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Parameter Identification Method of Large Macro-Micro
Coupled Constitutive Models Based on Identifiability

Analysis

Jie Qu1,2, Bingye Xu3 and Quanlin Jin4

Abstract: Large and complex macro-micro coupled constitutive models, which
describe metal flow and microstructure evolution during metal forming, are some-
times overparameterized with respect to given sets of experimental datum. This
results in poorly identifiable or non-identifiable model parameters. In this paper, a
systemic parameter identification method for the large macro-micro coupled con-
stitutive models is proposed. This method is based on the global and local identifia-
bility analysis, in which two identifiability measures are adopted. The first measure
accounts for the sensitivity of model results with respect to single parameters, and
the second measure accounts for the degree of near-linear dependence of sensi-
tivity functions of parameter subsets. The global identifiability analysis adopts a
sampling strategy with only a limited number of model evaluations, and the strat-
egy is a combination of Latin-hypercube sampling, one-factor-at-a-time sampling
and elitism preservation strategy. The global identifiability index is the integration
of the corresponding local index. A hybrid global optimization method is designed
to identify the parameter. Firstly, the genetic algorithm is adopted to identify the
model parameter rudely, and then the obtained parameter is further refined through
the improved Levenberg-Marquardt algorithm. The niching method is used to
maintain the population diversity and to choose the initial value for the Levenberg-
Marquardt algorithm. A transition criterion between the genetic algorithm and the
Levenberg-Marquardt algorithm is proposed, through the improvement on the aver-
age objective function value of the chromosomes and the objective function value of
the best chromosome. During optimization by the Levenberg-Marquardt algorithm,
the local identifiability analysis is taken at the beginning stage of each iteration, and
then the variable with poor identifiability remains unchanged in this iteration; the
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problem of violation constraint for some solution is solved through adjusting the
search step length. At last, taking Ti-6Al-4V as an example, a set of satisfactory
material parameters is obtained. The calculated results agree with the experimen-
tal results well. The identified results show that some parameters involved in the
model are poorly identifiable; at the same time, the identifiability analysis method
can provide a guide to experiment design.

Keywords: Constitutive model, parameter identification, identifiability analysis,
hybrid global optimization method.

1 Introduction

With the development of computer technology and numerical simulation technol-
ogy, CAE technology has been widely applied to many fields, such as metal form-
ing, polymer processing, chemical engineering, etc. A successful CAE analysis
needs numerical simulation software, geometry model, constitutive model and re-
lated parameters, boundary condition and initial value etc. To fulfill the need of
numerical simulation, many complex models have been developed. However, only
a small fraction of models have been applied in practice. Due to that these mod-
els general involves in multiple physical processes and many parameters, then it
is difficult to separate a physical process from the other physical processes. Sim-
ilarly, it is also difficult to relate every parameter with the standard ideal experi-
ments for mechanistic approach [Mahnken and Stein, (1996)]. At current, how to
successfully identify the parameter of these complex and large models with high
confidence degree has become one of the most important obstacles for the further
application of CAE technology. Inverse analysis applies optimization techniques to
identify the material parameters by minimizing a particular norm of the difference
between the calculated and the experimental results [Gelin and Ghouati, (1996)],
so it can identify all the parameters once involved in the model as long as the pa-
rameters are identifiable for the provided experimental data. Gupta, Sorooshian
and Yapo(1998) note that parameter identification methodology has several impor-
tant parts including: (1) the selection of the appropriate experimental data and the
handling technology of the errors presented in the measured data, (2) the defini-
tion of the objective function that measures the error between the model predic-
tions and the experimental datum and couples a priori information, and (3) the
optimization algorithm that can used to optimize the selected objective function
etc. Based on the assumption that the model residuals are uncorrelated and ho-
moscedastic [Vicky, Vicente and Mariano,(1998)], the least squares criterion is
introduced to defining the objective function. To consider the case that the out-
put variables of the model are more than one, the weighted least squares criterion
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[Qu, Jin and Xu, (2008)] is introduced. Based on the assumption that the criterion
is the maximum likelihood, minimum variance, asymptotically unbiased estima-
tor and that the variance of errors in the observed data is assumed to be related to
the magnitude of the data, the hetereoscedastic maximum likelihood error[HMLE]
criterion is developed [Sorooshian and Dracup, (1980)]. At the same time, many
other evaluation criterions, such as mean absolute error [Hall, (2001)], coefficient
of efficiency [Sorooshian and Dracup, (1980)], first serial correlation coefficient
[Hall, (2001)] etc, have proposed to identify the model parameters. Optimiza-
tion method is also one of the most important factors, which determine the results
of the parameter identification. Local search method, such as projected Newton
method [Mahnken, (2002)], Levenberg-Marquardt method [Schnur and Zabaras,
(1992)], BFGS method [Kok, Beaudoin and Tortoelli, (2002)], multipoint approx-
imation method [Yoshida, Urabe, Hino and Toropov, (2003)], Simplex method
[Kajberg, Melin and Stahle, (2004)] are enough to obtain satisfactory parameter
identification for a simple problem, because a good initial, which is located in the
same valley with the optimum, can be obtained based on a priori information usu-
ally. But for some complex problems, it is difficult to obtain good initial values,
thereby leading to difficulties in obtaining satisfactory parameters with any high
degree of confidence by local search algorithms. To overcome the above diffi-
culties, many global search methods, based on evolutionary strategies mainly, are
developed. Conceptual rainfall-runoff model, whose objective function takes on
structure of multiple optima on several scales, is calibrated successfully by shuffled
complex evolution method. The method combines the controlled random search al-
gorithms, the competitive evolution with the complex shuffling[Duan, Sorooshian
and Gupta(1992); Duan, Gupta, Sorooshian and Gupta,(1993)]. Optimal lens de-
sign is obtained by real-coded genetic algorithm, in which a feasibility enforcement
operator(FEO) is proposed to make an infeasible solution feasible [Ono, Kobayshi
and Yoshida,(2000)]. A hybrid global optimization method, which combine the
strength of genetic algorithm, the Levenberg-Marquardt algorithm with the variable
error polyhedron algorithm and couples the concept of complex, is developed [Qu,
Jin and Xu,(2005)] and the method is applied to the parameter identification of a
viscoplastic model considering dynamic recrystallization [Qu, Jin and Xu, (2005)]
and the identification of a superplastic model considering microstructure evolution
[Qu, Jin and Xu, (2008)]. Genetic algorithm (GA) based multiple objective opti-
mization method is applied to determine the viscoplastic constitutive equations for
superplastic alloy and to identify the corresponding material parameter [Lin and
Yang, (1999)]. However, no matter what algorithm and objective function are ap-
plied, the parameter identification is based on a assumption that the parameter set
is well identifiable. However, the large and complex, especially the mechanistic
model, are often poorly identifiable [Brun, Reichert and Künsch, (2001)]. A main
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reason for the poor identifiability is that “what we would like to know about the in-
ternal description of the system . . . is of a substantially higher order than what can
be observed about the external description of the system ” [Beck, (1987)]. Mech-
anistic model is characterized by an extensive use of causal hypothesis based on
the current understanding of how process work and provides a rational basis for the
prediction. For the parameter identifiability analysis, sensitivity analysis method
is the basic method [Hornberger and Spear,(1980)]. These methods identify pa-
rameters that do or do not have a significant influence on model simulations of
real world observations for specific catchments. However, the sensitivity analysis
method can’t deal with the interaction among parameters. Deeper graphical anal-
ysis of sensitivity functions has proven to be a valuable tool for relatively simple
models [Walter and Pronzato, (1990)]. However, when the deeper graphical anal-
ysis method is applied to deal with large and complex models, this approach fails
because it is no more possible to analyze efficiently the extensive graphical output
that is produced. Recently, three alternative approaches which address the prob-
lem of parameter identifiability for large models with many parameters have been
suggested. The first has been brought up by Weijers and Vanrolleghem (1997). It
applied the sensitivity functions and the Fisher information matrix to analyses the
parameter identifiability. It focuses on the problem of the selection of best iden-
tifiable parameter subsets for parameter estimation and has been to calibration of
ASM1. The second approach has been suggested by Brun, Reichert and Kunsch
(2001). It is based on linear regression diagnostics and applied the collinearity in-
dex to evaluate the identifiability [Belsley, (1991)]. In addition to the problem of
the identifiable parameter subset selection, it focuses on the analysis of parameter
interdependencies. A special attempt is made to incorporate prior knowledge about
parameter values and uncertainties in a sound and transparent way. The approach
has been applied to the identifiability analysis of Activated Sludge Model No. 2d
[Brun, Martin, Kühni, Siegrista, Gujera and Reicherta,(2002)] and biogeochemical
model of lake Zürich [Omlin, Brun and Reichert, (2001)]. The third approach is
proposed by Doherty and Hunt(2009). In the method, the direction cosine between
a parameter and its projection onto the calibration solution space is applied to define
parameter identifiability, and it varies between zero and one, with zero indicating
complete non-identifiability and one indicating complete identifiability. However,
Hill states that the measure proposed by Doherty and Hunt is likely to do a poor
job of parameter identifiability in common situations [Hill, (2010)]. However, the
above criterion is local in the parameter space and the analysis result depends on the
a priori assumption on the parameter value [Weijers and Vanrolleghem,(1997)]. At
current, sampling-based methods are used to deal with the global sensitivity anal-
ysis and identifiability analysis [Helton, Johnson, Sallaberryc and Storlie, (2006)].
Morris (1991) proposed a random OAT(One-factor-At-a-Time) sampling plans for
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preliminary computational experiments. The method consists of repetitions of a
local method whereby the derivatives are calculated for each random sampled pa-
rameter by adding a small change to the parameter. The finial effect will then be
calculated as the average of a set of partial effects. Then the local sensitivities
get integrated to a global sensitivity measure. To enhancing the computation effi-
ciency, Griensven et al proposed a novel sampling strategy that is a combination of
latin-hypercube and one-factor-at-a-time sampling that allows a global sensitivity
analysis for large model with only a limited number of model run [Van Griensven,
Meixner, Grunwald, Bishop, Diluzio and Srinivasan, (2006)].

This paper propose a parameter identification method of large and complex macro-
micro coupled constitutive models based on global and local identifiability analysis,
taking the parameter identification of a superplastic model [Jin and Hai, (1997)] as
example. In section 2 and 3, the model is given and the objective function is given
respectively. Section 4 starts with the description of the global and local identifia-
bility analysis method. Section 5 gives the result on the Global analysis. Section 6
gives a hybrid global optimization, which incorporate the strength of the genetic al-
gorithm and the levenberg-marquardt method. The levenberg-marquardt method is
corrected through the introduction of the identifiability analysis. Parameter identi-
fication result and the related discussion are given in section 7. At last, conclusions
are drawn in Section 8.

2 Model description [Jin and Hai, (1997)]

To describe the flow behavior and grain growth during superplastic forming, a
macro-micro coupled superplastic model is developed.

The flow stress is expressed in terms of the volume fraction fk of the k-th deforma-
tion mechanism, the grain size D, the effective strain εe and the effective strain rate
ε̇e

σe =
3

∑
k=1

fkAkε̇
mk
e Dmk pk = φ( fk, ε̇e,D),

Si j =
2
3

φ ε̇i j/ε̇e.

(1)

A particular form of Eq.1 can be given as

ϕ (εe, ε̇e,D, fk) =
2

∑
k=1

fkAk

(
ε̇e

ε̇0

)mk
(

D
D′0

)mk pk

+ f3A′3 (1− exp(−βεe))
(

ε̇e

ε̇0

)m3
(

D
D′0

)m3 p3

(2)
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where k=1,2,3 represents diffusion creep deformation mechanism, grain bound-
ary sliding deformation mechanism and dislocation creep deformation mechanism
respectively; A1, A2 and A′3 are the threshold stress for the corresponding deforma-
tion mechanism; mk and mk pk are strain rate sensitivity coefficient and the grain
size sensitivity coefficient of the flow stress; β is strain sensitivity of flow stress
for diffusion creep deformation mechanism. D′0 and ε̇0 are unit grain size and unit
strain rate. fk can be expressed by

f1 =
f ∗1

f ∗1 + f ∗2 + f ∗3
, f2 =

f ∗2
f ∗1 + f ∗2 + f ∗3

, f3 =
f ∗3

f ∗1 + f ∗2 + f ∗3
(3)

where f ∗1 , f ∗2 and f ∗3 can be obtained from

f ∗1 = 0.5−0.5th
(

l1 ln
(

ε̇e

ε̇1

))
,

f ∗2 = sech
(

l2 ln
(

ε̇e

ε̇2

))
,

f ∗3 = 0.5+0.5th
(

l3 ln
(

ε̇e

ε̇3

)) (4)

lk is the control parameter and ε̇k is a characteristic strain rate, they can be obtained
from empirical expressions as

ε̇1 = ε̇010
R1−R′1

D
D′0 , ε̇2 = ε̇010

R2−R′2
D

D′0 , ε̇3 = ε̇010
R3−R′3

D
D′0 (5)

Rk and R′k are the limit index and the grain size sensitivity index for the corre-
sponding characteristic strain rate. The evolution equation of D can be expressed
by

Ḋ =
2
D

Mγ0−
CD
4

+

√(
Mγ0−

CD
4

)2

+
Mα ′

a
f2A2

(
ε̇e

ε̇0

)m2+1( D
D′0

)m2 p2

 (6)

Mγ0 is the driving force for grain growth , Mα ′/a is the driving force coefficient for
grain growth due to grain boundary sliding and C is the drag coefficient for grain
growth due to grain size. To be simple, Mγ0 and Mα ′/α can be regarded as two
independent parameters.

Strain rate sensitivity index m is one of the vital mechanical parameters for deter-
mining material superplasticity and can be obtained from

m =
dσ

dε̇
(7)
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Then there remain 22 parameters, viz. A1, A2, A′3, m1, m2, m3, p1, p2, p, l1, l2, l3,
R1, R2, R3, R′1, R′2, R′3, Mα ′/a, C, Mγ0, β to be identified. From the perspective
of physical significance, these parameter can be divided into some basic subsets,
which is given in Table 1.

Table 1: Grouping of model parameter from the perspective of physical significance

subset name element physical significance

˜1 A1, p1,m1 Flow stress for diffusion creep deformation
mechanism

˜2 A2, p2,m2 Flow stress for grain boundary sliding defor-
mation mechanism

˜3 A′3, p3,m3,β Flow stress for dislocation creep deformation
mechanism

f˜1 R1,R′1, l1 Mainly factor for volume fraction of diffusion
creep deformation mechanism

f˜2 R2,R′2, l2 Mainly factor for volume fraction of grain
boundary sliding deformation mechanism

f˜3 R3,R′3, l3 Mainly factor for volume fraction of disloca-
tion creep deformation mechanism

D˜ t Mγ0,C Factors that attribute to the grain growth due
to thermal

D˜s Mα ′/a Factors that attribute to the grain growth due
to boundary sliding

3 Problem Description

3.1 Objective function

For the constitutive equations described in Eq.1-Eq.7, macroscopic stress-strain
relation, macroscopic strain rate sensitivity index-strain relation and microscopic
grain size-time relation can be obtained. The objective functions can be defined in
terms of the quadratic sums of the difference between the experimental and com-
putational data for the stress-strain relationship, train rate sensitivity index-strain
relation and the grain growth– time relationship

f1 (x) =
n1

∑
i=1

mi

∑
j=1

rσ
i j · rσ

i j, f2 (x) =
n3

∑
p=1

mp

∑
q=1

rm
pq · rm

pq, f3 (x) =
n2

∑
l=1

ml

∑
k=1

rd
lk · rd

lk (8)

where f1 (x), f2 (x) and f3 (x) are the quadratic sums of the weighted residuals for
stress , rate sensitivity index and grain size respectively;x represent the material



126 Copyright © 2010 Tech Science Press CMC, vol.20, no.2, pp.119-157, 2010

parameter vector, and its upper bound and lower bound can be defined by U and
L respectively; rσ

i j, rd
kl and rm

pq represent the normalized difference between the
calculated value and the experimental value for stress, grain size and strain rate
sensitivity index respectively and can be obtained from

rσ
i j =

σ c
i j−σ e

i j

σ∗i
,rd

lk =
dc

lk−de
lk

d∗l
,rm

pq =
mc

pq−me
pq

m∗p
(9)

where σ c
i j and σ e

i j are the calculated and experimental stress for the same time j and
the same strain rate i respectively. mi is the number of the recorded stress-strain data
for the strain rate i , and n1 is the number of the recorded strain rates considering the
stress-strain relationship. dc

kl , de
kl , mc

pq, me
pq, k, l, p, q, ml , mp, n2 and n3 are similar

to σ c
i j, σ e

i j, i, j, mi and n1. σ∗i , d∗l and m∗p are the average experimental values of
the stress, the grain size and strain rate sensitivity index respectively during a test,
and can be obtained from

σ
∗
i =

mi

∑
j=1

σ e
i j

(
ti, j+ 1

2
− ti, j− 1

2

)
ti,mi+ 1

2
− ti, 1

2

,

d∗l =

ml

∑
k=1

de
l,k

(
tl,k+ 1

2
− tl,k− 1

2

)
(

tl,ml+ 1
2
− tl, 1

2

) ,

m∗p =

mp

∑
q=1

me
pq

(
tp,q+ 1

2
− tp,q− 1

2

)
(

tp,mp+ 1
2
− tp, 1

2

)

(10)

ti, j is the time when σ e
i j is recorded and tl,k and tm,p is similar to ti, j. Based on the

physical consideration [Wu,(1997)], the following constraints is defined

A1ε̇m1
e Dm1 p1

A2ε̇
m2
e Dm2 p2

< 1,
A2ε̇m2

e Dm2 p2

A3ε̇
m3
e Dm3 p3

< 1 (11)

From physical significance, volume fraction of every deformation mechanism must
be larger than some value. At the same time, the parameter, which is associated
with this deformation mechanism only, will be insensitive to the objective function,
if the volume fraction is too small. Based on the above consideration, the following
constraints should be fulfilled

f1

f1min
> 1,

f2

f2min
> 1,

f3

f3min
> 1 (12)
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Based on Eq. 6, it can be concluded that Mγ0 must be large than CD/4, other-
wise the grain can’t grow under the static conditions. Then the following formulae
should be fulfilled:

Mγ0−
CD
4

> 0 (13)

The parameter identification aims to find a set of appropriate parameters which
make f1 (x), f2 (x) and f3 (x) be minimal simultaneously, on condition that Eq.
11, Eq.12 and Eq.13 are fulfilled. This is a typical multiple objective optimization
problem with inequality constraints. To be simple, we translate this multiple objec-
tive optimization problem into single objective problem through weight method and
introduce the inequality constraints by the penalty function method [Hu,(1990)].

ϕ (x) = (w1 f1 +w2 f2 +w3 f3)(x)

+
n1+n2+n3

∑
i=1

(
C2

1i +C2
2i +C2

3i +C2
4i +C2

5i+C2
6i (x)

)
(x) (14)

where w1, w2 and w3 are the weights for f1 (x), f2 (x) and f3 (x)respectively .
C1i (x) ∼ C6i (x) are the penalty functions for flow stress consideration, volume
fraction and static grain growth, and are defined respectively as

C1i (x) = max
(

0,γ1i

(
A1ε̇m1

e Dm1 p1

A2ε̇
m2
e Dm2 p2

−1
))

,

C2i (x) = max
(

0,γ2i

(
A1ε̇m1

e Dm1 p1

A2ε̇
m2
e Dm2 p2

−1
))

,

C3i (x) = max
(

0,γ3i

(
f1min

f1
−1
))

,

C4i (x) = max
(

0,γ4i

(
f2min

f2
−1
))

,

C5i (x) = max
(

0,γ5i

(
f3min

f3
−1
))

,

C6i (x) = min
(

0,γ6i

(
Mγ0−

CD
4

))

(15)

γ1i, γ2i, γ3i, γ4i, γ5i and γ6i are the penalty factors and are set as the large positive
number.

3.2 Determination of parameter range

Eq. (14) is used to identify the parameters of Ti-6Al-4V at 927˚C[Ghosh and
Hamilton, (1979)]. The grain growth-time data can be available for strain rates
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ε̇ of 2.0×10−4, 5.0×10−5 and static with initial grain size D0 of 6.4 µm; the ob-
tained stress-strain data includesε̇ of 5.0×10−3 and 5.0×10−5 with D0 = 6.4µm,
of 1.0×10−3, 2.0×10−4 with D0 = 9.0µm and of 5.0×10−3, 2.0×10−4 with D0 =
11.5µm; Strain rate sensitivity index-time data includes ε̇ of 2.0×10−4 with D0 =
9.0µm and ε̇ of 1.0×10−3 with D0 = 6.4µm.

The domains of the parameters can be determined from their physical significance
and sensitivity analysis result. For most parameters, such as A1, A2 and A′3 et al.,
whether they are positive or negative can be determined from physical significance,
but it is difficult to determine their variation regions. So, the selected parameter
domain is very large in order to assure that the optimum is within the parameter do-
main. For some parameters, whether it is positive or negative even can’t be judged,
such as R1, R2etc. In this paper, the elementary ranges of the parameter values
first are given from their physical significance [Wu, (1997)] and other reference
[McQueen and Ryan,(2002)], then the ranges are refined through nominal range
sensitivity analysis method.

Based on physical significance, threshold stress A1,A3,A′3 must be positive and the
corresponding domains are set to

(
0.01,109

)
,
(
0.1,105

)
,
(
0.1,105

)
respectively.

The domains for the strain rate sensitivity index m1, m2, m3 are defined to (0.01,16),
(0.01,16), (0.01,10) respectively. The domains for grain size sensitivity factor p1,
p2, p3 are set to

(
10−6,100

)
,
(
10−6,100

)
, (0.01,10) respectively. With the strain

increasing, the flow stress increases, then β must be positive and its region is set
to
(
10−3,103

)
. The control parameter for l1 must be positive from physical con-

sideration. f ∗2 and f ∗3 are even functions for ε̇e/ε̇2 and ε̇e/ε̇3 respectively, so it is
assumed that they are all positive. Their regions are set to

(
10−6,103

)
. It is diffi-

cult to judge whether Rk and R′k are positive or negative, and their regions are set
to
(
−103,103

)
. The driving force Mγ0 for grain growth is positive and it can be

obtained that its low limit is 3.78e−03 from experimental data, and then its domain
is set to

(
10−3,101

)
conservatively. Similarly, the driving force coefficient Mα ′/a

for grain growth due to grain boundary sliding and the drag coefficient C for grain
growth due to grain size are set to

(
10−6,1

)
and

(
10−8,1

)
respectively. On the ba-

sis of the above analysis, the domains of the material parameters determined from
their physical significance are given in the third column of table 2.

The global search ability of the designed algorithm depends on the evolutionary
algorithm. In order to increase the identification efficiency, the ranges of parameter
values should be small as possible. Because the model is very complex and highly
nonlinear, it is difficult to refine the parameter ranges by analytical method. We
have to turn to numerical method for help and the nominal range sensitivity analysis
method [Hu,(1990)] is selected to refine and shrink the ranges of the parameter
values. It is assumed that the contributions due to the stress-strain data and the
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grain growth- time data are equal for objective function, then ω1 and ω3 is set to
1 , ω2 is set to 1.56. A set of parameters, which is given in the fourth column of
Table 2, is selected; only a parameter is changed every time and other parameters
remain unchanged. There exist three instances. One case, such as p2, p1 et al, the
parameter ranges are such large that the objective function cannot be accurately
calculated due to overflow, Not-a-Number values etc. [Frey and Patil, (2002)];
secondly, the recombination of some parameter value violates the constraint defined
through Eq.11, Eq.12 and Eq.13, then causes that the objective function is too large;
lastly, the optimal value may be within a narrow range for some parameters, such
as A2, A3, l1, l2, R1, R′1, R′3, C, Mγ0 et al, and the large ranges of parameter values
cause to much ineffective computation . Based on the above analysis, the ranges
of some parameter values are shrunken. The shrunken parameter value ranges are
given in the fifth column of Table 2.

Table 2: Initial range of parameter values, selected parameter for shrinking range
of parameter values, the corrected range of parameter values

Parameter Dimension Initial Range Selected Corrected range
parameter xb

m1 (10−2,16) 0.497 (0.2,2.82)
m2 (10−2,16) 0.725 (0.1,0.85)
m3 (10−2,10) 0.878 (0.1,0.85)
R1 (10−3,103) -2.462 (−4.51,−1.0)
R2 (10−3,103) -3.237 (−100,4.37)
R3 (10−3,103) -0.100 (−0.94,9.48)
R′2 (10−3,103) 0.0160 (−10,6.18)
R′3 (10−3,103) 0.228 (0.23,1)

Mα ′/a mm2·s−1·Mpa−1 (10−6,1) 0.0264 (3.4×10−3,0.1)
A1 MPa (10−2,109) 27.152 (4,10+3)
A2 MPa (10−1,105) 384.488 (4,233)
A′3 MPa (10−1,105) 38.097 (15,500)

Mγ0 mm2·s−1 (10−5,1) 0.00439 (1.14×10−3, 2.78×10−2)
β (10−3,103) 31.137 (0.13,100)
p1 (0,100) 1.061

(
10−2,2.60

)
p2 (0,100) 0.456 (0.01,3.60)
p3 (0,10) 2.418 (-4.74,10)
R′1 (10−3,103) 0.179 (0.01,0.23)
l1 (10-6,103) 1.529 (0.1,46.75)
l2 (-103,103) -0.06273 (-0.39,1)
l3 (10-6,103) 0.254 (0.1,10)
C mm·s−1 (10−8,1) 0.00158 (10−4,2×10−3)
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3.3 characteristics of objective function

To develop a reasonable identificability analysis method and optimization method,
the characteristics of the objective function firstly should be studied. The section
aims to detect the location of the optima and to obtain the global information about
sensitivity and feasible solution. A theoretical analysis to obtain the above infor-
mation is impossible due to the high complexity of the objective function, then we
have to turn to the numerical method. This section apply the sampling strategy and
grid method to study the characteristics [McQueen and Ryan,(2002)].

To study the characteristics of the objective function, 100000 groups of parameters
are obtained based on the Latin-hypercube sampling strategy. The cumulative fre-
quency plot of

√
ϕ (x) for 100000 model runs are given in Fig.1. It can be seen that

objective function value for most combination of parameters are very large. The
large objection function value includes three cases. One is that the solutions are
feasible and the difference between the calculated value and the experimental value
is large, then causing to relatively large objective function. However, the further
study shows that only a small fraction of solutions are feasible, and the percent of
the feasible solution is less than 1%. The second is that the solutions violate some
constraints then causing to large function. The last is that the solution is numerical
infeasible, and the objective function is given a huge value to make the computa-
tion continue . At the same time, the study shows that the objective function value
nearly is independent of the sampled value for every parameter then it is hardly to
further shrink the parameter domain and to obtain the effective information on the
optima. Every parameter is within the feasible domain, however, most of combi-
nations of parameter values violate one or more than one constraints , then causing
to large objective function. The above study shows that only a small fraction of
parameter space are feasible and it is difficult to distinguish feasible solution space
and infeasible solution space further.

Grid method is used to study the non-convex state of the objective function. A set
of parameters, which is given in the fourth column of Table 2, is selected. Every
time, two parameter are selected and every parameter domain is equally divided
into 100 sections. Every portion of a selected parameters is combined with every
portion of another selected parameter, and other parameters are fixed. For each
combination of two selected parameters, there are 10101 groups of parameter. The
number of local optima for some combinations of parameter are given in Table 3.

The study shows that the number of local optima due to the combinations of the
parameters within a subset as given in Table 1, is larger generally than the number
of that caused by the combinations of the parameters belonging to different groups.
At the same time, for arbitrary recombination of β with other parameters , the
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Figure 1: Cumulative frequency plot
√

φ(x) for100000 model runs.

number of local optima is relatively small. This is due to that β is only related
to flow stress for dislocation creep deformation mechanism and independent of
constraint. The study shows that the objective function is highly non-convex also.

4 Identifiability analysis

A schematic flowchart of the parameter identification based on parameter identi-
fiability analysis is given in Fig. 2. The first two steps includes the definition of
the model and the selection of the experimental data. Both steps have been carried
out in section 2 and 3. Steps 3 is crucial for the parameter identification result. It
consists of the following tasks. Firstly, the value range of every parameter must be
determined, based on the physical significance , related references and experimen-
tal data; secondly, all of the model parameters have to been classified into some
groups, mainly based on physical mechanism; thirdly, some constraint should be
provided to ensure that the identified parameter are physically reasonable; fourthly,
scale factors for all model output have to be ascertained, mainly according to the
demands of the user. Steps 3 mainly is based on human expert knowledge and has
recourse to numerical technology partially. Step 4 aims to find some good initial pa-
rameter in virtue of global identifiability analysis and global optimization method.
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Table 3: Some combinations of parameter which number of local optima is larger
than 10

Combination Number of Combination Number of
of parameter local optima of parameter local optima
m1 p1 48 m2 A2 27
m1 A1 34 m2 p2 44
p1 A1 49 p2 A2 61
m3 p3 67 R1 R′1 35
m3 A3 41 R1 l1 38
p3 A3 60 R′1 l1 33
R′2 l2 15 R3 R′3 40
R2 R′2 106 R′3 l3 15
R2 l2 15 R3 l3 34

Mγ0 C 48 l2 C 11
R2 C 17 R2 R3 16
R′1 R′3 12 A2 l1 11
p2 A3 16 p2 A1 12
R3 R′2 17 R2 C 17

At last, the initial parameter is improved by the local optimization method, which
include local identifiability analysis, largest identifiable subsets selection, param-
eter update, convergence judgment etc. Global identifiability analysis mainly in-
cludes computation of sensitivity matrix and the integration of the local measure
to the global measure. In our method, the integration method apply the Latin-
Hypercube sampling strategy, and the global optimization mainly applies genetic
algorithm. The local identifiability analysis includes the computation of sensitiv-
ity matrix, parameter sort according to importance ranking, subset selection based
on collinearity index and computation of determinant measure for selected subset
etc. In our algorithm, the local optimization method applies Levenberg-Marquatdt
method, which incorporate the local identifiability analysis.

4.1 parameter identifiability measures

Firstly, the applied notation in identifiability analysis is introduced; secondly, the
measure used for parameter identifiability diagnosis is given; at last, the integration
method from local measure to global measure is provided.

The experimental data are assumed to be described by

Y = ηηη (x)+ r (16)
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The observation vector Y = (Y1, · · · ,Yn)
T includes stress-strain relation, grain-size

time series data, strain rate sensitivity index time series data and constraint value
from the experimentation. ηηη (x) = (ηηη1 (x) , · · · ,ηηηn (x))T denotes the simulation
result of the superplastic model for stress, grain-size, strain rate sensitivity index
and constraint value at the same strain and the same rate as there are observations
in Y. r = (r1, · · · ,rn)

T is residual vector.

To be identifiable, a parameter subset K has to fulfill three conditions. Firstly,
each parameter in K must be sufficiently sensitive to ηηη (x); Secondly, changes in
the computational result due to changes in single parameters may not be approx-
imately canceled by appropriate changes in other parameters in K. The first con-
dition is addressed by the sensitivity measure δ

msqr
j which is calculated for every

parameter x jseparately; the second by the collinearity index γk, which is calculated
for arbitrary parameter subsets K; the third by the determinant measure ρk, which
is calculated for the according parameter subsets K. The sensitivity measure δ

msqr
j

assesses individual parameter importance; the collinearity index γk analyses the
parameter interdependencies. ρk takes into account the above identifiability con-
ditions simultaneously and is suited for the assessment of relative identifiability of
different parameter subsets.

The three measures δ
msqr
j , γk and ρk are all based on sensitivities, either the non

-dimensional sensitivity matrix s =
{

si j
}

or the normalized matrix s̄ =
{

s̄i j
}

with
elements

si j =
wi∂ηi

η∗i ∂x j
, s̄i j =

si j∥∥s j
∥∥ (17)

Respectively, here η∗i is the average experimental values, which equal to σ∗i , d∗l or
m∗p, wi is the weight coefficient,

∥∥s j
∥∥ is the Euclidean norm of the jthcolumn of S.

The sensitivity measure of δ
msqr
j is defined as [Brun, Reichert and Kunsch,(2001)]

δ
msqr
j =

√
1
n

n

∑
i

s2
i j (18)

It measures that the mean sensitivity of the simulation result to a change in the
parameter x j (in the mean square sense). A high δ

msqr
j means that the value of the

parameter x j has an important influence on the simulation result, a value of zero
means that the simulation result is independent of parameter x j. The collinearity
index γk is defined as [Brun, Reichert and Kunsch,(2001)]

γk =
1

min‖β‖=1
∥∥S̄Kβ

∥∥ =
1√
λ̃K

(19)
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with S̄K being an n× k submatrix of S̄ containing those columns that correspond
to the parameters in K; β being a vector of coefficients of length k and λ̃K being
the smallest eigenvalue of S̄T

KS̄K. γk measures the degree of near-linear dependence
of the columns of S̄K. It equals unity if the columns are orthogonal and it reaches
infinity if the columns are linearly dependent. If the columns are nearly linearly
dependent, changes in the simulation result due to small changes in a parameter x j

can be compensated to a large extent by appropriate changes in other parameters in
K. This is indicated by a high collinearity index γk. If γk exceeds an empirically
found threshold of approximately 10–15, then the corresponding parameter subset
is poorly identifiable.

Brun et al proposed that the determinant measure ρK is defined as[Weijers and
Vanrolleghem (1997);Brun, Reichert and Kunsch,(2001)]

ρK = det
(
ST

KSK
)

(20)

with det( ) being the determinant function and λ j being the eigenvalues of ST
KSK.

ρK is equal to the determinant of ST
KSK, and is corresponding to the volume of con-

fidence regions under the assumption of neglecting measurement error. ρk is rather
a relative measure suited for comparison of parameter identifiability of different
parameter subsets.

4.2 Integration of a local measure to a global measure

The above parameter identifiability measures are local measures and cannot pro-
vide any global measure of identifiability measure for the entire parameter space.
Therefore, these above measures do not provide robust and reliable approach for
the evaluation of parameter identifiability since the objective functions are highly
non-linearly related to the parameters. At current, the integration methods from
local measure to global measure are based mainly on the sampling strategy. Till
now, the applied sampling strategy mainly includes Monte Carlo sampling and
Latin-Hypercube sampling [Fishman and Monte Carlo,(1996)].The Monte Carlo
sampling produces samples drawn from a specified distribution (typically a uni-
form distribution) [Fishman and Monte Carlo,(1996)]. Monte Carlo sampling is
robust, but may require a large number of simulations and consequently large com-
putational resources. For large model, the computation is hardly to endured to
obtain a good evaluation. Latin-Hypercube sampling [Iman, RL, Conover and
WJ,(1980)] is based on Monte Carlo sampling and uses a stratified sampling of
the parameter space which is preferable over Monte Carlo sampling. For uniform
probability distributions on the parameters, the sampling proceeds as follows. A
number of samples NLHS is defined. Then the parameter range is subdivided into
NLHS equal intervals. Random values of the parameters are generated such that



Parameter Identification Method 135

for each of the N parameters, each interval is sampled only once. This approach
results in NLHS non-overlapping realizations and the model is run NLHS times. In
our method, Latin-Hypercube sampling is used to evaluate the global identifiability
analysis. However, based on the above analysis, most of sampled points violates
constraints, causing to large objective function value. However, the actual param-
eters does not violate the constraints. Inspired by the elitism preservation strategy
[Michalewicz,(1992)], we only consider the feasible and nearly feasible solutions,
when the global measures are evaluated. The global sensitivity matrix and the
Fisher information matrix can be defined by respectively

Si j = 1
n∗ ∑

n∗

∣∣∣ wi∂ηi
η∗i ∂x j

∣∣∣
S̃i j = 1

n∗ ∑
n∗

∣∣∣∣ si j

‖s j‖
s jm
‖sm‖

∣∣∣∣ (21)

Subject to:

ϕ (x)≤ ϕ
∗ (22)

x are sampled by Latin-Hypercube sampling method.

Where n∗ is the number of x, whose objective function value is less than ϕ∗, when
NLHS samples are defined. The global sensitivity measure of δ

msqr
j can be defined as

δ
msqr
G j =

√
1
n

n

∑
i

S2
i j (23)

5 Global analysis

Under the different selection of φ*, the global sensitivity rank of all the parameters
are given in Table 4.

From Table 4 , it can be seen that the parameters ( m2, R2, p2, R′2, l2, A2)associated
with grain boundary sliding deformation are relatively sensitive and nearly are all
in the subsets of the top 10 parameters of the parameter importance ranking. At
the same time, the parameters (R1, p1, R′1, l1, A1)associated with diffusion creep
deformation mechanism are relatively insensitive and nearly are all in the subsets
of the lowest 10 parameters of the parameter importance ranking. Based on the
superplastic theory, the grain boundary sliding deformation is the important defor-
mation mechanism, however, diffusion creep deformation mechanism is the least
important deformation mechanism, so the analysis result is consistent with the su-
perplastic theory. β and Mα ′/a are the lowest 2 parameter of the parameter im-
portance ranking. Mα ′/a show the grain size growth kinetics due to grain sliding,
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Table 4: Global Sensitivity results for superplastic constitutive model under the
different selection of φ ∗

           φ* 

 Parameter       

106 105 104 103            φ* 

 Parameter       

106 105 104 103 

1m  5 1 5 6 1R′  7 12 4 1 

2m  6 2 2 10 2R′  2 6 7 3 

3m  11 4 6 9 3R′  4 10 13 15 

1R  17 19 16 14 1

2 1/mm s MPa
M aα −

−
′ ⋅

⋅ ⋅ 21 21 21 21 

2R  3 8 9 5 1 / MPaA  19 13 14 11 

3R  10 15 18 17 2 / MPaA  9 5 3 8 
2 1

0 / mm sM γ −⋅  12 16 11 12 3 / MPaA′  18 11 15 19 
β  22 22 22 22 1l  14 17 10 4 

1p  20 14 17 13 2l  1 7 8 2 

2p  8 3 1 7 3l  13 18 20 20 

3p  15 9 12 18 1/ mm sC −⋅  16 20 19 16 
 

however, the main contribution of the grain growth is due to heat, so the sensitivity
of Mα ′/a is relatively low. β show the strain hardening for dislocation diffusion.
However, the dislocation diffusion isn’t the dominant deformation mechanism. At
the same time, β and Mα ′/a are the only two parameters that cannot contribute to
constraints.

The parameter combination with high correlation coefficient based on global anal-
ysis are given in table 5. From table, it can be seen that the correlation coefficient of
the parameter combination general is high, if the two parameters, such as (m1, p1),
(m2, p2) etc, are all within a subset as given in Table 1. The high correlation co-
efficient between some parameters shows that there are strong interdependence be-
tween these parameters. However, at the same time, the correlation coefficient is
low, if the two parameters , such as (m1, p2), (m2,A′3) etc, are selected from dif-
ferent basic subsets as given in Table 1. The above results show that there may be
seriously identifiable problem for the superplastic model, due to the existence of
many parameter combinations with high correlation coefficient.
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Table 5: Parameter combination with high correlation coefficient based on global
analysis

φ* 
Subset name 106 105 104 103 

(m1,p1), 0.98 (m1,p1), 0.97 (m1,p1), 0.97 (m1,p1), 0.96 
(m1,A1), 0.98 (m1,A1), 0.97 (m1,A1), 0.97 (m1,A1), 0.96 1

 
(p1,A1), 0.99 (p1,A1), 0.99 (p1,A1), 0.99 (p1,A1), 0.99 
(m2,p2),0.96 (m2,p2),0.96 (m2,p2),0.96 (m2,p2),0.95 
(m2,A2),0.96 (m2,A2),0.96 (m2,A2),0.96 (m2,A2),0.96 2

 
(p2,A2),0.99 (p2,A2),0.99 (p2,A2),0.99 (p2,A2),0.99 
(m3,p3),0.97 (m3,p3),0.97 (m3,p3),0.97 (m3,p3),0.97 
( )3 3, , 0.97m A′ ( )3 3, , 0.98m A′ ( )3 3, , 0.97m A′ ( )3 3, , 0.96m A′  

3
 

( )3 3, , 0.99p A′ ( )3 3, , 0.99p A′ ( )3 3, , 0.99p A′ ( )3 3, , 0.99p A′  

( )1 1, , 0.95R R′  ( )1 1, , 0.95R R′  ( )1 1, , 0.94R R′  ( )1 1, , 0.94R R′  
( )1 1, , 0.92R l  ( )1 1, , 0.92R l  ( )1 1, , 0.92R l  ( )1 1, , 0.88R l  1f


 

( )1 1, , 0.94R l′  ( )1 1, , 0.94R l′  ( )1 1, , 0.94R l′  ( )1 1, , 0.91R l′  
( )2 2, , 0.96R R′ ( )2 2, , 0.96R R′ ( )2 2, , 0.96R R′ ( )2 2, , 0.95R R′  
( )2 2, , 0.95R l  ( )3 3, , 0.96p A′ ( )3 3, , 0.95p A′ ( )3 3, , 0.94p A′  2f


 

( )2 2, , 0.95R l′  ( )2 2, , 0.95R l′  ( )2 2, , 0.94R l′  ( )2 2, , 0.93R l′  
( )3 3, , 0.97R R′ ( )3 3, , 0.98R R′ ( )3 3, , 0.97R R′ ( )3 3, , 0.98R R′  
( )3 3, , 0.91R l  ( )3 3, , 0.91R l  ( )3 3, , 0.91R l  ( )3 3, , 0.90R l  3f


 

( )3 3, , 0.89R l′  ( )3 3, , 0.89R l′  ( )3 3, , 0.90R l′  ( )3 3, , 0.90R l′  
tD
 ( )0 , , 0.97M Cγ ( )0 , , 0.97M Cγ ( )0 , , 0.97M Cγ ( )0 , , 0.97M Cγ  

 

6 Optimization method

Based on the numerical results, it is known that the objective function has the fol-
lowing characteristics:

1) Objective function is non-convex and there exist thousands of local optima, then
the main framework of the proposed optimization method must be based on
some global search optimization method.

2) Due to numerical problem, the objective function can’t be calculated for some
parameter combinations, and then the optimization method must be able to deal
with discontinuous problem.

3) The model may be poorly identifiable, then the identifiability analysis is re-
quired to obtain a identifiable parameter subsets during optimization.
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4) In parameter space, only a small fraction of parameter combinations are feasi-
ble.

Based on the above demand, a global search-based hybrid optimization method
is designed. The method absorbs the strengths of the GA [Michalewicz,(1992);
Dumitrescu, Lazzerini, Jain and Dumitrescu,(2000); Herrera, Lozano and Verde-
gay,(1996)] and the L-M algorithm [Mor,(1978); Yuan and Sun, (1999)]. The
global search ability of GA makes GA find a global optimum in probability 1;
however, its convergent speed is very slow. The L-M algorithm is an excellent al-
gorithm which is designed to solve nonlinear least squares problem, however, it is
local optimization algorithm and its solution depends on initial value of parameter.
In this method, some candidates for a good initial value for the local optimiza-
tion method are obtained through GA. Some initial values are selected based on
the niching technology [Hua, Wu and Tian,(2008)] and are refined by the L-M al-
gorithm. The best obtained solution is regarded as the material parameter. The
flowchart of the global optimization method is given in Figure 2.

Among them, Gm is the set maximum generation number, εa is the control pa-
rameter for the maximum value of the relative mean correction of the objective
function correction value of the 80% leading chromosomes in the population dur-
ing successive 5 generations, εb is the control parameter for the maximum value
of the relative objective function correction value of the best chromosome during
successive 5 generations, nniche is the number of niches which are necessary for lo-
cal optimization method, hg is the current generation number, fi is fitness function
value which considering objective function value and crowding mechanism, rata
and ratb are the maximum value of the relative objective function correction value
of the best chromosome and the maximum value of the relative mean correction
of the objective function correction value of the 80% leading chromosomes in the
population during successive 5 generations. PNi represents a niche.

6.1 Real-coded genetic algorithm (RGA)

To increase the precision and computational efficiency, my method applies the real-
coded genetic algorithm (RGA) . RGA is a global optimization technique inspired
by the evolutionary process of the natural life and It mainly includes the production
operator, the crossover operator and the mutation operator. A real number vec-
tor (parameter vector) is regarded as a representation of the problem. The initial
population is generated as follows [Qu, Jin and Xu,(2008); Qu, Jin and Xu, (2005)]Ki = Li +δ (Ui−Li) β < max

((
Ui
Li

)
,
(

Li
Ui

))£α

Ki = sgn(Li)10(lg|Li|+δ (lg|Ui|−lg|Li|)) else
(24)
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Figure 2: Schematic flowchart of parameter identification for large complex model
based on identifiability analysis

sgn is the symbolic function. If Li < 0, then sgn(Li) =−1; if Li > 0, sgn(Li) = 1.
When Ui is positive and Li is negative, the actual value range is mapped into a
positive value range through a linear transformations, then the sampling is taken
in the transitional value zone , the obtained parameter value is re-mapped into the
actual value range through the accordingly inverse transformation lastly. So it is
assumed that Li and Ui are simultaneously positive or negative in the operator.

Non-uniform mutation operator [Dumitrescu, Lazzerini, Jain and Dumitrescu,(2000)]
can make a uniform search in the population at the initial stage of the optimization



140 Copyright © 2010 Tech Science Press CMC, vol.20, no.2, pp.119-157, 2010

process and a very local search at a later stage. The applied mutation operator is


Ki = sgn(Li)10

(
lg(|K0i|)+(lg(|Ui|)−lg(|K0i|))

(
1−α

(1− t
gmax )

5
))

if δ ≥ 0.5

Ki = sgn(Li)10

(
lg(|K0i|)−(lg(|K0i|)−lg(|Li|))

(
1−α

(1− t
gmax )

5
))

if δ < 0.5

if β > max
((

Ui
Li

)
,
(

Li
Ui

))£α
Ki = K0i +(Ui−K0i)

(
1−α

(1− t
gmax )

5
)

if δ ≥ 0.5

Ki = K0i− (K0i−Li)
(

1−α
(1− t

gmax )
5
)

if δ < 0.5

else

(25)

where K0i is the gene of parent, t and gmax is the current generation number and the
set maximum generation number respectively. To improve the global search ability,
it is recommended thatgmax is larger than the actual maximum evolution generation
Gm.

Different crossover operators have different advantages. For example, random sim-
plex crossover operator [Herrera, Lozano and Verdegay,(1996)] makes use of the
information of multiple-parent and isn’t easy to be trapped by minor optimum;
SBX crossover operator [Dumitrescu, Lazzerini, Jain and Dumitrescu,(2000)] can
get descendants similar to their parents. In order to apply the advantages of the
SBX crossover operator, the random simplex crossover operator and Arithmetical
crossover operator [Michalewicz,(1992)], a hybrid crossover operator is designed,
enlightened by the hybrid combinatorial optimization[Preux and Talbi,(1999)] and
of simultaneously applying multiple mutation operators [Hong, Wang and Chen,
(2000)]. To enhance the global search ability, these crossover are improved by
the same method with Non-uniform mutation operator. Inspired by the shuffled
complex evolution method [Duan, Sorooshian and Gupta,(1992)], several parents
are firstly selected from population P as a complex A; then the crossover operator
and mutation operator are applied in a complex; the generated children from A are
shuffled in P at last. The detail is given in [Qu, Jin and Xu, (2008)].

Generation-alteration Operator (GAO)determines how to choose pairs of parents
for generating the children by the crossover operators and the mutation operators,
and determines how to select parents to survive in the next generation. The method
applies simply Roulette rule. The selection probability fi of chromosome i is code-
termined by the objective function value and the crowding state of the chromosome.

N chromosomes are first sorted in order of decreasing objective function. Due to the
objective function value, the selection probability f ′i of chromosome i is calculated
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as

f ′i =
i

(N +1)N
i = 1, · · · ,N (26)

where i represents the position of chromosomes in the population after sorting.
However, if the selection probability fi is determined completely by the objective
function value, the chromosomes tend to concentrate on the domain near to some
local optima at the later stage of genetic algorithm based on the Roulette rule, and
then the genetic algorithm is easy to premature. To overcome the problem, this
paper applies the niching technology to maintain the population diversity [Miller
and Shaw,(1996); Sareni and Krähenbühl,(1998)]. In nature, a niche can be viewed
as a subspace in the environment that can support different types of life. For each
niche, the physical resources are finite and must be shared among the population
of that niche. The sharing method is the best known and applied among the niche
technology. Fitness sharing modifies the search landscape by reducing the payoff
in densely populated regions. Typically, the shared fitness fi of an individual i with
fitness f ′i is simply

fi =
f ′i
m′i

(27)

Where m′i is the niche count which measures the approximate number of individuals
with whom the fitness f ′i is shared. The niche count is calculated as follows

mi =
N

∑
i=1

sh(di j) (28)

Where di jrepresents some distance between the chromosome i and j. It returns
1 if the elements are identical, zero if their distance is higher than a threshold of
dissimilarity, and an intermediate value at intermediate level of dissimilarity. In this
method, we applied triangular sharing function as follows [Sareni and Krähenbühl,
(1998)]

sh(di j) =

{
1− di j

ds
if di j < σs

0 otherwise
(29)

di j is characterized by a similarity metric and is defined by

di j =

√
n

∑
m=1

(
xim− x jm

Um−Lm

)2

(30)
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xi and x j are two parameter vectors,dsdenotes the threshold of dissimilarity and is
recommended as follows

ds ∈
(√

n
100

,

√
n

20

)
(31)

6.2 Levenberg-marquardt Algorithm

Classic optimization method is based on Taylor expansion of the objective function.
A quadratic Taylor expansion of the square of the objective function ϕ (x) around
xt can be expressed as [Yuan and Sun,(1999)]

ϕ
′ (x) = ϕ

′ (x t)+(x−xt)
T J(xt)

T r(xt)

+
1
2

(x−xt)
T
[
J(xt)

T J(xt)+∑ri (xt)∇
2ri (xt)

]
(x−xt) (32)

where J(xt) = r′ (xt), r is the residual vector associated with stress-strain relation-
ship, grain growth-time relationship , strain rate sensitivity index-strain relationship
and constraint violation. The L-M algorithm, based on the Gauss-Newton model
qG

t (xt+1) and the trust region technology, is designed to solve nonlinear least square
problems. The iteration formula is as follows

xk+1 = xk−
(

J(xk)
T J(xk)+ µkI

)−1
J(xk)

T r(xk) (33)

µk is Levenberg-Marquardt parameter. To make the identification result more reli-
able, some corrections are made and are given as follows

1. The parameter identifiability analysis technology is taken to find the largest
identifiable subset. The procedure of finding the identifiable subset is as
follows. Firstly, the sensitivity matrix and sensitivity measure δ

msqr
j is calcu-

lated ,and sort parameters in order of decreasing sensitivity measure δ
msqr
j , if

δ
msqr
j /δ

msqr
max < 0.01, then x j is regarded as insensitive. Secondly, select the

most sensitive parameter in each subset as given in table 1 and group them
into a initial subset, and iteratively add or remove the element from the sub-
set, until a largest subset identifiable Kid is obtained and other parameters
are regarded as un-identifiable. Thirdly, the un- identifiable parameters are
frozen and only the identifiable parameters are updated during this iterative
step. At last, the frozen variable is activated after the convergence of this
iteration.
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candidates for a good initial value for the local optimization method are obtained through GA. 
Some initial values are selected based on the niching technology [Hua, Wu and Tian,(2008)] and 
are refined by the L-M algorithm. The best obtained solution is regarded as the material parameter. 
The flowchart of the global optimization method is given in Figure 2.  

Figure 3. Main frame of designed global optimization method 

 

Input the upper and lower limit of the material parameters and the control parameters of 
the program mG 、 aε 、 bε 、 nichen  

Generate the initial population，hg=1 

g mh G< ? 

Generate the children population，hg= hg +1 

Calculate arat and brat  

Y

N

a arat ε< or b brat ε<  

Determine nichen niches PN  1i =  

Select the best solution from every iPN  1i i= +  

L-M algorithm  

nichei n>
N 

The obtained best solution as the parameter 

Y 

Determine the shared fitness if ′  

Determine the shared fitness if  

N
Y 

preserve the obtained solution

Figure 3: Main frame of designed global optimization method
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2. Sometimes, the parameters may be out of upper and lower limit of the ac-
cording parameter during the optimization. To solve the problem, the itera-
tive step length ht is reduced and the iteration is performed again.

3. The objective function for some parameter recombination may not be accu-
rately evaluated due to numerical problem. In such a case, the search step
length is halved and the search is taken again.

The rest of the algorithm remains unchanged. The flowchart of the corrected L-
M algorithm is given in figure 3. Where x0 is the initial value, σ is the control
parameter for ‖Dtst‖; εs is the convergent control parameter for the ratio ρt between
the predicted reduction in the objective function and the actual reduction; ερ is the
control parameter for ρk to adjust the iteration step length hk;εx is the convergent
control parameter for the iteration increment st ; εh is the control parameter for
determining how to deal with xt+1; Dt is the scaling matrix. More details regarding
the L-M algorithm can be found in paper [Moré,(1978);Yuan and Sun,(1999)] .

6.3 Transition criterion and selection of initial value for L-M algorithm

The transition criterion between the genetic algorithm and the L-M algorithm de-
cide when to stop the genetic algorithm and trigger the L-M algorithm. Enlightened
by the convergent criterion of the local optimization algorithm based on gradient
[Yuan and Sun,(1999)] and stop criterion of genetic algorithm [Michalewicz,(1992)],
the maximum value ratb of the ratio between the correction value of the objective
function of the best chromosome in the nth generation population relative to the
best chromosome in the (n-1)th generation population and the objective function
value of the best chromosome in the (n-1)th generation population during succes-
sive 5 generations is introduced; at the same time, the maximum value rata of the
ratio between the correction value of the mean of the 80% leading chromosomes
in the nth generation population and that of the 80% leading chromosomes in the
(n-1)th generation population during successive 5 generations is introduced also.
When rata or ratb is less than εa or εb, then the genetic algorithm is stopped and
the L-M algorithm is triggered. In the method, εa and εb are all recommended to
be set to 10−5.

Like Hua, Wu and Tian (2008), the chromosomes are first sorted in the last gener-
ation population, with the order of decreasing objective function; then nnicheniches
are sequentially constructed, beginning with the best chromosome; at last, the best
chromosome of each niche is regarded as the initial value respectively for L-M
algorithm.
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Figure 3   flowchart of improved Levenberg-Marquardt method 
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7 Parameter identification result and discussion

The comparisons between the calculated and experimental data are given in figure
3, figure 4 and figure 5. The lines with solid symbols represent the experimen-
tal data due to Ghosh and Hamilton (1979), and the lines with empty symbols are
obtained from the computations. From figure 3a-c, it can be seen that very close
agreements have been obtained for the stress-strain data and the maximum relative
error do not exceed 3%. From figure 4, it can be seen that relative to stress-strain
relation, the discrepancy is more serious a little for grain growth-time relation.
This may be due to that the experimental error for grain size is larger than that for
stress. Relative to the grain growth-time relation and the stress-strain relation, the
gap between the predicted strain rate sensitivity index and the experimental ones is
large. This may be due to the larger experimental error and that the information,
which is contained in the objective function, due to strain rate sensitivity index is
relative less. To verify the reliability of the parameter identification result, the iden-
tified parameter is used to predict the stress-strain relation for ε̇ = 2.0×10−4 with
D0=6.4µm, the grain growth –time relation for ε̇ = 1.0×10−3 and ε̇ = 5.0×10−3

with D0=6.4µm, the strain rate sensitivity index –strain relation for ε̇ of 2.0×10−4

with D0=6.4µm. For the stress-strain relation, the maximum relative error doesn’t
exceed 5%, for the grain growth-time relation, the maximum relative error doesn’t
exceed 15% and for the strain rate sensitivity index –strain relation, the maximum
relative error doesn’t exceed 10%. Sum up the above comparative result, it can be
seen that the maximum relative errors between the predicted and the experimental
results doesn’t exceed 15%.

The above results show that the identified parameters are a set of satisfactory pa-
rameters for describing the experimental data. However, the identifiability analysis
shows that the model is poorly identifiable and some parameters are hardly to be
identified well. one factor is that the objective function is insensitive nearly to some
parameters, and the other is that there exists strong interdependence between some
parameters, then causing large collinearity index.

100 sets of different parameters are selected by niching technology, then sensitiv-
ity analysis is taken at the first iteration for every set of initial value. The analysis
result is given in Table 6, where ‘Number’ means the times that the rank of the
parameter is the according serial number. It can be seen that m3 and R′3 are the
top 2 parameters of the parameter importance ranking at every initial value. At
the same time, p1 and A1 are the lowest 2 parameters always; At the same time,
the times is 87 that the rank of parameter m1 is 20, the times is 12 that the rank
of parameter m1 is 19; the times is 1 that the rank of parameter m1 is 18. and
that, δ

msqr
p1 /δ

msqr
m3 < 0.01, δ

msqr
A1

/δ
msqr
m3 < 0.01 and δ

msqr
m1 /δ

msqr
m3 < 0.01 are always

satisfied for every initial value. It shows it is difficult to identify these parameters,
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which are associated with the flow stress on the diffusion creep deformation mech-
anism. Parameters within subsets →∼ σ

2
, →∼ σ

3
and →∼ σ

1
, strain rate sensitivity

coefficient are the most sensitive parameters always, and pk are the least sensitive
parameters except→∼ σ

3
, within which the strain sensitivity coefficient is the least

sensitive parameter. Comparing Table 6 with Table 4, it can seen that there exists
huge difference. This mainly is due to that parameters in Table 6 are all feasible
and don’t violate any constraint, however, most of parameters are infeasible and
most of them violate constraints in Table 4.

The average of the absolute value of the correlation coefficient between the sensi-
tive parameter are given in Table 7. “Number” is the times that the parameter is
sensitive for the 100 initial value. It can be seen that parameters m2, m3, R1, Mγ0,
p2, p3, R′1, R′3, Mα/α ′, A2, A′3, l1, l3 and C are β are all sensitive for every initial
value. β is sensitive nearly for every initial vale except one. It can be seen that
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the correlation coefficient of the parameter combination generally is high, if the
two parameters, such as (m2, p2), (m3, p3) etc, are all within a subset as given in
Table 1. Especially for the combinations of (m2, p2), (m3, p3), (m3,A′3), (R2,R′2),
(Mγ0,C), (p2,A2), (p3,A′3) etc, the correlation coefficient even exceed 0.99. How-
ever, at the same time, the correlation coefficient is low, if the two parameters , such
as (m1, p2), (m2,A′3) etc, are selected from different subsets Table 1. Especially, the
correlation coefficient between β and Mγ0 is nearly to 0.

The existences of many parameter combinations with high correlation coefficient
and with low sensitivity show that the identifiability of the superplastic model is
poor, when only the experimental data in section 3.2 is available. To improve the
identifiability of the model, the two approach can be applied. one approach is to
simplify the model further, such as neglecting the terms associated with diffusion
creep deformation mechanism; another approach is to increase the experimental
data, such as increasing the number of grain size and strain rate.

The statistical result on the identifiability analysis result is given in Table 8. It can
be seen that the parameters m1, R3, p1, p2, A1, A′3, C are identified with probabil-
ity 0, and this result shows that it is impossible to identify well these parameter ,
and only Mγ0, Mα ′/α and m3can be identified with probability 1, when the iden-
tifiability analysis is taken only at the first iteration; however, only parameter p1,
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Table 6: Sensitivity analysis result at the first iteration for 100 sets of different
initial parameters

Rank Paramet
er  

Num
ber  

Para
meter  

Num
ber 

Para
meter 

Num
ber 

Para
meter 

Num
ber 

Para
meter  

Num
ber  

1 3m  100         

2 3R′  100         

3 2m  99 2A  1       

4 2A  99 2m  1       

5 1R′  6 0Mγ  94       

6 3A′  76 1R′  18 0M γ 3 1R  3   

7 1R′  62 3A′  10 1R  25 0Mγ 3   

8 1R  72 3A′  14 1R′  14     

9 3l  100         

10 3R  50 C  41 2p  8 Mα α′

 
1   

11 C  51 3R  42 2p  7     

12 2p  83 C  8 3R  7 Mα α′

 
2   

13 Mα α′  69 3p  29 2p  2     

14 3p  71 Mα α′

 
28 2l  1     

15 1l  64 2l  36       

16 β  49 1l  34 2R′  6 2l  11   

17 2R′  76 β  21 1l  2 1m  1   

18 2R  60 β  19 2R′  18 2l  3 3R  1 

19 2R  39 2l  37 1m  12 β  11   

20 1m  87 2l  12 2R  1     

21 1A  100         

22 1p  100         

 

A1, A′3 are identified with probability 0, and m2, Mγ0, β , R′3, Mα ′/α and m3can
be identified with probability 1. At the same time, the identifiable probability of
other parameters is much higher, when the identifiability analysis is taken at every
iteration. The above results show that it is necessary to take identifiability analysis
duing every iteration to increase the identifiable probability.

The identified best parameter, the corresponding initial value and the relative stan-
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Table 7: Correlation coefficient between the sensitive parameter at the first iteration
for 100 sets of different initial parameters

Correlation Matrix number  

2m  3m  1R 2R  3R  0M γ  β 2p  3p  1R′ 2R′ 3R′ Mα α′ 2A 3A 1l  2l  3l  C   

2m  1.00                   100 

3m  0.91 1.00                  100 

1R  0.95 0.84 1.00                 100 

2R  0.79 0.95 0.64 1.00                74 

3R  0.96 0.95 0.93 0.85 1.00               99 

0M γ  0.62 0.51 0.56 0.47 0.54 1.00              100 

β  0.26 0.22 0.27 0.16 0.25 0.0019 1.00             99 

2p  0.99 0.95 0.92 0.85 0.98 0.58 0.27 1.00            100 

3p  0.86 0.99 0.75 0.96 0.92 0.46 0.21 0.92 1.00           100 

1R′  0.96 0.84 0.98 0.72 0.95 0.64 0.22 0.94 0.79 1.00          100 

2R′  0.76 0.93 0.60 0.99 0.81 0.49 0.13 0.81 0.94 0.68 1.00         80 

3R′  0.94 0.97 0.88 0.91 0.98 0.60 0.21 0.96 0.94 0.93 0.89 1.00        100 

Mα α′  0.87 0.79 0.78 0.73 0.80 0.70 0.32 0.87 0.75 0.84 0.73 0.84 1.00       100 

2A  0.98 0.93 0.93 0.81 0.97 0.55 0.29 0.996 0.90 0.94 0.77 0.94 0.85 1.00      100 

3A  0.88 0.99 0.77 0.95 0.94 0.44 0.24 0.93 0.996 0.80 0.91 0.94 0.74 0.92 1.00     100 

1l  0.85 0.90 0.81 0.84 0.91 0.50 0.20 0.90 0.89 0.86 0.79 0.91 0.81 0.89 0.90 1.00    100 

2l  0.74 0.91 0.58 0.98 0.79 0.49 0.12 0.79 0.91 0.66 0.99 0.87 0.71 0.74 0.87 0.76 1.00   49 

3l  0.87 0.67 0.94 0.51 0.84 0.54 0.24 0.81 0.59 0.92 0.47 0.78 0.65 0.82 0.61 0.63 0.46 1.00  100 

C  0.62 0.52 0,54 0.49 0.54 0.99 0.17 0.57 0.47 0.63 0.52 0.61 0.70 0.54 0.45 0.50 0.52 0.52 1.00 100 

 

dard error are given in fifth column, the fourth column and the sixth column respec-
tively. Relative standard errors of some parameters are relatively large, especially
for parameter R3, its Relative standard errors even is larger than 1. Generally, the
relative standard error is relative low, when the parameter must be identified or
can’t be identified.

During optimization procedure by L-M algorithm, the identifiable state of some
parameters can change frequently. When x0, which is given in the fourth column in
table 9, is regarded as initial value for the L-M algorithm, the optimization proce-
dure is completed after 44 iterations due to convergence. The identifiable state of
the variable during optimization procedure is given in Table 9. At the first iteration,
the largest identifiable subsets is {m3,Mγ0,R1,Mα ′/α, l1,β ,R′3,m2,R2}. At the 2th
iteration, R1 and R2become un-identifiable, however p3, l3 and R′1 become identifi-
able, the largest identifiable subsets become {m3,Mγ0,R′1, l3,Mα ′/α, l1,β ,R′3,m2, p3}.
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Table 8: Statistical result on parameter identifiabilty analysis, the best identified
parameter and corresponding initial value, and relative standard error

Parameter Identifiable Identifiable Initial Identified Relative
probability1 probability2 value value standard error

m1 0.00 0.02 1.4483 1.4483 0.047
m2 0.92 1.00 0.4757 0.4343 0.037
m3 1.00 1.00 0.2215 0.2591 0.067
R1 0.13 0.87 -1.6701 -1.0767 0.20
R2 0.66 0.84 -19.6872 -94.9974 0.64
R3 0.00 0.47 -0.2459 0.2919 2.26

Mγ0 1.00 1.00 0.002476 0.002576 0.024
β 0.99 1.00 60.9427 77.7040 0.092
p1 0.00 0.00 0.4154 0.4154 0.15
p2 0.00 0.11 0.3075 0.3075 0.22
p3 0.04 0.59 -0.7849 -0.3589 0.44
R′1 0.85 0.99 0.2888 0.3183 0.050
R′2 0.19 0.75 -3.3831 -6.8963 0.38
R′3 0.97 1.00 0.2238 0.2644 0.053

Mα/α ′ 1.00 1.00 0.03705 0.03489 0.15
A1 0.00 0.00 185.5861 185.5861 0.19
A2 0.03 0.61 137.4271 137.4271 0.09
A′3 0.00 0.00 409.4376 409.4376 0.01
l1 0.37 0.95 0.8331 0.8208 0.18
l2 0.40 0.61 0.01167 0.0200 0.44
l3 0.18 0.84 0.6710 0.6064 0.034
C 0.00 0.04 0.0008323 0.0008323 0.033

Identifiable probability1 means the identifiable probability when the identifiability
analysis is taken only at the first iteration.
Identifiable probability2 means the identifiable probability when the identifiability
analysis is taken at each iteration.
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At the first 8 iterations, the largest identifiable subset alters frequently. However,
after the first 8th iteration, the largest identifiable subsets become steady and don’t
alter no more. This is due to that the variation ranges of the parameters are small.
During the parameter identification procedure of the time, the un-identifiable pa-
rameter subsets is {m1, p1, p2,A1,A2,A′3,C}.

8 Conclusion

In this paper, a systemic parameter identification method for the large and complex
macro-micro coupled constitutive models is proposed and is used to identify the
material parameters of the superplastic alloy Ti-6Al-4V, involved in a macro-micro
coupling superplastic model, at 927˚C.

The proposed method is based on the global and local identifiability analysis, in
which two identifiability measures are adopted. The first measure accounts for the
sensitivity of model results to single parameters, and the second measure accounts
for the degree of near-linear dependence of sensitivity functions of parameter sub-
sets. The global identifiability analysis adopts a sampling strategy that is a com-
bination of Latin-hypercube sampling, one-factor-at-a-time sampling and elitism
preservation strategy. The global identifiability index is the integration of the cor-
responding local index.

A hybrid global optimization method is designed. The designed optimization method
incorporates the strengths of GA and the L-M algorithm. The difficulty of choosing
appropriate initial values from GA for the L-M algorithm is overcome through the
introduction of the niching technology. A transition criterion between GA and L-M
algorithm is proposed, through the improvement on the average objective function
value of the chromosomes and on the objective function value of the best chromo-
some in the population. The niching technology and the hybrid-type genetic op-
erator are used to maintain the population diversity. During the L-M optimization
procedure, identifiability analysis is taken at each iteration, and only the identifiable
parameters are updated and the un-identifiable are frozen.

The identified results show that the superplastic model is poorly identifiable. When
the above available experimental data is used, p1, A1, A′3 are identified only with the
probability 0, and the identifiable probability of parameters m1, R3, p2 and C are
very low. The next goal of our research is how to design the experiment to insure
that every parameter involved in the model can be identified well.
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