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A Nonlinear Optimization Algorithm for Lower Bound
Limit and Shakedown Analysis
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Abstract: Limit and shakedown analysis theorems are the theories of classical
plasticity for the direct computation of the load-carrying capacity under propor-
tional and varying loads. Based on Melan’s theorem, a solution procedure for lower
bound limit and shakedown analysis of three-dimensional (3D) structures is estab-
lished making use of the finite element method (FEM). The self-equilibrium stress
fields are expressed by linear combination of several basic self-equilibrium stress
fields with parameters to be determined. These basic self-equilibrium stress fields
are elastic responses of the body to imposed permanent strains obtained through
elastic-plastic incremental analysis by the three-dimensional finite element method
(3D-FEM). The Complex method is used to solve the resulting nonlinear program-
ming directly and determine the maximal load amplifier. The numerical results
show that it is efficient and accurate to solve three-dimensional limit and shake-
down analysis problems by using the 3D-FEM and the Complex method. The limit
analysis is treated here as a special case of shakedown analysis in which only pro-
portional loading is considered.

Keywords: Limit and shakedown analysis, 3D-FEM, self-equilibrium stress, non-
linear programming, the Complex method

1 Introduction

The computational problems associated with structural design and safety evalua-
tion remain a challenge to many engineering problems. In the course of structural
design and safety evaluation, traditional linear elastic analysis always gives conser-
vative results of engineering problems, and hence the load-carrying capacities of
structures can’t be brought into play effectively. The plastic limit and shakedown
loads, which can determine the load-carrying capacities of structures, are important
parameters in performing structural integrity assessment. Therefore, the methods
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of determining the limit and shakedown loads efficiently and accurately have at-
tracted the attention of many researchers [Ciria H. (2008), da Silva M.V. (2007),
Vu D.C. (2007), Vu D.K. (2004), Liu, Y. H. (1995,2000)].

The elastic-plastic incremental analysis is clearly more general and yields more
information (sometimes unnecessarily abundant) often at higher computational ef-
fort. Its solution has been investigated for many years, primarily in the context of
the finite element method [Zienkiewicz, O. C. (1977), Wunderlich, W. (1981)], and
in the context of the boundary element method [Brebbia, C. A. (1980), Banerjee,
P. K. (1981)]. However, to many practical engineering problems, only limit and
shakedown loads and collapse mode are needed, and the stress and strain field his-
tories are unnecessary to be known. Intended to avoid elastic –plastic incremental
computation which is usually time-consuming, the limit and shakedown analysis
method is considered to be applied to this kind of problems. Limit and shakedown
analysis theorems are the theories of classical plasticity for the direct computation
of the load-carrying capacity under proportional and varying loads.

As a simplified method, shakedown and limit analysis has higher computational ef-
ficiency and is more practical than incremental analysis. Theoretically this method
can avoid the elastic-plastic incremental computation which is usually time-consu-
ming, but on the other hand, it faces great difficulty in numerical computation. With
solution procedure, it is mostly centered on mathematical programming [Cohn, M.
Z.(1979), Maier, G. (1982)]. Because this mathematical programming has exces-
sive independent variables and constraint conditions, and in general is a non-linear
programming, the scale of solving is quite large. Therefore, how to establish an
effective and reliable solution procedure to overcome this difficulty is very crucial
for the application of limit and shakedown analysis method in engineering practice.

In this paper, a solution procedure of shakedown analysis is established by the fi-
nite element method based on Melan’s theorem. The self-equilibrium stress fields
are constructed by linear combination of several basic self-equilibrium stress fields
with parameters to be determined. These basic self-equilibrium stress fields are
expressed as elastic responses of the body to imposed permanent strains obtained
through elastic-plastic incremental analysis by the 3D-FEM. The resulting nonlin-
ear programming is solved effectively by the Complex method. The limit analysis
is treated as a special case of shakedown analysis in which only proportional load-
ing is considered.

2 Static theorem of shakedown analysis

The static shakedown theorem [Martin, J. B. (1975)] can be stated as follows: for a
structure to shake down to the prescribed loading range (the body force is neglected
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here for brevity) if, and only if, there exists a time-independent self-equilibrium
stress ρi j which, superimposed on the fictitious elastic stress σE

i j , yields the stress
σi j not violating the yield condition at any point of the structure and for all possible
load combinations, namely:

ϕ[σi j(x, t)] = ϕ[σE
i j(x, t)+ρi j(x)]≤ 0 ∀ x ∈ΩΩΩ (1)

here, ϕ is the yield function, σi j(x, t) is the actual stress in a solid subjected to
surface tractions ppp(x, t), σE

i j(x, t) denotes the fictitious stress that would appear had
the structure responded to the applied loads in a purely elastic manner, and ρi j(x)
represents a self-equilibrium stress field that must satisfy equilibrium requirements
within the body and vanish on the part of the surface where tractions are prescribed:

ρi j, j = 0 in ΩΩΩ (2)

ρi jn j = 0 on ΓΓΓp (3)

Strains appearing in the solid are sufficiently small so that geometric changes in
configuration of the structure can be disregarded. Elastic strains εE

i j and plastic
strains σP

i j are thus additive and the total strains are linear in terms of the displace-
ment gradient, εi j = 1

2(ui, j +u j,i). Plastic strain rates are governed by the associated
flow law.

So, based on the static shakedown theorem, for a structure made up of elastic-
perfectly plastic material, the maximum enlarging of the load variation domain al-
lowing still for shakedown, characterized by a factor β , can be obtained by solving
the following optimization problem:

max : β (β → βs) (4)

s.t. ϕ[σi j(x, t)] = ϕ[βσ
e
i j(x, t)+ρi j(x)]≤ 0 ∀ x ∈Ω (5)

ρi j, j(x) = 0 ∀x ∈ΩΩΩ (6)

ρi j(x)n j = 0 ∀x ∈ ΓΓΓp (7)

In Eq(5), σ e
i j(x) denotes the fictitious elastic stress of structure under the basic

variable loads. The above static formulation is of bounding character. It means that
if we can find a self-equilibrium stress field ρi j(x) and a corresponding safe factor
β such that the yield condition (5) is satisfied for all x ∈ΩΩΩ and for all t > 0, then β

provides a lower bound to the actual shakedown factor βs.

3 Mathematical programming of discretized structure

In the displacement finite element method, the geometry of the problem domain is
first discretized. The load-dependent elastic stress field σσσE

i = σσσE(xxxi) at the Gaus-
sian points xxxi can be calculated by means of the FEM, where the index i denotes
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the ith Gaussian point of the discretized structure. The equilibrium conditions (6)
and (7) for the self-equilibrium stress can be transformed into the equivalent weak
form given as∫

Ω

δεεε
T(xxx)ρρρ(xxx)dΩ = 0 (8)

where δεεε is an arbitrary virtual kinematically admissible strain.

According to the interpolation approximation, the virtual displacement δuuu(xxx) can
be obtained as

δuuu(xxx) =
n

∑
i=1

φi(xxx)δ ûuui (9)

over each element, and n is the number of nodes for each element. The correspond-
ing virtual strain

δεεε(xxx) = BBB(xxx)δ ûuu (10)

can be derived according to δεi j = 1
2(δui, j + δu j,i), where BBB(xxx) is the strain ma-

trix which expresses the relationship between strain vector and nodal displacement
vector, while ûuu is the nodal displacement vector for each element assembling all
components of the fictitious nodal displacement ûuui.

Using this relation and introducing the unknown self-equilibrium stress vector ρρρ(xxxi)=
ρρρ i at each Gaussian point xxxi, the equilibrium condition (8) is integrated numerically
with the Gauss technique. Denoting the weighting factor for numerical integration
for the ith Gaussian point by wi, the numerical integration over the structure yields∫

Ω

(δε(xxx))T
ρρρ(xxx)dΩ

∫
Ω

(BBB(xxx)δ ûuu)T
ρρρ(xxx)dΩ = (δ ûuu)T

NG

∑
i=1

BBBT(xxxi)ρρρ iwi = 0 (11)

Because δ ûuu is arbitrary, the above equation can be satisfied only if∫
Ω

(BBB(xxx))T
ρρρ(xxx)dΩ =

NG

∑
i=1

CCCiρρρ i = CCCρρρ = 0 (12)

as the linear, discretized equilibrium condition for the self-equilibrium stress.

In Eq(12), CCC is a constant matrix that is uniquely defined by the discretized struc-
ture, ρρρ is the global self-equilibrium stress vector and NG is the total number of the
Gaussian points of the discretized structure. The relations between CCC, CCCi, ρρρ and ρρρ i
are respectively given by:

CCC = (CCC1, . . . ,CCCi, . . . ,CCCNG) (13)

ρρρ
T = (ρρρT

1 , . . . ,ρρρT
i , . . . ,ρρρT

NG) (14)
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Actually, the yield condition (5) should be satisfied for all points of the discretized
structure. However, according to the general approach in numerical analysis we
only require that this condition is fulfilled at all Gaussian points of the structure.
Now we are able to give the following discretized static formulation for the deter-
mination of the limit load factor β s

β
s = maxβ (15)

s.t.
NG

∑
i=1

CCCiρρρ i = CCCρρρ = 0 (16)

ϕ[βσσσ
E
i +ρρρ i]≤ 0 i = 1∼ NG (17)

After the discretization of the structure, the load-dependent elastic stress field σ e
i (t)=

σ e(xi, t) can be calculated by the FEM. Here xi means the point where the yielding
condition is checked. Then σ e

i (t) denotes the fictitious elastic stress at the ith point
under the basic load domain. Let ρi denote the self-equilibrium stress at point i, the
constraint condition (5) of optimization problem can be reformulated as:

ϕ[σi(t)] = ϕ[βσ
e
i (t)+ρi]≤ 0, i = 1∼ NG (18)

where the NG is the total number of points where the yielding condition be checked.
The discretized formulation (18) contains still the time t as variable. It means
that the number of yield conditions is infinite because there are infinite possible
fictitious elastic stress fields caused by the variable load in the basic load domain.
The problem can essentially be simplified if we restrict ourselves to the basic load
domain with a form of a convex polygon with M corners (M = 1 when limit analysis
is considered). With respect to the convexity of the yield condition ϕ(·), it can
easily be shown that if

ϕ[βσ
e
i ( j)+ρi]≤ 0, i = 1∼ NG; j = 1∼M (19)

is satisfied for all j = 1∼M, then

ϕ[βσ
e
i (t)+ρi]≤ 0, i = 1∼ NG (20)

is fulfilled at any time t.

By doing so, the constraint condition (18) can be replaced by the following one:

ϕ[βσ
e
i ( j)+ρi]≤ 0, i = 1∼ NG; j = 1∼M (21)

where σ e
i ( j) denotes the fictitious elastic stress vector at the ith point associated

with the jth corner of the load domain.
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After the discretization of space and time domain, the dimension of the mathemati-
cal programming is still very high so that the solving of the problem is very difficult
or even impossible. To overcome this difficulty, a reduced-basis technique is used
to simulate the self-equilibrium stress field [Stein, E. (1993)].

In the discretized sense, the unknown self-equilibrium stress vector associated with
the best load factor βs in the formulation (21) can be expressed by the linear com-
bination of all the independent self-equilibrium stress vectors. The purpose of the
reduced-basis technique is to look for several self-equilibrium stress basis vectors
whose linear combination can lead to the appropriate ρ through the optimization,
namely

ρi = C1ρ
1
i +C2ρ

2
i + · · ·+CRρ

R
i i = 1∼ NG (22)

here, R is the number of basis vectors, ρ1
i ,ρ2

i , . . .ρk
i , . . . ,ρR

i are the selected self-
equilibrium stress basis vectors, and C1 ∼CR are the parameters to be determined.

By doing so, the resulting mathematical programming of discretized body is as
follows:

max : β (β → βs) (23)

s.t.ϕ[βσ
e
i ( j)+C1ρ

1
i +C2ρ

2
i + · · ·+CRρ

R
i ]≤ 0 i = 1∼ NG, j = 1∼M (24)

Because ρ1
i ,ρ2

i , . . . ,ρR
i , are the selected self-equilibrium stress basis vectors, the

constraint conditions for ρ (Eq.(6), (7)) have been satisfied automatically. By the
reduced basis technique the nonlinear programming problem can be solved in a
sequence of reduced residual stress spaces with very low dimensions. In this way,
large scale finite element systems of different structures can be treated successfully.

It should be noticed that after the discretization of the structure, the above static for-
mulation (23) and (24) does not keep its bounding character in the strict meaning.
This is because the fictitious elastic stress field is not calculated precisely, the equi-
librium conditions for the self-equilibrium stress field are satisfied only in a weak
form, and instead of all x ∈ ΩΩΩ we require only that the yield condition be fulfilled
at the all stress points. In any case, in shakedown problems the elastic solution is
crucial and even minor approximations on local values make the bounding nature
of results questionable. But, if the discretization is sufficiently fine, one can hope
that the computational result β provides a reliable value to the actual shakedown
factor βs.

4 The construction of equilibrium stress field

As shown in the inequality (21), the total equilibrium stress field is made up of two
parts: the first part is the fictitious elastic stress field σ e

i ( j) in the jth corner of basic
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load domain with load factor β , and the second is the self-equilibrium stress field
ρi. The fictitious elastic stress field σ e

i ( j) can be computed by the FEM directly.

The self-equilibrium stress field can be expressed as linear combination of a group
of “basis vectors” with parameters to be determined. Every “basis vector” is a self-
equilibrium stress field, which should satisfy the constraint relations (6) and (7).
So, the total equilibrium stress field can be written as follows:

σi( j) = βσ
e
i ( j)+C1ρ

1
i +C2ρ

2
i + · · ·+CRρ

R
i ; i = 1∼ NG, j = 1,M (25)

every “basis vector” is expressed by the difference between the stress fields of dif-
ferent iteration steps at same loading incremental step of elastic-plastic incremental
computation. It is essentially the elastic stress response to plastic strain obtained
through incremental elastic-plastic BEM procedure and undoubtedly satisfies the
constraint relations (6) and (7).

The whole process of solving this problem can be divided into some sub-problems.
The iteration index, indicating each sub-problem in a corresponding reduced self-
equilibrium stress space, is denoted by k(k = 1,2, . . .). The solution algorithm is as
follows:

At the beginning of the kth sub-problem we have a known state represented by a
load factor β (k−1) and a self-equilibrium stress distribution ρ

(k−1)
i that satisfies:

ϕ[β (k−1)
σ

EB
i ( j)+ρ

(k−1)
i ]≤ 0 i = 1∼ NG, j = 1,M (26)

This inequality (28) indicates that [β (k−1),ρ
(k−1)
i ] is a feasible point of the math-

ematical programming (26). Therefore β (k−1) is a lower bound to the shakedown
factor βs of the discretized system (but not necessarily a lower bound of the original
problem).

In the kth sub-problem, on the basis of the (k−1)th total stress σ
(k−1)
i , adding the

kth load increment ∆β k( j) to the body, we can get a group of new “basis vectors”
(i. e. ρ

1(k)
i ,ρ

2(k)
i , . . .) for every load corner of basic loading domain by the elastic-

plastic iteration computation. Then take the self-equilibrium stress field ρ
(k−1)
i of

last sub-problem as one of the “basis vectors” ρ
R(k)
i , so we get R “basis vectors”

in all in this sub-problem. Using the Complex method (which will be introduced
latter) to solve the nonlinear programming of this sub-problem, we can get the kth
approximate solution β (k), the corresponding self-equilibrium stress field ρ

(k)
i and

total stress field σ
(k)
i = β (k)σ e

i + ρ
(k)
i . For k = 1, through computing the Mises’

equivalent stress at every stress point associated with every corner of basic loading
domain, we can get the elastic limit load amplifier β e( j) respectively. Set β (0) =
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min[β e(1)∼ β e(M)] and ρ0
i = 0, so we got β (0) and ρ

(0)
i as the initial values of the

whole solving process.

The above computational process will be repeated until the following convergence
criterion is fulfilled:

β (k)−β (k−1)

β (k−1) ≤ ε
0 k ≥ 2 (27)

where ε0 is a given error tolerance. Our numerical experiences show that, in gen-
eral, when k is equal to or even less than five, β (k) is already a good approximate
solution to the actual shakedown factor and the whole solution procedure has sta-
ble convergence. According to the numerical experiment, in general, the number
of “basis vectors” can be choose as R = (3 ∼ 5)×M in the first sub-problem and
R = (3∼ 5)×M +1 in the following sub-problems.

5 Solving of nonlinear programming

Here the von Mises’ yield condition is adopted. Taking advantage of the above
relationships in Section 5, the unified version of all sub-problems can be written as:

max : β (β → βs) (28)

s.t.ϕ[βσ
e
i ( j)+C1ρ

1
i +C2ρ

2
i + · · ·+CRρ

R
i ]≤ 0 i = 1∼ NG; j = 1∼M (29)

The value of fictitious elastic stress and every “basis vector” at each stress point can
be computed by the FEM before the programming problem (28) and (29) is solved.
There are (NG×M) constraint inequalities in the above sub-problem. The optimal
variables include the objective function β and R parameters to be determined.

This nonlinear programming has these features:

1. The number of optimal variables is relatively small (R = (3∼ 5)×M +(1∼
2));

2. The number of constraint conditions is quite large (NG×M);

3. All the constraint conditions are quadratic inequalities.

Taking account of these characteristics, we use the Complex method to solve this
programming problem [Xi, S. L. (1983)]. The solving process can be divided into
two steps.

Step 1: for given numerical values of C′1,C
′
2, . . . ,C

′
R, get the corresponding load

factor β ′′.
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Because all the constraint conditions are quadratic inequalities, they can be treated
as quadratic functions with independent variable β :

Qk(β ) = ϕ[βσ
EB
i ( j)+C′1ρ

1
i +C′2ρ

2
i + · · ·++C′Rρ

R
i ]

= akβ
2 +bkβ + ck

≤ 0 k = 1,2, . . . ,NG×M (30)

In the above expression, the parameter ak is made up of stress deviators (known) of
fictitious elastic stress field at ith stress point under the load of jth corner, and bk,
ck are made up of stress deviators (known) of both fictitious elastic stress field and
every “basis vector”. It can be easily proved that ak must be a non-negative number
(i. e. ak ≥ 0). So, the value of β ′k which satisfy the kth inequality (30) must be
between the two roots of the corresponding equation:

Qk(β ′k) = 0, k = 1,2, . . . , NG×M (31)

Let these two roots of kth equation be marked by β ′1(k) and β ′2(k). Without losing
generality, we assume these two roots satisfy β ′1(k) ≤ β ′2(k). The solving of Eq(31)
can be divided into two cases:

I. ∀ak > 0, if:

∆k = b2
k−4akck ≥ 0 (32)

the Eq(31) has two roots:

β
′
1(k) =

−bk−
√

b2
k−4akck

2ak
, β

′
2(k) =

−bk +
√

b2
k−4akck

2ak
, (33)

II. ∀ ak = 0, this means that the corresponding fictitious elastic stress field is equal
to zero. So the value of bk must be equal to zero. The inequality (30) can be
simplified as:

ck ≤ 0 (34)

If inequality (34) is satisfied, then inequality (30) can be satisfied with any value of
β ′k. So we can prescribe the roots of the Eq(31):

β
′
1(k) =−∞, β

′
2(k) = +∞, (35)

Because β must satisfy all the inequalities (30), so the following expression must
be satisfied for any i and j:

max
i

β
′
1(i) ≤min

j
β
′
2( j) ∀ i, j = 1,2, . . . ,NG×M (36)
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If the above conditions (32) and (36) ∀ ak > 0 or (34) and (36) ∀ ak = 0 can be
satisfied, the possible value range of the β ′ should be:

max{β ′1(1), . . . ,β
′
1(k), . . . ,β

′
1(NG×M)} ≤ β

′ ≤min{β ′2(1), . . . ,β
′
2(k), . . . ,β

′
2(NG×M)}

(37)

So the maximum likelihood of β ′ is:

β
′′ = max{β ′}= min{β ′2(1),β

′
2(2), . . . ,β

′
2(k), . . . ,β

′
2(NG×M)} (38)

So, for the arbitrarily given numerical values of C′1,C
′
2, . . . ,C

′
R, (feasible to that

problem, i. e. satisfy (32) and (36) ∀ ak > 0 or (35) and (36) ∀ ak = 0), we can get
a corresponding numerical value of β ′′. This kind of relationship can be expressed
as the following function form:

β
′′ = ψ(C′1,C

′
2, . . . ,C

′
R) (39)

Step 2: Look for optimal values of C′∗1 ,C′∗2 , . . . ,C′∗R , let the corresponding load
factor β ′′∗→ β s.

For transforming this problem into the standard formulation of the Complex method,
the objective function (39) can be substituted by:

β
′′ = ψ(C′1,C

′
2, . . . ,C

′
R) =−F(C′1,C

′
2, . . . ,C

′
R) (40)

Then the nonlinear programming (28) and (29) can be represented by the following
new form:

β
′′∗ = maxβ

′′ =−minF (41)

s.t. F = F(C′1,C
′
2, . . . ,C

′
R) =−ψ(C′1,C

′
2, . . . ,C

′
R) (42)

∀ ak > 0,∆k = b2
k−4akck ≥ 0 (No index summation) (43)

∀ ak = 0, ck ≤ 0 k = 1,2, . . . ,NG×M (44)

β
′
1(i) ≤ β

′
2( j) ∀ i, j = 1,2, . . . ,NG×M (45)

This is a standard non-linear programming formulation which can be solved with-
out any difficulties by the Complex method. The solution process of the Complex
method [Xi, S. L. (1983)] is as follows:

(1) Form the initial Complex configurations, namely, find out (2R+1) initial points
in a R-dimensional space. The coordinates of every point are denoted by a group of
numbers C′1,C

′
2, . . . ,C

′
R, which must satisfy the constraint conditions (43) and (44)

in advance.
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(2) After the formation of initial Complex configurations, the following iteration
will proceed:

(a) Find the best point x(b) (it means that the objective function has minimal value
at this point) and the worst point x(w), then compute the coordinates (marked by x∧)
of central point of all the points except x(w):

x∧ =
1

2R

(
2R+1

∑
i=1

x(i)− x(w)

)
(46)

It can be easily proved that the central point x∧ satisfies the constraint conditions
(43) and (44).

(b) Seek for the reflecting point of x(w) with respect x∧ to and mark this point by
x∆:

x∆ = (1+λ )x∧−λx(w) (47)

Here λ > 0 is the reflecting factor (generally we let λ = 1,3). If the point x∆ does
not satisfy the constraint conditions (43) and (44)., then move the point x∆ to the
central point x∧ by half distance, namely:

x∆(new) = 0.5(x∆(old)+ x∧) (48)

If the new x∆ still does not satisfy the constraint conditions, then use the formula
(48)repeatedly until this point satisfies the constraint conditions.

(c) Compute the value of F(x∆). If

F(x∆) < max
i=1∼2R+1,i6=w

(F(xi)) (49)

then let the point x∆ substitute the point xw and go to (d), otherwise let the point x∆

move half distance towards central the point x∧ (use the formula (48) again) until
formula (49) is satisfied.

(d) For a prescribed error tolerance ε1, if

‖xb− xw‖< ε
1 (50)

then take xb as the appropriate solution of this sub-problem, otherwise go back to
(a).

The numerical computations of present solution procedure show that both initial
Complex configuration and initial solution have little influence on the computa-
tional results.
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6 Numerical examples

Some problems which are analyzed using the proposed solution procedure are pre-
sented in this section. These examples are employed to verify the performance of
the numerical technique. In the following examples, 8-node isoparametric elements
are used for the discretization of structures, see Fig.1. All the bodies are made up
of von Mises’ material. The material parameters are as follows: elastic modulus
E = 2.1×105MPa, Poisson’s ratio v = 0.3, and yielding stress σ0 = 200MPa.
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Figure 1: Sketch map of finite element.

(1) Limit and shakedown analysis of the square plate with a central circular hole

A square plate with a central circular hole is considered (see Fig.2). This is a
classical problem in numerical limit and shakedown analysis. The length of the
plate is L and the ratio between the diameter of the hole and the length of the plate
is 0.2. The system is subjected to the biaxial uniform loads P1 and P2. Both can
vary independently of each other between zero Pmax

1 and Pmax
2 certain maximum

magnitudes and (0≤ P1 ≤ Pmax
1 , 0≤ P2 ≤ Pmax

2 ).

The problem has also been investigated by [Belytschko, T. (1972), Corradi, L.
(1974), Nguyen, D. H. (1979), Genna, F. (1988), Stein, E. (1992), Gross-Weege, J.
(1997), Carvelli, V. (1999)].

Fig.3 represents finite element distribution of the adopted discretization. The mesh
consists of 96 elements.

The computational results by the present method and reasonable agreement are
observed in Fig.4 with the counterpart limit analysis results by [Gross-Weege, J.
(1997)], the shakedown analysis results by [Gross-Weege, J. (1997)] and [Carvelli,
V. (1999)], achieved respectively by a static approach and a kinematic approach.

The numerically detailed comparisons with available earlier works are summarized
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Figure 2: Sketch map of the plate

Figure 3: Finite element mesh of the plate

in Table 1 for three special load combinations of P1 and P2. It should be noticed
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that the results are based on different approaches concerning both the discretization
of the problem and the numerical solution technique. Tab. 1 shows that our results
in general are close to the available numerical results. The comparisons illustrate
the validity of the present solution procedure.
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Figure 4: The shakedown and limit load domains for the plate

Table 1: Comparison of different numerical solutions for limit and shakedown anal-
ysis (P1/σ0)

Problems Authors & Methods
Loading cases

P2 = P1 P2 = P1/2 P2 = 0

Limit analysis

Nguyen & Palgen (1979), Lower bound 0.704 — 0.564
Corradi & Zavelani (1974), Upper bound 0.767 — 0.691

Gross-Weege (1997), Lower bound 0.882 0.891 0.782
Present solution, Lower bound 0.889 0.898 0.784

Shakedown

Belytschko (1972), Lower bound 0.431 0.501 0.571

Analysis

Corradi & Zavelani (1974), Upper bound 0.504 0.579 0.654
Nguyen & Palgen (1979), Lower bound 0.431 0.532 0.557

Genna (1988), Lower bound 0.478 0.566 0.653
Stein & Zhang (1992), Lower bound 0.453 0.539 0.624
Gross-Weege (1997), Lower bound 0.446 0.524 0.614
Carvelli et al. (1999), Upper bound 0.518 0.607 0.696

Present solution, Lower bound 0.467 0.538 0.634
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(2) Shakedown analysis of a thick-walled cylinder subjected to internal pressure.

Shakedown analysis is performed for a thick-walled cylinder subjected to a fluctu-
ating uniform internal pressure P (Fig.5). This is a benchmark problem with analyt-
ical solution. For this problem, we calculate the shakedown loads of thick-walled
cylinders with different ratios of a/b (internal radius / external radius). The cylinder
is discretized by 48 elements when a/b = 1/2, as shown in Fig.6. The numerical
results compared with the analytical solutions are shown in Fig.7. The analytical
solution of shakedown problem of thick-walled cylinder subjected to fluctuating
uniform internal pressure is as follows:

PSD = min{PL,2×Pe}. (51)

Where

PL =
2√
3

σ0 ln
b
a

, Pe = 2√
3
σ0[1− (a2/b2)]

When b/a ≤ 2.22, non-shakedown is plastic collapse; when b/a > 2.22, non-
shakedown is alternating plasticity.

a2

b2

P

Figure 5: Thick-walled cylinder subjected to internal pressure

We can see that the numerical results are in good agreement with the analytical
solutions.

(3) Limit analysis of a defective pipeline subjected to internal pressure, axial ten-
sion and bending moment.

The limit loads of a 3-D defective pipeline are computed here using the proposed
method. The geometry of the pipeline with a small slot subjected to the combined
action of internal pressure P, axial tension N (caused by internal pressure P, i.e,
N = PπR2

i , where Ri is the inner radius of pipeline) and bending moment M at
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Table 2: Some numerical results compared with analytical solutions (MPa).

b/a Plastic limit Elastic limit (×2) Shakedown limit Present solution error
1.5 93.64 128.30 93.64 91.26 2.54%
2 160.08 173.21 160.08 157.04 1.90%
3 253.71 205.28 205.28 201.39 1.89%
4 320.15 216.50 216.50 212.26 1.96%

Figure 6: Finite element mesh of the cylinder

both ends is shown in Fig.8. The geometric parameters of the pipeline adopted
here are as follows: Ro = 70mm; Ri = 50mm; A = 30mm; B = 22mm; C = 10mm;
T = 20mm and θ = 18◦.

Considering the symmetry, we take a quadrant of the 3-D defective pipeline to
discretize the structure and the corresponding displacement constraints are imposed
on the symmetric boundaries. The element mesh of the pipeline adopted are shown
in Fig.9.

We define the following non-dimensional parameters:

m = M/M0 (52)

p = P/P0 (53)

where M0 = 4
3 σ0(R3

o−R3
i ) is the theoretical limit bending moment of pipeline with-

out defect, and P0 = 2√
3
σ0 ln Ro

Ri
is the theoretical limit internal pressure of pipeline

without defect.

The calculated lower bound limit load domain of the defective pipeline is plot-
ted in Fig.10, for combined internal pressure and bending moment. For the pur-
pose of comparison, we also employ the commercial software ANSYS to com-
pute the limit loads of pipeline by 3-D elastic-plastic incremental analysis. In this
example, when the defective pipeline is acted by only internal pressure or only
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Figure 7: Comparison of present solutions of shakedown load with analytical solu-
tions
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Figure 8: The geometry of pipeline with a slot subjected to internal pressure, axial

bending moment, we get the limit internal pressure P = 63.42MPa (the solution
of ANSYS P = 64.05MPa) and M = 5.496× 107KN·m (the solution of ANSYS
M = 5.527×107KN·m).

Generally, the computational time by the present method is about 1/3 ∼ 1/6 that
by the incremental analysis of ANSYS.
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Figure 9: Finite element mesh of the pipeline
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Figure 10: The limit load domain of the defective pipeline subjected to internal
pressure and bending moment

7 Conclusions

A numerical solution procedure is proposed for lower bound limit and shakedown
analysis by the 3D-FEM. A reduced-basis technique and the Complex method are
adopted herein. By doing these, the proposed numerical method yields good re-
sults and reduces greatly the computational cost. Numerical examples are given to
demonstrate the efficiency and accuracy of the present method. Through the above
study and analysis, we can draw the following conclusions:

(1) The FEM limit and shakedown analysis by the static approach can be effec-
tively performed with the reduced-basis technique and the Complex method. The
whole solution procedure turns out to be significantly cost-effective with respect
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to other approaches, particularly with respect to evolutive step-by-step analysis by
the commercial finite element codes. The numerical results show that the FEM can
provide an effective procedure for limit and shakedown analysis.

(2) The Complex method represents a cost-effective, numerically stable and reliable
tool for the mathematical programming problem of lower bound limit and shake-
down analysis. The numerical results of the solution procedure adopted herein
appear to be satisfactory and rather insensitive to the choice of the initial complex
configurations and load increments used to create basis self-equilibrium stress vec-
tors.

(3) The discretization of structure by the FEM turns out to be an efficient way to
get the fictitious elastic stress field and to compute the basis self-equilibrium stress
vectors associated with the incremental elastic-plastic analysis.
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