σ2
0

¯̄D(ν)exp
(
− 1

µ0σ0

¯̄D(ν)t
)

¯̄T T (ν)ek, (15)

where ν ∈ R3, t ∈ R; θ(t) = 1 for t ≥ 0 and θ(t) = 0 for t < 0; exp
(
− 1

µ0σ0
¯̄D(ν)t

)
is the diagonal matrix whose diagonal elements are exp

(
−dn(ν)

µ0σ0

)
, n = 1,2,3.

Step 4: Deriving a solution Ek(x, t) of (9). The electric field Ek(x, t) satisfying
(9) is found by the inverse Fourier transform F−1

ν to the constructed Fourier image
of the electric field Ẽk(ν , t) = ¯̄T (ν)Yk(ν , t), ν = (ν1,ν2,ν3) ∈ R3, t ∈ R, i.e. the
explicit formula for the electric field is given by

Ek(x, t) =
1

(2π)3

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

¯̄T (ν)Yk(ν , t)e−iνxdν1dν2dν3, (16)

where Yk(ν , t) is defined by (14).

4 Deriving the Magnetic Dyadic Green’s Function

Step 5: Writing (10) in terms of the Fourier images with respect to x =
(x1,x2,x3) ∈ R3. Let H̃k(ν , t) be the Fourier transform image of the magnetic field
Hk(x, t) with respect to x = (x1,x2,x3) ∈ R3. Then equations (10) can be written in
the form of their Fourier images as follows

∂ H̃k(ν , t)
∂ t

=
i

µ0

[
ν× Ẽk(ν , t)

]
, H̃k(ν , t)

∣∣∣
t<0

= 0, (17)

where ν = (ν1,ν2,ν3) ∈ R3, t ∈ R, i2 =−1.

Step 6: Explicit formula for the solution of (17).
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A solution of the initial value problem (17) is found by the integration. This solu-
tion is given by

H̃k(ν , t) = θ(t)
i

µ0

[
ν×

∫ t

−∞

Ẽk(ν ,τ)dτ

]
. (18)

Using Ẽk(ν , t) = ¯̄T (ν)Yk(ν , t), the formula (15) and properties of the Dirac delta
function we find from (17)

H̃k(ν , t) =−θ(t)
i

µ0σ0

[
ν× ¯̄T (ν) ¯̄T T (ν)ek

]

+θ(t)
i

µ2
0 σ2

0

[
ν×

∫ t

0

¯̄T (ν)exp
(
− 1

µ0

¯̄D(ν)τ
)

¯̄T T (ν)ekdτ

]
. (19)

Step 7: Deriving a solution Hk(x, t) of (10). The magnetic field Hk(x, t), satisfying
(10), is determined by the inverse Fourier transform F−1

ν to the constructed Fourier
image of the magnetic field H̃k(ν , t), ν = (ν1,ν2,ν3) ∈ R3, t ∈ R, i.e. the explicit
formula for the magnetic field is given by

Hk(x, t) =
1

(2π)3

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

H̃k(ν , t)e−iνxdν1dν2dν3, (20)

where H̃k(ν , t) is defined by (19).

5 Computational experiments

To demonstrate the robustness of the suggested method for deriving electric and
magnetic Green’s matrices of the Maxwell’s equations in quasi-static approxima-
tion we consider a conductive medium which models a geological tissue. The elec-
tric dyadic Green’s function G E(x− x0, t − t0) and the magnetic dyadic Green’s
function G H(x− x0, t − t0) are defined as 3× 3 matrices whose kth columns are
electric and magnetic fields Ek(x− x0, t− t0), Hk(x− x0, t− t0), arising from im-
pulsive current dipoles ekδ (x−x0)δ (t− t0), where k = 1,2,3; e1 = (1,0,0)T , e2 =
(0,1,0)T , e3 = (0,0,1)T . For this anisotropic medium we have taken x0 = 0, t0 = 0.
Applying steps 1–3 and 5, 6 of Sections 3, 4 we have constructed explicit formulae
for a non-singular matrix ¯̄T and a diagonal matrix ¯̄D(ν) using symbolic computa-
tions in MATLAB. Using (15), (19) the explicit formulae for Ẽk(ν , t) and H̃k(ν , t)
have been found explicitly. For the computation of kth column of electric and mag-
netic dyadic Green’s function for equations of electrodynamics in quasi-static ap-
proximation we have used the formulae (16), (20). Applying steps 4, 7 of Sections
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3, 4 we have computed numerically integrals of (16), (20). For the computation
of these integrals we have replaced 3D integration over the whole space R3 by the
integration over the bounded domain (−A,A)× (−A,A)× (−A,A) and then ap-
proximate 3D integrals over this bounded domain by the following triple integral
sums

1
(2π)3

N

∑
n=−N

N

∑
m=−N

N

∑
l=−N

[
¯̄T (ν)Yk(ν , t)

]
ν=(n∆ν ,m∆ν ,l∆ν)

e−i∆ν(nx1+mx2+lx3)(∆ν)3,

1
(2π)3

N

∑
n=−N

N

∑
m=−N

N

∑
l=−N

[
H̃k(ν , t)

]
ν=(n∆ν ,m∆ν ,l∆ν)

e−i∆ν(nx1+mx2+lx3)(∆ν)3.

Here N is the natural number for which A = N∆ν and real numbers A and ∆ν have
been chosen using explicit formulae for columns of the magnetic dyadic Green’s
function in a homogeneous isotropic conductive space and some empirical obser-
vations described below. The homogeneous isotropic conductive space has been
taken with characteristics µ0 = 1.257×10−6 (H ·m−1) and σ0 = 107 (S ·m−1).
Using values of H̃3(ν , t), which have been derived by the formula (19), we have
computed values of the second sum mentioned above for different A and ∆ν . On
the other hand we know that the analytical computation of the explicit formulae for
the magnetic dyadic Green’s function columns of electrodynamics in quasi-static
approximation in the isotropic conductive space offers no difficulty ( see, for ex-
ample, [Bowler and Fu (2006)] ). For example, the explicit formula of the third
column of this magnetic dyadic Green’s function is given by

H3(x, t) = curlx(e3
φ(x, t)),

where

φ(x, t) =
θ(t)

8

√
µ0σ0

π3t3 exp
(
−µ0σ0|x|2

4t

)
.

Using this formula we have found exact values for the third column H3(x, t) of the
magnetic dyadic Green’s function. The numbers A and ∆ν have been chosen such
that the difference between values of H3(x, t) and values of the third column of the
magnetic dyadic Green’s function of electrodynamics in quasi-static approximation
in the isotropic conductive space obtained by our method becomes negligible. We
have chosen A = 60 and ∆ν = 0.5 as suitable numbers for the computation of our
example.

We note that another time scale has been used for the numerical computations
of Ek(x, t) and Hk(x, t). This time scale is given by t̄ = t/(µ0σ0) and formulae
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(15), (16) and (19), (20) have been written in terms of a new variable t̄ and all
computations have been made for vector functions Ẽk(ν , t̄µ0σ0), Ek(x, t̄µ0σ0) and
H̃k(ν , t̄µ0σ0), Hk(x, t̄µ0σ0).
The homogeneous geological tissue is characterized by the magnetic permeabil-
ity µ0

¯̄I (H ·m−1), where µ0 = 1.257× 10−6 (see, for example, [Neuman and
Alumbaugh (2002)], [Commer et al. (2008)]) and the conductivity tensor σ =
σ0 ¯̄σ (S ·m−1),where σ0 = 107, ¯̄σ = diag(9,25,36) (see, for example, [Commer
et al. (2008)]).

Fig.1(a),1(c),1(e) show 2-D plot of the element E3
1 (x, t) of the dyadic electric func-

tion for x2 = 0, t = 0.1×10, t = 1×10, t = 2×10 in seconds. The horizontal axes
in Fig.1(a),1(c),1(e) are x1 and x3 in meters. Fig.1(b),1(d),1(f) demonstrate 2-D plot
of the element H3

1 (x, t) of the dyadic magnetic function for x3 = 0, t = 0.1× 10,
t = 1× 10, t = 2× 10. The horizontal axes in Fig.1(b),1(d),1(f) are x1 and x2 in
meters. In Fig.2(a), 2(b) 2-D and 3-D plots of the same surface E3

1 (x1,0,x3, t)
(t = 0.1× 10) are presented and Fig.2(c), 2(d) present 2-D and 3-D plots of the
surface the H3

1 (x1,x2,0, t) (t = 3× 10). Fig.2(b), 2(d) are the view of the surfaces
E3

1 (x1,0,x3, t) and H3
1 (x1,x2,0, t) (t = 3×10) from the axis z, i.e. from the top.

We note that for an arbitrary fixed t the behavior of the surfaces generated by
H3

1 (x1,x2,0, t) is similar to the behavior of the surfaces of the function
x2 exp(−µ0σ0(x2

1 + x2
2)/(4t)) and the surfaces obtained by E3

1 (x1,0,x3, t) are simi-
lar to the surfaces of the function x1x3 exp[−µ0σ0(x2

1 +x2
3)/(4t)] both deformed by

’astigmatism’ of the considered anisotropy.

The elements of dyadic electric and magnetic functions, which exhibit the char-
acteristics of a pulse dipole with the fixed polarization, are initially localized and
rising a maximum while spreading laterally and eventually relaxing toward zero.
The dynamic variation of electric and magnetic fields (electromagnetic radiation
from the dipole) is presented by simulated images.

6 Conclusion

The explicit formulae of dyadic electric and magnetic Green’s functions of the time-
dependent Maxwell’s system in quasi-static approximation for conductive anisotro-
pic media have been derived by the matrix transformations, solutions of some or-
dinary differential equations depending on the Fourier parameters and the inverse
Fourier transform. The formulae for electric and magnetic dyadic Green’s func-
tions have been presented in the form that is convenient for computation of the
transient electric and magnetic fields. The computational example has confirmed
the robustness of the method.

The dyadic Green’s functions can be applied as a useful tool for the Boundary El-
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(a) E3
1 (x1,0,x3,1) (b) H3

1 (x1,x2,0,1)

(c) E3
1 (x1,0,x3,10) (d) H3

1 (x1,x2,0,10)

(e) E3
1 (x1,0,x3,20) (f) H3

1 (x1,x2,0,20)

Figure 1: 2-D plots of the elements E3
1 (x1,0,x3, t) and H3

1 (x1,x2,0, t) of the electric
and magnetic dyadic Green’s functions for t = 0.1× 10, t = 1× 10, t = 2× 10
in the anisotropic medium with the conductivity σ = σ0 ¯̄σ (S ·m−1), σ0 = 107,
¯̄σ = diag(9,25,36) and the relative magnetic permeability µ0

¯̄I (H ·m−1), µ0 =
1.257×10−6.
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(a) 2-D plot of E3
1 (x1,0,x3,30) (b) 3-D plot of E3

1 (x1,0,x3,30)

(c) 2-D plot of H3
1 (x1,x2,0,30) (d) 3-D plot of H3

1 (x1,x2,0,30)

Figure 2: 2-D and 3-D plots of elements E3
1 (x1,0,x3,30) and H3

1 (x1,x2,0,30) of the
electric and magnetic dyadic Green’s functions in the anisotropic medium with the
conductivity σ = σ0 ¯̄σ (S ·m−1), σ0 = 107, ¯̄σ = diag(9,25,36) and the relative
magnetic permeability µ0

¯̄I (H ·m−1), µ0 = 1.257×10−6.

ement Method (BEM). We note that BEM is used for solving problems for partial
differential equations in bounded domains with given boundary conditions. In this
case the partial differential formulation of the problems is transformed to a bound-
ary integral equations with Green’s functions. By discretizing the boundary with
finite boundary small patches (boundary elements) the boundary integral equation
is reducible to matrix-vector equations. Hence, to apply BEM we need to know the
values of Green’s functions in a finite number of points (points of discretization).
Finding Green’s function values at given finite number of points is an important
step of BEM. We note that the Green’s function values can be easily calculated for
a few number of partial differential equations, such as Laplace, Helmholtz, wave,
diffusion. Unfortunately Green’s function values are not easy to find for many
equations and systems. The example of Section 4 in our paper demonstrates the
real possibility to compute Green’s function values at a finite number of points
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(x, t) for the time-dependent Maxwell’s equations in quasi-static approximations in
anisotropic media. The computation of Green’s function values is based on explicit
formulae for the Fourier images of dyadic magnetic and electric Green’s functions
G̃ H(ν , t) and G̃ E(ν , t), respectively, and numerical computation of triple integral at
a finite number of points (x, t).
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