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Linear Matching Method for Design Limits in Plasticity

Haofeng Chen1

Abstract: In this paper a state-of-the-art numerical method is discussed for the
evaluation of the shakedown and ratchet limits for an elastic-perfectly plastic body
subjected to cyclic thermal and mechanical load history. The limit load or collapse
load, i.e. the load carrying capacity, is also determined as a special case of shake-
down analysis. These design limits in plasticity have been solved by characterizing
the steady cyclic state using a general cyclic minimum theorem. For a prescribed
class of kinematically admissible inelastic strain rate histories, the minimum of the
functional for these design limits are found by a programming method, the Linear
Matching Method (LMM), which converges to the least upper bound. By ensuring
that both equilibrium and compatibility are satisfied at each stage, a direct algorithm
has also been derived to determine the lower bound of shakedown and ratchet limit
using the best residual stress calculated during the LMM procedure. Three practical
examples of the LMM are provided to confirm the efficiency and effectiveness of
the method: the behaviour of a complex 3D tubeplate in a typical AGR superheater
header, the behaviour of a fiber reinforced metal matrix composite under loading
and thermal cycling conditions, and effects of drilling holes on the ratchet limit and
crack tip plastic strain range for a centre cracked plate subjected to constant tensile
loading and cyclic bending moment.

Keywords: Limit load, Shakedown limit, Ratchet limit, Plastic Strain Range,
Linear Matching Method

1 Introduction

Engineering design and integrity assessment of components under the action of
cyclic thermal and mechanical loading require the assessment of load histories for
which certain types of material failure do not occur [Ainsworth (editor) (2003)].
The plastic failure mechanism of a structure subjected to cyclic loads is known as
either a local low-cycle fatigue failure (alternating plasticity) or ratchetting with ex-
cessive deformation (incremental plasticity). Hence, guarding against alternating
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plasticity or ratchetting is important in any design involving cyclic load condition.
When the load history is in excess of alternating plasticity limit but less than a
ratchet limit, the amplitude of plastic strain needs to be assessed to provide infor-
mation concerning fatigue crack initiation due to the low cycle fatigue mechanism.
The limit load, or the load carrying capacity, which indicates the maximum load
that a structure can withstand to avoid plastic collapse, is another crucial design
limit in engineering practice.

The determination of these design limits has attracted the attentions of many re-
searchers. The phenomena of shakedown and ratchetting associated with the steady
cyclic response have been researched and modeled extensively by plasticity theo-
rists, materials scientists, mathematicians and engineers. Since closed form solu-
tions of these design limits are very limited due to the complexity of the problem,
the numerical approaches play a key role for the assessment of these design limits
in plasticity. One approach is to simulate the detailed elastic-plastic response of
the structure for a specified cyclic load history, most commonly by the incremental
Finite Element Analysis (FEA) [ABAQUS (2007)]. Theoretically this allows the
investigation of any type of load cycle, but inevitably involves significant computer
effort for complex practical structures. To avoid excessive numerical expense as-
sociated with the incremental FEA, a relatively new cyclic analysis method, Direct
Cyclic Analysis (DCA) [Nguyen-Tajan, Pommier, Maitournam, Houari, Verger,
Du, and Snyman (2003)], has been recently incorporated into Abaqus to evaluate
the stabilized cyclic behaviour directly, using a modified Newton method in con-
junction with a Fourier representation of the solution and the residual vector. How-
ever, both the incremental FEA and DCA do not predict shakedown or ratchet limits
directly. It can only be used to show whether elastic shakedown, plastic shakedown
or ratchetting occurs. To determine the shakedown and ratchet limits, a significant
number of trial-and-error processes for the different load levels are required to es-
tablish the boundary between shakedown and non-shakedown behaviors, which are
very time consuming and impractical for the industrial application. In order for the
DCA to identify the shakedown and ratchet limit boundary effectively, the DCA
must provide accurate cyclic stress strain solutions when the applied load condi-
tion is close to the boundary. However, due to the characteristic of DCA and the
inevitable numerical error due to the approximation and convergence problem, the
DCA may be not capable of identifying unambiguously the shakedown and ratchet
limit boundary [Carter (2005)]. The designer ideally requires direct shakedown
and ratchetting analysis method that can be applied to complex 3D geometry under
complex loading, does not require unrealistic computing facilities and unambigu-
ously specifies these design limits.

For the shakedown and limit analysis, the primary emphasis in the literature has
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been on the use of direct methods, which directly address the shakedown limit and
limit load required in a design situation, using both the upper and lower bound-
ing theorems [Koiter (1960); Melan (1933)]. Such methods include mathematical
programming methods [Maier (1977); Staat and Heitzer (2001); Chen, Liu and Cen
(2008)], the reduced modulus method [Marriott (1998)], the generalized local stress
strain R-node method [Seshadri (1995)], the elastic compensation method (ECM)
[Mackenzie, Boyle and Hamilton (2000)] and the linear matching method (LMM)
[Ponter and Chen (2001); Chen and Ponter (2001, 2010); Chen (2010)]. The LMM
originates from the reduced modulus method, R-node method and elastic compen-
sation method, but is distinguished from these methods by ensuring that the equilib-
rium and compatibility are satisfied at each stage. Among these direct methods, the
LMM is counted to be the method most amendable to practical engineering appli-
cations involving complicated thermomechanical load history. The LMM has been
extensively applied to a range of problems [Chen, Ponter and Ainsworth (2006);
Chen and Ponter (2005)], through various adaptations, extended to the calculation
required for the UK assessment procedure R5 [Ainsworth (editor) (2003)] for the
high temperature response of structures. The LMM describes non-linear inelas-
tic material behaviour by linear solutions where the material coefficients vary both
spatially and in time, which makes the method particularly flexible. The LMM has
been regarded as an efficient and effective upper bound programming method for
which, in many circumstances, strict convergence proofs may be constructed. In the
past two years, the LMM has been further developed to account for the lower bound
shakedown and ratchets limits, and investigate more complicated cyclic problems.

In this paper, the fundamentals of these methods for design limit in plasticity are
readdressed with three objectives in mind. The first is to provide a more general
and unified LMM approach for wider class of problems and potential procedures
for both upper and lower bound design limits. The second is to investigate and
improve the convergence issues in the iterative approach. The third objective is to
verify the efficiency and effective of the LMM on the assessment of design limits
in plasticity by applying it to three distinctive practical problems.

With extensions to high temperature creep, the LMM has been applied to all stages
of the UK’s life assessment method R5 [Chen, Ponter and Ainsworth (2006)], for
the high temperature response of structures, including the evaluation of the high
temperature creep. In this paper, we confine ourselves to cyclic problems where
creep is not an issue and give examples from three contrasting areas of application,
the behaviour of a complex 3D tubeplate in a typical AGR superheater header, the
behaviour of a fiber reinforced metal matrix composite under loading and thermal
cycling conditions, and effects of drilling holes on the ratchet limit and crack tip
plastic strain range for a centre cracked plate subjected to constant tensile loading
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and cyclic bending moment.

In the following sections, a general cyclic minimum theorem for perfect plasticity
and the application of the LMM for a particular class of problems for the design
limits in plasticity will be described. This is followed by the discussion of conver-
gence and the application of three practical examples with numerical verifications
of the proposed methods.

2 Cyclic behaviour

2.1 General cyclic problem

Consider a body with volume V and surface S, where the material is isotropic,
elastic-plastic and satisfies the von Mises yield condition. A cyclic history of tem-
perature λθ(x, t) occurs within volume V. A cyclic load history λP(x, t) is applied
over part of S, namely ST . Here λ denotes a scalar load parameter. On the remain-
der of S, namely Su, zero displacements are maintained. Both load and temperature
histories have the same cycle time ∆t and, in the following, we are concerned with
the behaviour of the body in a typical cycle 0 ≤ t ≤ ∆t in a cycle state. For the
problem defined above the stresses and strain rates will asymptote to a cyclic state
where;

σi j(t) = σi j(t +∆t), ε̇i j(t) = ε̇i j(t +∆t) (1)

This arbitrary asymptotic cyclic history may be expressed in terms of three compo-
nents, the elastic solution, a transient solution accumulated up to the beginning of
the cycle and a residual solution that represents the remaining changes within the
cycle. The linear elastic stress solution is denoted by λσ̂i j. The general form of the
stress solution is given by

σi j(x, t) = λσ̂i j(x, t)+ ρ̄i j(x)+ρ
r
i j(x, t) (2)

where ρ̄i j denotes a constant residual stress field in equilibrium with zero surface
traction on ST and corresponds to the residual state of stress at the beginning and
end of the cycle. The history ρr

i j is the change in the residual stress during the cycle
and satisfies;

ρ
r
i j(x,0) = ρ

r
i j(x,∆t) (3)

It is worth noting that the arguments in this section do not explicitly call on the
properties of perfect plasticity and are therefore common to all cyclic states associ-
ated with inelastic material behaviour.
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2.2 Description of design limits in plasticity

Assuming a strictly convex yield condition, which includes the von Mises yield
condition in deviatoric stress space;

f (σi j)≤ 0 (4)

If we define λ E , λ S, λ R and λC as the elastic limit multiplier, shakedown limit mul-
tiplier, ratchet limit multiplier and collapse load multiplier respectively, then the
five major mechanisms including elasticity, shakedown, reverse plasticity, ratchet-
ting and plastic collapse can be described as follows:

E – Elastic region - 0≤ λ ≤ λ E , where f (λσ̂i j)≤ 0 throughout V.

S – Shakedown - λ E ≤ λ ≤ λ S, where f (λσ̂i j + ρ̄i j)≤ 0, ρ̄i j is a constant residual
stress field and plastic strain rate history ε̇

pr
i j = 0.

P – Reverse or Alternating Plasticity - λ S ≤ λ ≤ λ R, where f (λσ̂i j + ρ̄i j +ρr
i j)≤

0, and ρr
i j(t) is a changing residual stress field, derived from a non-zero plastic

strain rate history ε̇
pr
i j that satisfies the zero growth condition

∆t∫
0

ε̇
pr
i j dt = 0 every-

where in V.

R – Ratchetting or Incremental plastic collapse - λ R ≤ λ ≤ λC, where f (λσ̂i j +
ρ̄i j + ρr

i j) ≤ 0, and ρr
i j(t) is a changing residual stress field, derived from a plastic

strain rate history ε̇
pr
i j that satisfies the growth condition

∆t∫
0

ε̇
pr
i j dt = ∆ε

pr
i j where ∆ε

pr
i j

is a compatible accumulated strain giving rise to non-zero displacement increment
∆upr

i .

C –Plastic collapse - λC ≤ λ , where ∆ε
pr
i j is compatible with ∆upr

i 6= 0 at an instant
during the cycle. The corresponding limit load or plastic collapse load is calculated
in this paper as a special case of shakedown analysis, where the number of load
instants reduces to 1, i.e. from cyclic loading to monotonic loading.

3 Minimization processes of the linear matching method

The strategy of locating each of above critical limits consists of defining an appro-
priate class of kinematically admissible strain rate histories ε̇c

i j then solving a cor-
responding minimizing process for I(ε̇c

i j,λ ) by considering the incremental form;

I(ε̇c
i j,λ ) =

N

∑
n=1

In (5a)

In(∆ε
n
i j,λ ) =

∫
V

{
σ

n
i j∆ε

n
i j− (λσ̂i j(tn)+ρi j(tn)+ ρ̄i j)∆ε

n
i j
}

dV (5b)
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ρi j(tn) =
n

∑
l=1

∆ρi j(tl) (5c)

where ε̇c
i j is replaced by a sequence of increments of strain ∆εn

i j occurring at a se-
quence of N times tn, n=1 to N, during the cycle. In this section, the linear matching
processes for minimization of I(ε̇c

i j,λ ) are summarized for both the shakedown and
ratchet limits.

3.1 Global minimization for shakedown limit

The global minimization of I(ε̇c
i j,λ ) makes use of the compatibility of the sum of

the increments of plastic strain over the cycle. When a set of increments ∆εnk
i j at kth

iteration are assumed known, a linear material can be defined so that linear shear
modulus µ̄nk ensures that the resulting deviatoric stress is at yield, i.e.

2/3µ̄
nk

ε̄(∆ε
nk
i j ) = σy (6)

where ε̄ denotes the von Mises effective strain.

For shakedown problems, the changing component of residual stress ρr
i j = 0. Hence,

the cyclic stress history for shakedown problem is given by

σi j(x, t) = λσ̂i j(x, t)+ ρ̄i j(x) (7)

A set of linear incremental relationships are then defined by

∆ε
n(k+1)
i j

′
=

1
2µ̄nk [λσ̂i j(tn)

′+ ρ̄
k+1
i j
′], ∆ε

n(k+1)
kk = 0 (8)

where the upper ‘dash’ refers to deviatoric components. Summing over the cycle
produces a relationship between the compatible strain ∆ε

(k+1)
i j = ∑

n
∆ε

n(k+1)
i j and the

constant residual stress ρ̄
k+1
i j with an initial stress state;

∆ε
(k+1)
i j

′
=

1
2µ̄k

(
σ

initial
i j

′
+ ρ̄

k+1
i j
′
)

, ∆ε
(k+1)
kk = 0 (9a)

where 1
µ̄k = ∑

n

1
µ̄nk and

σ
initial
i j = µ̄

k
∑
n

λσ̂i j(tn)
µ̄nk (9b)

The solution of the continuum problem corresponding to equation (9) has the prop-
erty that I(∆ε

(k+1)
i j ,λ )≤ I(∆εk

i j,λ ), which is proved by [Ponter and Chen (2001)].
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3.2 Dual minimization process for ratchet analysis

We consider a structure subjected to a general cyclic load condition, which can
be decomposed into cyclic and constant components, i.e. σ̂i j(x, t) = σ̂∆

i j(x, t) +
λσ̂F

i j (x). The calculation of the ratchet limit includes dual minimization processes,
the first an incremental minimization for the evaluation of a cyclic history of resid-
ual stresses and plastic strain range in a stable cycle and the second a global min-
imization for the ratchet limit due to an extra constant load. By decoupling the
evaluation of the changing residual stress and the constant residual stress in (5),
the entire numerical procedure of ratchet analysis includes two steps [Chen and
Ponter (2010)]. The first step is to calculate the history of the changing residual
stress associated with the applied cyclic load σ̂∆

i j(x, t) and the corresponding plastic
strain ranges for the low cycle fatigue assessment. The second step is to locate the
ratchet limit due to the extra constant load λσ̂F

i j (x) as a conventional shakedown
analysis where a constant residual stress is evaluated by global minimization (sec-
tion 3.1) and the elastic stress history is augmented by the changes in residual stress
calculated in the first step.

The global minimization process for step 2 of ratchet analysis is as same as the
global minimization for shakedown limit in section 3.1. Next a distinct minimiza-
tion process – incremental minimization is summarized for step 1 of ratchet analysis
to evaluate the changing residual stress ρr

i j and the associated plastic strain range
corresponding to the cyclic component of the elastic stress σ̂∆

i j .

3.2.1 Incremental minimization for the varying residual stress field and plastic
strain range

The incremental minimization of In(∆εn
i j,λ ) assumes the prior history of the resid-

ual stress is known and compatibility of the total elastic and plastic strain in the
increment is used.

With an initial estimate of ∆εn
i j = ∆εnk

i j , a linear modulus is defined by linear match-
ing σy = 2/3µ̄nkε̄(∆εnk

i j ), where the von Mises yield stress σy could be either con-
stant or temperature-dependant.

An incremental linear equation is then defined;

∆ε
T n(k+1)
i j

′
=

1
2µ

∆ρ
n(k+1)
i j

′
+∆ε

n(k+1)
i j

′
(10a)

∆ε
T n(k+1)
kk =

1
3K

∆ρ
n(k+1)
kk (10b)

∆ε
n(k+1)
i j

′
=

1
2µ̄nk

{
σ̂

∆
i j(tn)+ρi j(tn−1)+∆ρ

n(k+1)
i j

}′
(10c)
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where the prior history of the residual stress is known, i.e. ρi j(tn−1) = ρi j(t0) +
∆ρ1

i j +∆ρ2
i j + ......+∆ρ

n−1
i j ,

ρi j(t0) = ρ̄
0
i j (11)

The entire iterative procedure requires a number of cycles, where each cycle con-
tains N iterations associated with N load instances. The first iteration is to evaluate
the changing residual stress ∆ρ1

i j associated with the elastic solution σ̂∆
i j(t1) at the

first load instance. Define ∆ρn
i jm as the evaluated changing residual stress for nth

load instance at mth cycle of iterations, where n=1,2,...N and m=1,2,...M. At each
iteration, the above changing residual stress ∆ρn

i jm is calculated. When the con-
vergence occurs at the Mth cycle of iterations, the summation of changing residual

stresses at N time points must approach to zero (
N
∑

n=1
∆ρn

i jM = 0) due to the stable

cyclic response. Hence the constant residual stress ρi j(t0) = ρ̄0
i j over the cycle can

also be determined by

ρ̄
0
i j =

N

∑
n=1

∆ρ
n
i j1 +

N

∑
n=1

∆ρ
n
i j2 + · · ·+

N

∑
n=1

∆ρ
n
i jM (12)

The corresponding plastic strain magnitude occurring at time tn is calculated by

∆ε
P
i j(tn) =

1
2µ̄n

(
σ̂ ′

∆

i j(tn)+ρ
′
i j(tn)

)
(13)

where µ̄n is the iterative shear modulus and ρi j(tn) is the converged accumulated
residual stress at the time instant tn, i.e.

ρi j(tn) = ρ̄
0
i j +

n

∑
k=1

∆ρ
k
i jM (14)

4 Evaluation of upper bound limits

4.1 Upper bound shakedown limit

Combining 0 ≤ I(∆ε
(k+1)
i j ,λ ) ≤ I(∆εk

i j,λ ) and Eq. 5, with ρi j and ρ̄i j eliminated
and λ = λS, following inequality exists;

I(∆εi j,λ
S) =

∫
V

N

∑
n=1

{
σ

n
i j∆ε

n
i j−λ

S
σ̂i j(tn)∆ε

n
i j
}

dV ≥ 0 (15)
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i.e. λ
S ≤

∫
V

(
N
∑

n=1
σn

i j∆εn
i j

)
dV

∫
V

(
N
∑

n=1
σ̂i j(tn)∆εn

i j

)
dV

=

∫
V

(
σy

N
∑

n=1
ε̄(∆εn

i j)
)

dV

∫
V

(
N
∑

n=1
σ̂i j(tn)∆εn

i j

)
dV

= λ
S
UB (16)

Eq. 16 provides a monotonically reducing sequence of upper bound to the shake-
down limit, i.e. λ

S(k+1)
UB ≤ λ

S(k)
UB . It is worth noting that a limit load can be calculated

by Eq.16 as a special case of the shakedown analysis, where the cyclic load condi-
tion reduces to monotonic load condition, i.e. N=1.

4.2 Upper bound ratchet limit

As described in [Chen and Ponter (2010)], once the history of the residual stress
field ρi j(tn) associated with the cyclic component of the load history has been calcu-
lated by an incremental minimization process (section 3.2.1), the numerical tech-
nique for the ratchet limit can be accommodated within the existing methods of
shakedown analysis where the linear elastic solution is augmented by the changing
residual stress field, i.e.

σ̂i j = λσ̂
F̄
i j + σ̂

∆
i j(x, t)+ρi j (x, t) (17)

For the von Mises yield condition and the associated flow rule, an upper bound on
the ratchet limit multiplier can be obtained by

λ
R
UB =

∫
V

N
∑

n=1
σyε̄

(
∆εn

i j

)
dV −

∫
V

N
∑

n=1

(
σ̂∆

i j(tn)+ρi j(tn)
)

∆εn
i jdV

∫
V

σ̂ F̄
i j

(
N
∑

n=1
∆εn

i j

)
dV

(18)

which gives the capacity of the body subjected to a predefined cyclic load history
σ̂∆

i j(tn) to withstand an additional constant load σ̂ F̄
i j before ratchetting takes place.

As for the shakedown limit, Eq.18 produces a sequence of monotonically reducing
upper bounds λ R

UB, which converge to the least upper bound ratchet limit for the
chosen class of displacement fields. It is worth noting that within the LMM the
adoption of the yield stress is flexible for both the shakedown and ratchet analyses,
i.e. the yield stress of the material can be varied with both time and location. For
example, when considering temperature-dependant yield stress, σy in Eq. (16) and
(18) is then replaced by σy(T ).

5 Evaluation of lower bound limits

Both the constant residual stress ρ̄i j(x) and varying residual stress ρr
i j(x, t) in Eq.2

for a stabilised load cycle have been calculated by incremental and global mini-
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mization processes. Hence, based upon the lower bound theorem [Melan (1933)],
a lower bound of shakedown or ratchet limit can be constructed in the same up-
per bound procedure by maximizing the lower bound load parameter λLB under
the condition where for any potentially active load/temperature path, the stabilised
cyclic stresses in Eq.2 nowhere violate the yield condition.

As the upper bound iterative process provides a sequence of residual stress fields,
a sequence of lower bound at each iteration can be calculated by scaling the elastic
solution so that the cyclic stress everywhere satisfies yield. The lower bound of
shakedown limit multiplier can be described as:

λ
s
LB = max λLB (19a)

s.t. f (λLBσ̂i j(x, t)+ ρ̄i j(x))≤ 0 (19b)

The lower bound of ratchet limit multiplier can be written as:

λ
R
LB = max λLB (20a)

s.t. f (λLBσ̂
F̄
i j + σ̂

∆
i j(x, t)+ρi j (x, t)+ ρ̄i j(x))≤ 0 (20b)

6 Convergence considerations

The discussion of sufficient condition for convergence and the strict proof for upper
bounds were provided by [Ponter and Engelhardt (2000); Ponter and Chen (2001)].
In summary, the process of obtaining a convergent minimum upper bound limits re-
quires three conditions to be satisfied: 1) The convexity of material yield surface; 2)
The class of strain rates and associated strain increments ensures that the minimum
upper bound is contained with this class; 3) The class of chosen compatible strain
distributions needs to be sufficiently wide to ensure an acceptable upper bound.

The first two conditions can be easily satisfied by an appropriate choice of a class
of linear materials. Condition (3) is vital to the implementation of the LMM within
a finite element scheme. Within the LMM, the equilibrium of the residual stress
field ρi j relies on the class of displacement field ∆ui from which ∆εi j is derived,
i.e. ρi j is in equilibrium if and only if

∫
V ρi j∆εi jdV = 0. Hence, for a given finite

element mesh, the process will converge to the least upper bound associated with
the FE mesh and within this class of displacement field ∆ui. However, during the
FE implementation, the volume integration is not exact but usually depends upon
the Gaussian integration to give an exact integral. Hence a point-wise condition is
used to replace above equilibrium condition;

∑
el

∑
k

wkρ
k
i j∆ε

k
i j = 0 (21)
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where wk are the Gaussian weighting factors at the Gauss integration points.

According to the lower and upper bound theorems, the LMM ensures that the max-
imum lower bound will be less than the least upper bound. However, unlike the
strict convergence of the upper bound, the magnitude of lower bound may not al-
ways increase monotonically with iterations. But upon convergence, the maximum
lower bound will equal to the least upper bound, where by equilibrium condition
(Eq.21) the matching condition is applied at Gauss points.

Due to the point-wise condition of equilibrium (Eq.21), whereas the deviation from
convergence at a few Gauss points has little effect on the upper bound which is de-
termined by volume integrals, the convergence of the upper bound in terms of a
particular number of significant figures may allow some deviation from conver-
gence locally. Hence the convergence of lower bound may be affected significantly
as it is determined by single Gauss point. Generally the upper bound converges
(monotonically) more quickly than the lower bound and the rate of convergence for
lower bound depends upon the characteristic of the problem and also the adopted
FE model, such as the complexity of the geometry and boundary conditions, the
mesh arrangement, etc. For some cases where the lower bound converges very
slowly, the convergence is usually judged entirely in terms of the upper bound.
Further investigation of the convergence of the LMM iterative algorithms has been
carried out and a separate paper is being prepared for this context.

7 Examples of applications

In this section, three practical examples of the LMM for differing applications are
provided to confirm the efficiency and effectiveness of the method; the behaviour of
a heat exchanger in a typical AGR superheater header, the shakedown and ratchet
analyses of fiber reinforced metal matrix composites subjected to cyclic temper-
ature loads and constant macro stress, and effects of drilling holes on the ratchet
limit and crack tip plastic strain range for a centre cracked plate subjected to con-
stant tensile loading and cyclic bending moment.

7.1 A heat exchanger tubeplate subjected to severe cyclic thermal loading and
constant operating pressure

Fig. 1 gives a 1/16-th sectional view of a heat exchanger from a power plant.
Such exchangers are subjected to particular severe thermal loading, resulting in the
possibility of ratchetting or premature failure due to low cycle fatigue.

The tubeplate experiences the most extreme temperature distributions that occur
when the superheated steam supply is suddenly disconnected (Boiler Trip) and
when the superheated steam supply is reconnected (Boiler Reconnect). At the same
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Tubeplate upper radius 
(Node 10459) 

Tubeplate lower radius 
(Node 9330) 
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Figure 1: Sectional view of superheater header showing tubeplate features

time there is a varying internal gas and steam pressure. Hence, this load cycle type
is selected for the shakedown and ratchet analysis. Other load cycle types with a
smaller elastic stress range are expected to be encompassed in terms of cyclic be-
haviour. Hence, the cyclic loading is defined by the following two extreme loading
conditions:

(1) Boiler Trip – The temperature distribution giving rise to the maximum von
Mises thermal stress during a boiler trip transient plus the prevailing gas and steam
pressure;

(2) Boiler Reconnection – The temperature distribution giving rise to the maximum
von Mises thermal stress during a boiler reconnection transient plus the prevailing
gas and steam pressures.

The corresponding linear elastic stress histories were evaluated and the maximum
variation of effective elastic stress due to the varying temperature distribution and
pressure from Boiler Trip to Boiler Reconnection was denoted by ∆σ̂

BT−RC
T P . This

linear solution was then scaled and the vertical axis of Fig. 2 ∆σ̂/∆σ̂
BT−RC
T P cor-

responds to differing scaling factors where ∆σ̂/∆σ̂
BT−RC
T P = 1 corresponds to the
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actual history. The horizontal axis σ̂/σ̂SS
P corresponds to the maximum elastic ef-

fective stress for an internal pressure, where σ̂/σ̂SS
P = 1 corresponds to the internal

pressure experienced by the heat exchanger in normal operation. Variation of the
yield stress with temperature was taken into account as this has a significant effect
on the solutions.

Fig. 2 can be subdivided into three regions where shakedown (S), reverse plastic-
ity (P) and ratchetting (R) occurs. The method is also adapted to consider cyclic
hardening, which affects the position of the ratchet boundary. Using the known
steady state cyclic behaviour for the material (an austenitic stainless steel), the cor-
responding ratchet boundary is shown in Fig. 2 as a dashed line. This method
of representing the behaviour of the structure can be seen to have considerable
advantages. The actually loading history, ∆σ̂/∆σ̂

BT−RC
T P = 1, lies slightly outside

the ratchet boundary assuming perfect plasticity. When cycle hardening is taken
into account, the load point lies on the ratchet boundary. This characteristic of the
problem corresponds very well with the known behaviour of the component.

Not only the location of the load point in relation to the ratchet boundary, but also
the plastic strain range concerning the fatigue crack initiation in a low cycle fatigue
assessment are of greatest interest, as the load point lies well outside the shakedown
region. Fig. 3 presents the calculated maximum plastic strain range with increasing
load amplitude. For the perfect plasticity case, the maximum plastic strain range
occurs, for lower load values, at the upper radius. For load values in excess of ap-
proximately 0.8-0.9, the maximum occurs at the tubeplate ligament (see Fig. 1).
For the cyclic hardening model the maximum values always occur at the upper
radius. Unlike the slight contribution of the hardening on the ratchet limit, the plas-
tic strain ranges are significantly reduced by adopting the cyclic hardening model.
Hence it is important to consider cyclic hardening to calculate this key parameter
of the fatigue limit.

A full discussion of the solutions and comparisons with step-by-step solutions for
complex constitutive equations are given by [Chen and Ponter (2005)]. This exam-
ple demonstrates that, for these complex industrial problems, the method is capable
of providing solutions that are much more illuminating than conventional analysis.

7.2 Fiber reinforced metal matrix composite subjected to cyclic temperature
loads and constant macro stress

This example concerns the behaviour of a metal matrix composite material, which
consists of a combination of a ductile matrix metal within which is incorporated, in
a regular manner, a ceramic. The ceramic may be in the form of long continuous
fibers or particles. Such materials have higher strength, greater stiffness and lower
density than the monolithic matrix material and hence are potentially advantageous
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Figure 2: The shakedown limit and ratchet limit interaction curves for heat ex-
changer tubeplate with cyclic loading condition

Figure 3: The maxima of the effective plastic strain ranges with different material
models over all Gauss integration points
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for aerospace applications. However the effect of variable temperature on such ma-
terials is potentially difficult to understand. The significantly differing coefficients
of thermal expansion between ceramic and metal give rise to micro thermal stresses
when the uniform temperature of the material is changed.

We consider an idealized, fiber-reinforced composite that consists of a square array
of SiC fibers in an elastic-plastic matrix of Aluminum. The cell which is indi-
cated in Fig. 4a is investigated in a quarter FE model (Fig. 4b) under plain strain
condition by both the LMM and Abaqus inelastic step-by-step analysis for the ver-
ification of the LMM results. The volume fraction occupied by the ceramic fiber
V f =11%.

A uniaxial macro-stress σP is applied in a direction parallel to an edge of the generic
cube and maintained constant. The temperature of the composite remains uniform
but varies cyclically over a range 0 to ∆θ . The generic cube is subjected to homog-
enization boundary conditions so that the surface displacement in a single cube is
consistent with that of adjacent, identical cubes.

 

 

PσPσ  

r 
a 

Figure 4: a) Schematic diagram of the fiber reinforced MMC (V f =11%) as loaded;
b) The unit cell used in the FEA

Fig.5 shows lower and upper bound shakedown and ratchet limit interaction dia-
gram where the axis are expressed in non-dimensional variables, σp/σp0 and ∆θ /∆θ0.
Here σp0 equals the yield stress of Aluminum, 30MPa, and ∆θ0=50oC. The most
noticeable feature of Fig. 5 is the observation that the effective strength of the com-
posite approaches to zero when the variable temperature ∆θ /∆θ0 is greater than 0.9.
It is also clear from Fig. 5 that for both shakedown and ratchet limits, the LMM
produces lower and upper bounds converge very close to each other. This indicates
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Figure 5: Lower and upper bound shakedown and ratchet limits for fiber-reinforced
composite consisting of an Aluminum matrix with SiC fibers where V f =11%

that the LMM is capable of producing very accurate shakedown and ratchet limits
for this type of cyclic problems.

Figs. 6 and 7 present the calculated maximum plastic strain range and ratchet-
ting strain per cycle by both the LMM and Abaqus step-by-step analysis for MMC
subjected to varying cyclic thermal loads ∆θ and constant σp=0 and 8MPa, re-
spectively. The coincidence of LMM and Abaqus step-by-step analysis results in
Figs. 6 and 7 confirms the accuracy of the LMM. However, comparing with the
LMM, the Abaqus step-by-step analysis involves much more significant computer
effort to produce the same results. It is also observed that there is no ratchetting
when the uniaxial macro-stress σp=0, and however, when σp=8MPa, the ratchet-
ting strain occurs when the variable temperature ∆θ /∆θ0 is greater than 0.75. The
most interesting observation from Figs. 6 and 7 is that the magnitude of maximum
plastic strain range concerning the fatigue crack initiation not only depends upon
the varying cyclic thermal loads ∆θ , but is also affected by the constant uniaxial
macro-stress σp. The mild increase of the plastic strain range due to the existence of
the constant uniaxial macro-stress agrees very well with the general experimental
observations.



Linear Matching Method for Design Limits in Plasticity 175

ductile matrix metal within which is incorporated, in a 
regular manner, a ceramic. The ceramic may be in the form 
of long continuous fibers or particles. Such materials have 
higher strength, greater stiffness and lower density than the 
monolithic matrix material and hence are potentially 
advantageous for aerospace applications. However the effect 
of variable temperature on such materials is potentially 
difficult to understand. The significantly differing 
coefficients of thermal expansion between ceramic and metal 
give rise to micro thermal stresses when the uniform 
temperature of the material is changed. 

We consider an idealized, fiber-reinforced composite that 
consists of a square array of SiC fibers in an elastic-plastic 
matrix of Aluminum. The cell which is indicated in Fig. 4a is 
investigated in a quarter FE model (Fig. 4b) under plain 
strain condition by both the LMM and Abaqus inelastic step-
by-step analysis for the verification of the LMM results. The 
volume fraction occupied by the ceramic fiber Vf=11%. 

A uniaxial macro-stress Pσ is applied in a direction parallel 

to an edge of the generic cube and maintained constant. The 
temperature of the composite remains uniform but varies 
cyclically over a range 0 to Δθ. The generic cube is subjected 
to homogenization boundary conditions so that the surface 
displacement in a single cube is consistent with that of 
adjacent, identical cubes. 
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noticeable feature of Fig. 5 is the observation that the 
effective strength of the composite approaches to zero when 
the variable temperature Δθ/Δθ0 is greater than 0.9. It is also 
clear from Fig. 5 that for both shakedown and ratchet limits, 
the LMM produces lower and upper bounds converge very 
close to each other. This indicates that the LMM is capable of 
producing very accurate shakedown and ratchet limits for this 
type of cyclic problems. 

 
Figure 6: Maximum plastic strain range and ratchetting 
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Figure 6: Maximum plastic strain range and ratchetting strain per cycle for MMC
subjected to varying cyclic thermal loads ∆θ and constant σp=0
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regular manner, a ceramic. The ceramic may be in the form 
of long continuous fibers or particles. Such materials have 
higher strength, greater stiffness and lower density than the 
monolithic matrix material and hence are potentially 
advantageous for aerospace applications. However the effect 
of variable temperature on such materials is potentially 
difficult to understand. The significantly differing 
coefficients of thermal expansion between ceramic and metal 
give rise to micro thermal stresses when the uniform 
temperature of the material is changed. 

We consider an idealized, fiber-reinforced composite that 
consists of a square array of SiC fibers in an elastic-plastic 
matrix of Aluminum. The cell which is indicated in Fig. 4a is 
investigated in a quarter FE model (Fig. 4b) under plain 
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by-step analysis for the verification of the LMM results. The 
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Figure 7: Maximum plastic strain range and ratchetting strain per cycle for MMC
subjected to varying cyclic thermal loads ∆θ and constant σp=8MPa
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7.3 Centre cracked plate with circular holes

The final example concerns the effect of circular holes in a centre cracked plate
subjected to cyclic bending moment and constant tensile loading on the ratchet
limit and crack tip plastic strain range. Drilling holes in front of the crack tip is an
effective way to arrest crack growth. However the optimum location and size of the
holes need to be researched to produce the smallest crack tip plastic strain range,
i.e. the best fatigue crack growth life, and to have the least reduction in ratchet
limit.

Figs. 6 and 7 present the calculated maximum plastic strain 
range and ratchetting strain per cycle by both the LMM and 
Abaqus step-by-step analysis for MMC subjected to varying 
cyclic thermal loads Δθ and constant σp=0 and 8MPa, 
respectively. The coincidence of LMM and Abaqus step-by-
step analysis results in Figs. 6 and 7 confirms the accuracy of 
the LMM. However, comparing with the LMM, the Abaqus 
step-by-step analysis involves much more significant 
computer effort to produce the same results. It is also 
observed that there is no ratchetting when the uniaxial macro-
stress σp=0, and however, when σp=8MPa, the ratchetting 
strain occurs when the variable temperature Δθ/Δθ0 is greater 
than 0.75.  The most interesting observation from Figs. 6 and 
7 is that the magnitude of maximum plastic strain range 
concerning the fatigue crack initiation not only depends upon 
the varying cyclic thermal loads Δθ, but is also affected by 
the constant uniaxial macro-stress σp. The mild increase of 
the plastic strain range due to the existence of the constant 
uniaxial macro-stress agrees very well with the general 
experimental observations.  

7.3 Centre cracked plate with circular holes 

The final example concerns the effect of circular holes in a 
centre cracked plate subjected to cyclic bending moment and 
constant tensile loading on the ratchet limit and crack tip 
plastic strain range. Drilling holes in front of the crack tip is 
an effective way to arrest crack growth. However the 
optimum location and size of the holes need to be researched 
to produce the smallest crack tip plastic strain range, i.e. the 
best fatigue crack growth life, and to have the least reduction 
in ratchet limit. 

 
Figure 8: Centre cracked plate with symmetric holes 
subjected to reversed bending moment range MΔ and 

constant tension pσ
 

The geometrical shape and cyclic loading history of the 
centre cracked plate with symmetric drilled holes are shown 
in Fig.8, where the half-crack length a is 500 mm and the 
ratios W/a and L/a are both 2. The hole locations (X0, Y0) are 
referred to a co-ordinate system X, Y, the origin of which is 
located at the crack tip.  The centre cracked plate is subjected 

to cyclic reversed bending moment with range MΔ and 
constant uniaxial tension pσ . By applying symmetry 

conditions, a FE half symmetry model was adopted (Fig. 9). 

 
Figure 9: FE half symmetry model for centre cracked plate 

with symmetric holes 
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Fig. 10 presents the calculated lower and upper ratchet limit 
and limit load interaction diagram for the hole location at 
X/a= -1, Y/a=0.3 and the diameter of hole D=100mm, where 
the applied constant pressure in X-axis is normalized with 
respect to the reference uniaxial tension MPapo 100=σ , 

while the amplitude of the reversed bending moment in Y-
axis is normalized using the reference bending moment range 

mmNM ⋅=Δ 1000
. It can be seen that the ratchet limit and 

the limit load curves do not coincide, which means that an 
increase in the loads beyond the ratchet limit will not 
automatically cause plastic collapse. Any combination of 
loads which lies between these two boundaries will result in 
ratchetting. As shown in Fig. 10, the accuracy of the lower 
and upper bound limit load boundary obtained by the LMM 
has been verified by ABAQUS RIKS analysis. For the 
verification of LMM lower and upper bound ratchet limit 
boundary the cyclic load points D( 06.1 MM Δ=Δ , 0pp σσ = ), 
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Figure 8: Centre cracked plate with symmetric holes subjected to reversed bending
moment range ∆M and constant tension σ̄p

The geometrical shape and cyclic loading history of the centre cracked plate with
symmetric drilled holes are shown in Fig.8, where the half-crack length a is 500 mm
and the ratios W/a and L/a are both 2. The hole locations (X0, Y0) are referred
to a co-ordinate system X, Y, the origin of which is located at the crack tip. The
centre cracked plate is subjected to cyclic reversed bending moment with range
∆M and constant uniaxial tension σ̄p. By applying symmetry conditions, a FE half
symmetry model was adopted (Fig. 9).

Fig. 10 presents the calculated lower and upper ratchet limit and limit load inter-
action diagram for the hole location at X/a= -1, Y/a=0.3 and the diameter of hole
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 2a 

Figure 9: FE half symmetry model for centre cracked plate with symmetric holes

Figs. 6 and 7 present the calculated maximum plastic strain 
range and ratchetting strain per cycle by both the LMM and 
Abaqus step-by-step analysis for MMC subjected to varying 
cyclic thermal loads Δθ and constant σp=0 and 8MPa, 
respectively. The coincidence of LMM and Abaqus step-by-
step analysis results in Figs. 6 and 7 confirms the accuracy of 
the LMM. However, comparing with the LMM, the Abaqus 
step-by-step analysis involves much more significant 
computer effort to produce the same results. It is also 
observed that there is no ratchetting when the uniaxial macro-
stress σp=0, and however, when σp=8MPa, the ratchetting 
strain occurs when the variable temperature Δθ/Δθ0 is greater 
than 0.75.  The most interesting observation from Figs. 6 and 
7 is that the magnitude of maximum plastic strain range 
concerning the fatigue crack initiation not only depends upon 
the varying cyclic thermal loads Δθ, but is also affected by 
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Figure 10: Ratchet limit and limit load interaction curve with hole location at
X/a =−0.1, Y/a = 0.3 (D=100mm)
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(Fig.10), respectively, are chosen for the step-by-step 
analysis in ABAQUS.  

 

Figure 11: ABAQUS verification of the ratchet limit for the 
cyclic bending moment case using detailed step by step 

analysis 

Fig. 11 shows the plastic strain history at the crack tip for the 
cyclic loading D and E calculated by ABAQUS step-by-step 
analysis. The calculated plastic strain for the load case D  
settles to a stable cycle after about 5 load cycles showing a 
reverse plasticity mechanism, and the load case E  shows a 
strong ratcheting mechanism, with the plastic strain 
increasing at every cycle. This directly confirms the accuracy 
of the predicted LMM lower and upper bound ratchet limits.  

 

Figure 12: Variation of normalized ratchet limit multiplier 
with varying horizontal hole location at the fixed vertical 
location ( 3.0/ =aY ) and prescribed reversed bending 

moment 1/)2/( 0 =ΔΔ MM  

Parametric studies were performed further involving holes 
with different diameters drilled at different locations. Figs.12 
and 13 shows the variations of the ratchet limit and crack tip 
plastic strain range, respectively, due to the change of the 
horizontal hole location and diameter. It can be seen that for 
all diameter D, the optimum horizontal location where the 
maximum plastic strain range decreases the most with 
minimum effect on the ratchet limit is located at a distance 

10% of the semi-cracked length from crack tip opposite the 
ligament, i.e. X/a=-0.1.  

 

Figure 13: Variation of normalized maximum plastic strain 
range with varying horizontal hole location at the fixed 
vertical location ( 3.0/ =aY ) and prescribed reversed 

bending moment 1/)2/( 0 =ΔΔ MM  

 

Figure 14: Variation of normalized ratchet limit multiplier 
with varying vertical hole location at fixed horizontal 

location ( 1.0/ −=aX ) and prescribed reversed bending 
moment 1/)2/( 0 =ΔΔ MM  

Figure 15: Variation of normalized maximum plastic strain 
range with varying vertical hole location at fixed horizontal 

location ( 1.0/ −=aX )and prescribed reversed bending 
moment 1/)2/( 0 =ΔΔ MM   
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Figure 11: BAQUS verification of the ratchet limit for the cyclic bending moment
case using detailed step by step analysis
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Figure 12: Variation of normalized ratchet limit multiplier with varying horizontal
hole location at the fixed vertical location (Y/a = 0.3) and prescribed reversed
bending moment (∆M/2)/∆M0 = 1
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Figure 13: ariation of normalized maximum plastic strain range with varying hor-
izontal hole location at the fixed vertical location (Y/a = 0.3) and prescribed re-
versed bending moment (∆M/2)/∆M0 = 1

D=100mm, where the applied constant pressure in X-axis is normalized with re-
spect to the reference uniaxial tension σ̄po = 100MPa, while the amplitude of the
reversed bending moment in Y-axis is normalized using the reference bending mo-
ment range ∆M0 = 100N ·mm. It can be seen that the ratchet limit and the limit
load curves do not coincide, which means that an increase in the loads beyond
the ratchet limit will not automatically cause plastic collapse. Any combination
of loads which lies between these two boundaries will result in ratchetting. As
shown in Fig. 10, the accuracy of the lower and upper bound limit load bound-
ary obtained by the LMM has been verified by ABAQUS RIKS analysis. For the
verification of LMM lower and upper bound ratchet limit boundary the cyclic load
points D(∆M = 1.6∆M0, σ̄p = σ̄p0), and E(∆M = 1.6∆M0, σ̄p = 1.1σ̄p0), which are
just below and above the calculated upper bound ratchet limit boundary (Fig.10),
respectively, are chosen for the step-by-step analysis in ABAQUS.

Fig. 11 shows the plastic strain history at the crack tip for the cyclic loading D and
E calculated by ABAQUS step-by-step analysis. The calculated plastic strain for
the load case D settles to a stable cycle after about 5 load cycles showing a reverse
plasticity mechanism, and the load case E shows a strong ratcheting mechanism,
with the plastic strain increasing at every cycle. This directly confirms the accuracy
of the predicted LMM lower and upper bound ratchet limits.

Parametric studies were performed further involving holes with different diameters
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Figure 14: Variation of normalized ratchet limit multiplier with varying vertical
hole location at fixed horizontal location (X/a = −0.1) and prescribed reversed
bending moment (∆M/2)/∆M0 = 1
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Figure 15: Variation of normalized maximum plastic strain range with varying ver-
tical hole location at fixed horizontal location (X/a =−0.1)and prescribed reversed
bending moment (∆M/2)/∆M0 = 1
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drilled at different locations. Figs.12 and 13 shows the variations of the ratchet limit
and crack tip plastic strain range, respectively, due to the change of the horizontal
hole location and diameter. It can be seen that for all diameter D, the optimum
horizontal location where the maximum plastic strain range decreases the most
with minimum effect on the ratchet limit is located at a distance 10% of the semi-
cracked length from crack tip opposite the ligament, i.e. X/a=-0.1.

Figs.14 and 15 presents the variations of the ratchet limit and crack tip plastic strain
range, respectively, due to the change of the vertical hole location and diameter. It
is observed that for the fixed horizontal location (X/a = −0.1), the ratchet limit
keeps unchanged for different vertical hole locations and diameters, but the crack
tip plastic strain range varies significantly with the change of vertical hole location
and diameter. Hence the most significant decrease in crack tip plastic strain range
with least reduction in the ratchet limit is identified for the hole size D=150mm at
the optimum location X0/a = −0.1, Y0/a = 0.3, which gives a 72% reduction in
the plastic strain range and does not reduce the ratchet limit.

8 Conclusions

This paper concentrates on the behaviour of an elastic-perfectly plastic body sub-
jected to cyclic loading. The design limits in plasticity including shakedown limit,
ratchet limit, plastic strain range concerning fatigue crack initiation have been
solved by characterizing the steady cyclic state using a general cyclic minimum
theorem. For an approximating class of kinematically admissible strain rate histo-
ries, the minimum of the functional for these design limits are found by a simple
programming method, the Linear Matching Method. Three practical examples of
the LMM are provided to confirm the efficiency and effectiveness of the method
and demonstrate that Direct Methods may be applied to a much wider range of
circumstances than have hitherto been possible.
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