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Numerical Analysis of Large Strain Simple Shear and
Fixed-End Torsion of HCP Polycrystals

H. Wang1, Y. Wu2, P.D. Wu1 and K.W. Neale3

Abstract: Large strain homogeneous simple shear of Hexagonal Close Packed
(HCP) polycrystals is first studied numerically. The analyses are based on the
classical Taylor model and the Visco-Plastic Self-Consistent (VPSC) model with
various Self-Consistent Schemes (SCSs). In these polycrystal plasticity models,
both slip and twinning contribute to plastic deformations. The simple shear results
are then extended to the case of solid circular bars under large strain fixed-end tor-
sion, where it is assumed that the solid bar has the same mechanical properties as
the element analyzed for large strain simple shear. It is shown that the predicted
second-order axial force is very sensitive to the initial texture, texture evolution and
the constitutive models employed. Numerical results suggest that the torsion test
can provide an effective means for assessing the adequacy of polycrystal plasticity
models for HCP polycrystalline materials.
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1 Introduction

As a material with low density, magnesium and its alloys have been increasingly
used for automotive, aeronautical and aerospace parts and structures. Magnesium
alloys are of Hexagonal Close Packed (HCP) crystallographic structure with low
symmetry and consequently exhibit high anisotropy in mechanical behavior. The
plastic deformation in most Face Centered Cubic (FCC) and Body Centered Cubic
(BCC) is dominated by crystallographic slip. In contrast, both slip and twinning
contribute to the plastic deformation in HCP crystals. At the crystal level, the con-
stitutive modeling for HCP single crystals is much more complicated than that for
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FCC and BCC crystals. The reasons for this are (1) twinning must be accounted
for in HCP crystals; and (2) different types of slip systems exist in HCP crystals,
although very few slip systems can be activated at room temperature. At the poly-
crystal level, compared to the constitutive modeling for FCC and BCC polycrys-
tals, additional difficulty in the constitutive modeling for HCP polycrystals is that
interactions between crystals/grains are much more significant due to low crystal-
lographic symmetry; these must be carefully considered.

Among the various polycrystal plasticity models, the classical Taylor (1938) model
has been the most popular one. The Taylor model, known as the upper bound
model, assumes that all grains must accommodate the same plastic strain, equal to
the macroscopically imposed strain. In this model, the actual heterogeneities that
occur during the deformation of polycrystals are neglected. More specifically, the
Taylor model neglects strain variations from grain to grain in the polycrystalline ag-
gregate. The Taylor model has played an important role in the field of sheet metal
forming (see, e.g., Dawson et al., 2003; Wu et al., 1997). Noticeable new advance
in the Taylor polycrystal plasticity model has been the incorporation of deforma-
tion twinning (see e.g. Kalidindi, 1998; Staroselsky and Anand, 1998, 2003; Wu
et al., 2007a). Another popular type of polycrystal plasticity model is based on
the self-consistent approach, originally proposed by Kröner (1958). In general,
self-consistent models assume that each grain is an ellipsoidal inclusion embedded
in an infinite homogeneous equivalent medium (HEM). The consistency conditions
require that the averaged behavior over all the grains must be the same as the macro-
scopically imposed one. Since stress and strain variations from grain to grain and
interactions among grains in an HCP polycrystalline aggregate are significant and
cannot be neglected in an attempt to accurately describe the deformation, it is ex-
pected that a self-consistent approach may be more suitable than the full constraint
Taylor approach for the constitutive modeling of HCP polycrystals. Among the
various self-consistent plasticity models, the Visco-Plastic Self-Consistent (VPSC)
model developed by Molinari et al. (1987) and Lebensohn and Tomé (1993, 1994)
has been widely used to simulate the large strain behavior and texture evolution of
HCP polycrystalline Mg under various deformations (see e.g. Agnew and Duygulu,
2005; Jain and Agnew, 2007; Xu et al., 2008). Recently, Wang et al. (2010a)
have developed a finite strain elastic-viscoplastic self-consistent model (EVPSC)
for polycrystalline materials. The EVPSC model is a completely general elastic-
viscoplastic, fully anisotropic, self-consistent polycrystal model, applicable at large
strains and to any crystal symmetry. However, it has been found that numerical re-
sults are extremely sensitive to the Self-Consistent Schemes (SCSs) applied even
when the values of the material constants are assumed to be the same for various
SCSs (see e.g. Wang et al., 2010a). Therefore, it is necessary to carry out an assess-
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ment of the predictive capability of the VPSC/EVPSC model with various SCSs.
Wang et al. (2010b) numerically studied the large strain behavior of magnesium al-
loy AZ31B sheet under uniaxial tension and compression along different directions.
An assessment of the predictive capability of the polycrystal plasticity models was
made based on comparisons of the predicted and experimental stress responses and
R values. While Wang et al. (2010b) performed the evaluation based on defor-
mation processes that do not involve significant shear; the present paper intends to
further evaluate various SCSs by studying large strain homogeneous simple shear
and fixed-end torsion of HCP polycrystals.

Focusing on large strain torsion, the present study is motivated by the fact that the
torsion test provides an excellent means for obtaining experimental data for the
constitutive behavior of elastic-plastic solids at large to very large deformations.
The advantage over the standard tensile test is that deformations of a solid bar in
torsion remain axially homogeneous up to final failure without giving rise to strain
localization phenomena such as necking and shear banding. Evidently, torsional de-
formations are inhomogeneous in the radial direction, but this multiaxiality is lower
and more tractable than the three-dimensional state inside necks, etc. Furthermore,
it is well-known that the axial stress development during fixed-end torsion and the
axial elongation during free-end torsion in initially isotropic polycrystalline met-
als are mainly due to texture development (Montheillet et al., 1984; Toth et al.,
1992). The predictions of these second-order axial effects, often called the “Swift
effect” (Swift, 1947), depend strongly on the constitutive model – in particular on
the description of anisotropic hardening (see, e.g., Harren et al., 1989; Wu et al.,
1996). Thus, the torsion test seems to provide an effective means for assessing the
adequacy of proposed constitutive models. It has been found that the axial effect is
more pronounced in thin-walled tubes than in solid bars (see e.g. Billington, 1977).
In fact, many experimental procedures based on torsion have used thin-walled tubes
for which the state of the deformation has been assumed to be completely uniform
and, for fixed-end torsion, to be a state of simple shear (Field and Adams, 1990).
Reducing the wall thickness of a tube will reduce the nonuniformity of the deforma-
tion and, if the tubes are extremely thin, then the deformation can be approximated
to be homogeneous so that the experimental results can be easily interpreted. Un-
fortunately, in order to avoid buckling in a finite deformation torsion experiment
on a hollow tube, it is necessary that the thickness of the tube be at least 10-15%
of the mean radius (Khen and Rubin, 1992). Based on a detailed finite element
analysis Wu and Van der Giessen (1993) have found that these hollow tubes cannot
really be considered to be thin and the deformation is not really homogeneous. In
addition to this, a thin hollow tube is much more difficult to manufacture and grip
than a solid bar so that, in view of the various experimental problems, thin-walled
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tubes seem to be of less practical importance at large strains. Consequently, the
numerical simulation of solid bars under large-strain torsion, accounting accurately
for nonuniform states of deformation, is of considerable practical significance.

Obviously, the torsion test on a solid circular bar involves stress and deformation
gradients along the radius of the bar, as well as non-proportional stressing histories
and rotations of the principal axes of strain for each element of the cross-section.
Therefore, the analysis of large strain solid bar torsion is considerably more in-
volved. Fortunately, Neale and Shrivastava (1985, 1990) have found that if the be-
havior is axisymmetric, axially homogeneous and incompressible, semi-analytical
solutions can be obtained for solid bars subjected to fixed-end torsion. Neale et al.
(1990) have applied the method to study the fixed-end torsion of a solid bar using
a rigid plastic version of the Taylor polycrystal model. In the present paper, this
semi-analytical approach is used to simulate large strain torsion of solid bars of
HCP polycrystals under fixed-end conditions.

Although extensive experimental and numerical research has been performed on
large strain torsion for FCC and BCC polycrystals, there are rare investigations on
the torsion of HCP materials. Sanchez et al. (2001) and Evans et al. (2005) studied
texture evolution during torsion by simulating simple shear. Barnett (2001) ex-
perimentally studied the flow stress of AZ31 under torsion. Balasubramanian and
Anand (2002) numerically studied texture evolution and the mechanical response
of titanium under fixed-end torsion of a circular tube by using the finite element
method. Very recently, Beausir et al. (2009) experimentally and numerically stud-
ied the free-end torsion of AZ71 and pure Mg. To the best of our knowledge,
however, all the numerical studies on the large strain torsion of HCP polycrystals
have excluded twinning.

In this paper, we numerically study the large strain simple shear and fixed-end
torsion of HCP polycrystals. All the simulations are based on the classical Taylor
model and the VPSC model with various SCSs. In these polycrystal plasticity mod-
els both slip and twinning contribute to plastic deformations in HCP polycrystals.
The plan of this paper is as follows. In Section 2, the fixed-end torsion problem
formulation and the method of solution are presented. In Section 3, we briefly re-
view the constitutive models. We begin Section 4 by showing two initial textures
and listing values of the material parameters in the Taylor and VPSC analyses with
various SCSs. These values of the material parameters are then used to predict
large strain behavior under simple shear and fixed-end torsion. Differences in pre-
dictions between the various models are emphasized. The conclusion is presented
in Section 5.
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2 Problem formulation and method of solution

We consider an incompressible solid circular bar with radius R and length L sub-
jected to an angle of twist ψ (Fig. 1). The bar is assumed to be constrained axially,
thus allowing the possible development of axial stresses and a resultant axial force
F . The end faces of the bar are constrained to the extent that they remain plane and
perpendicular to the axial direction, so that we may assume that any cross-section
of the bar remains planar. The lateral surface of the bar is stress free, and all prop-
erties are assumed to be axisymmetric and homogeneous along the axial direction.
Although anisotropy will be induced during the deformation process, the behavior
remains axisymmetric and the bar remains circular cylindrical.

 
Figure 1: Schematic representation of an axially-constrained solid circular bar un-
der torsion.

The kinematics of the problem is readily determined with the aid of a spatial fixed
cylindrical polar coordinate system xi = (r,θ ,z) with orthonormal base vectors e1 =
er, e2 = eθ , e3 = ez. These base vectors are associated with material elements in
their current, deformed state so that physical components are represented by tensor
components with respect to this basis. If the initial, undeformed coordinates of a
material point are (r,θ0,z), its current, deformed coordinates are given by (r,θ ,z)
with θ = θ0 +(z/L)ψ . Accordingly, the velocity gradient tensor l = li jeie j is

[li j] =

0 0 0
0 0 γ̇

0 0 0

 (1)
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whereγ̇ = ψ̇(r/L). Thus, each element of the bar is in a state of simple shear in
the θ − z plane, where the shear deformation γ is directly proportional to the radial
distance r. That is,

γ (r) =
r
R

Γ (2)

where Γ = ψ(R/L) represents the shear strain at the outer radius of the bar.

With the hypothesis that the behavior is axisymmetric, axially homogeneous and
incompressible, Neale and Shrivastava (1990) have developed the semi-analytical
solutions for solid bars subjected to fixed-end torsion. Their approach is based on
the observation that each material element is simply loaded in simple shear under
an additional hydrostatic pressure, where the shear strain γ is directly proportional
to the radius r, as shown in (1) and (2). To apply this semi-analytical method, the
quantities of the deviatoric stress components si j during simple shear are required
as a function of the shear deformation γ , which is then readily translated into the
deviatoric stress distribution si j(r). The Cauchy stress distribution σi j = si j− pδi j

(where δi j is Kronecker delta) is obtained when the hydrostatic pressure distribution
p(r) is found.

Because of axisymmetry and the prescribed boundary conditions, we have σrθ =
σrz = 0 throughout the bar. The only equation of equilibrium which is not identi-
cally satisfied is the relation

r
dσrr

dr
+σrr−σθθ = 0 (3)

This can be written in terms of p and the known stress deviator distribution si j (r)
as follows
dp
dr

=
dsrr

dr
+

1
r
(srr− sθθ ) (4)

With the boundary condition σrr(R) = 0, equation (4) can be integrated to give the
hydrostatic pressure distribution p(r)

p(r) = srr−
∫ R

r

1
r
(srr− sθθ )dr (5)

Combining the pressure p(r) with the previously determined stress deviator distri-
butions si j(r) gives the Cauchy stress distributions σi j(r). The resultant torque T
and axial force F are given by

T (Γ) = 2π

∫ R

0
r2

σzθ dr

F(Γ) = 2π

∫ R

0
rσzzdr

(6)
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It is clear that the hydrostatic pressure has no influence on T since σzθ = szθ .
Numerical results are presented in terms of the shear strain at the outer radius of
the bar Γ , the mean shear stress τ̄ and mean axial stress σ̄ in the bar defined by:

Γ = ψ
R
L

, τ̄ =
3T

2πR3 , σ̄ =
F

πR2 (7)

In summary, the deviatoric stress components si j, as functions of the shear strain
γ in simple shear (in the θ − z plane) described by (1), are first calculated either
analytically or numerically based on a constitutive model. Because the shear strain
γ is directly proportional to the radial distance r according to (2), the calculated
deviatoric stress components si j during simple shear are readily translated into the
deviatoric stress distributions si j(r) in torsion. The pressure distribution across the
bar under torsion is computed by numerically integrating (5), and the Cauchy stress
distributions σi j(r) are then obtained through σi j = si j− pδi j. Finally, the resultant
axial force and torque are calculated by numerically integrating (6).

3 Polycrystal plasticity models

The plastic deformation of a crystal is assumed to be due to crystallographic slip
and twinning on the slip and twinning systems (sα ,nα). Here, sα and nα are respec-
tively the slip/twinning direction and normal direction of the slip/twinning system
α in the present configuration. The following equation relates the grain (crystal)
level plastic strain rate dg, and stress σσσg (see e.g. Asaro and Needleman, 1985):

dg = ∑
α

γ̇
αPα (8)

where γ̇α is the shear rate of slip (twinning) system α , and Pα is the associated
Schmid tensor:

Pα =
1
2
(sαnα +nαsα) (9)

For slip,

γ̇
α = γ̇0

∣∣∣∣τα

τα
cr

∣∣∣∣ 1
m

sgn(τα) (10)

whereas, for twinning,

γ̇
α = γ̇0

(
τα

τα
cr

) 1
m

for τ
α > 0

γ̇
α = 0 for τ

α ≤ 0

(11)



262 Copyright © 2010 Tech Science Press CMC, vol.19, no.3, pp.255-284, 2010

where γ̇0 is a reference value of slip/twinning rate, m is the slip/twinning rate sen-
sitivity, and τα is the resolved shear stress:

τ
α = σσσ

g : Pα (12)

τα
cr is the critical resolved shear stress (CRSS), and sgn represents the sign function.

The evolution of τα
cr is taken in the form of

τ̇
α
cr =

dτ̂α

dγac
∑
β

hαβ
γ̇

β (13)

where γac = ∑
α

∫
|γ̇α |dt is the accumulated shear strain in the grain, and hαβ is the

latent hardening coupling coefficient which empirically accounts for the obstacles
on system α associated with system β . If there are k crystallographically equivalent
slip/twinning modes and the ith mode has ni slip/twinning systems, we take hαβ in
the form of

hαβ =


An1×n1 q12An1×n2 · · · q1kAn1×nk

q21An2×n1 An2×n2 · · · q2kAn2×nk
...

...
...

qk1Ank×n1 qk2Ank×n2 · · · Ank×nk

 (14)

where qi j is the ratio of the latent hardening rate of mode j to the self-hardening
rate of mode i, and Ani×n j is an ni by n j matrix fully populated by ones (Wang et
al., 2010c). τ̂α is the threshold stress and is characterized by

τ̂
α = τ

α
0 +(τα

1 +hα
1 γac) (1− exp(−

hα
0

τα
1

γac)) (15)

Here,τ0, h0, h1 and τ0 + τ1 are the initial CRSS, the initial hardening rate, the
asymptotic hardening rate, and the back-extrapolated CRSS, respectively.

Various homogenization methods have been developed to characterize the mechan-
ical behavior of a polycrystalline aggregate from the responses of their single crys-
tals. Among them, the most popular Taylor model assumes that the strains of each
grain are equal to the imposed macroscopic strains, and the macroscopic stresses
are the average of the stresses over all the grains. Another popular homogenization
method is the self-consistent approach, which assumes each grain to be an ellip-
soidal inclusion embedded in a homogeneous effective medium (HEM), which is
the aggregate of the grains. The Eshelby inclusion formulism (Eshelby, 1957) is
used to describe the interaction between each grain and the aggregate. During each
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deformation step, the single crystal constitutive law, which describes the grain-level
response, and the self-consistency criteria are solved simultaneously. This enables
the grain-level stresses and strain rates to be consistent with the boundary condi-
tions imposed on the surrounding polycrystalline aggregate.

The linearized behavior of inclusion (single crystal) can be written as

dg = Mg : σσσ
g +dg

0 (16)

where Mg and dg
0 are the visco-plastic compliance and the back-extrapolated term

of grain g, respectively. The linearized behavior of the HEM (polycrystal) is anal-
ogous to the inclusion and is written as

D = M̄ : σσσ +D0 (17)

where M̄, D, σσσ and D0 are the visco-plastic compliance, strain rate, stress and the
back-extrapolated term of the HEM, respectively. The relation of grain-level stress
and strain rate to the aggregate response is obtained self-consistently by

(dg−D) =−M̃g : (σσσg−σσσ) (18)

The interaction tensor M̃ is calculated from

M̃g = (I−Sg)−1 : Sg : M̄ (19)

where Sg is the Eshelby tensor for a given grain, and I is the identity tensor. Differ-
ent SCSs depend on different choices of this linearization. The following lineariza-
tion schemes are adopted in this paper:

(a) Secant:

Mg,sec
i jkl = γ̇0 ∑

α

(
τα

τα
cr

) 1
m−1 Pα

i j Pα
kl

τα
cr

dg,sec
0i j = 0

(20)

(b) Affine:

Mg,a f f
i jkl =

γ̇0

m ∑
α

(
τα

τα
cr

) 1
m−1 Pα

i j Pα
kl

τα
cr

dg,a f f
0i j = (1−1

/
m)dg

i j

(21)

(c) Tangent:
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With the aid of the tangent-secant relation: M̄tg = M̄sec/m (Hutchinson, 1976), the
tangent scheme gives the interaction tensor:

M̃g = (I−Sg)−1 : Sg : M̄sec/m (22)

(d) me f f :

The me f f scheme introduces an adjustable parameter me f f , such that m < me f f < 1.
The interaction tensor is therefore given by:

M̃g = (I−Sg)−1 : Sg : M̄sec/me f f (23)

For details concerning the visco-plastic adaptation of the self-consistent algorithms
we refer to Lebensohn and Tomé (1993).

The Predominant Twin Reorientation (PTR) scheme proposed by Tomé et al. (1991)
is used in the present paper to model the twinning activities. Within each grain g,
the PTR scheme tracks the shear strain γα,g contributed by each twin system α ,
and the associated volume fraction V α,g = γα,g

γ tw as well; here γ tw is the character-
istic shear (constant) associated with twinning. The sum over all twin systems
associated with a given twin mode, and then over all the grains, represents the ’ac-
cumulated twin fraction’ V acc,mode in the aggregate for the particular twin mode:

V acc,mode = ∑
g

∑
α

V α,g (24)

Since it is not numerically feasible to consider each twinned fraction as a new
orientation, the PTR scheme adopts a statistical approach. At each incremental
step, some grains are fully reoriented by twinning provided certain conditions are
fulfilled. The ’effective twinned fraction’ V e f f ,mode is the volume associated with
the fully reoriented grains for the mode, and a threshold volume fraction is defined
as

V th,mode = Ath1 +Ath2V e f f ,mode

V acc,mode (25)

where Ath1and Ath2 are two material constants. After each deformation increment
a grain is randomly selected and the twin system with the highest accumulated
volume fraction is identified. If the latter is larger than the threshold V th,mode the
grain is allowed to reorient, and V e f f ,mode and V acc,mode are updated accordingly.
The process is repeated until either all grains are checked or the effective twin
volume exceeds the accumulated twin volume. In the latter case reorientation by
twinning is ceased and the next deformation step is considered. Two things are
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achieved in this process: a) only the historically most active twin system in each
grain is considered for reorienting the whole grain by twinning, and b) the twinned
fraction is consistent with the shear activity that the twins contribute to deformation.

For simplicity, the VPSC models with Affine, Secant, Tangent and me f f SCSs are
respectively referred to as the Affine, Secant, Tangent and me f f =0.1 (meff=0.1 in
figure legends) models in the remainder of this paper.

4 Results and Discussion

Various polycrystal plasticity models including the classical full-constrained Tay-
lor model and VPSC model with various SCSs are applied to simulate large strain
uniform simple shear and large strain fixed-end torsion of circular solid bars. In
order to study the effects of initial texture on simple shear and torsion, we con-
sider a random texture and a typical extrusion texture. Both initial textures are
represented by 1200 orientations and are shown in Fig. 2 in terms of {0001} and
{101̄0} pole figures in θ - z(e2− e3)and r-θ (e1− e2) planes. It has been generally
accepted that the predicted second-order normal stress is sensitive to the initial tex-
ture and its symmetries (see e.g. Harren et al., 1989). Theoretically, in the absence
of certain symmetries, the initial developments in the normal stress can actually
be attributed, to some extent, to these ‘initial textures’ which do not satisfy the
sample symmetries. The initial textures considered in the present paper have 1200
grains/orientations. They are constructed from orientation distributions with 300
grains by symmetrizing them with respect to the z-axis and θ - z plane. Conse-
quently, these two initial textures are axisymmetric about the z-axis (see Fig. 2b)
and symmetric about the r-θ plane (see Fig. 2a). Numerical tests indicated that the
calculated shear stress components σrθ and σrz are nearly zero under simple shear
in the θ - z plane. This implies that the initial textures reasonably satisfy the sample
symmetries.

The plastic deformation in HCP materials is assumed to be resulted from slip in the
Basal 〈a〉 ({0001}

〈
112̄0

〉
), Prismatic 〈a〉 ({101̄0}

〈
112̄0

〉
) and Pyramidal 〈c+a〉

({1̄1̄22}
〈
1̄1̄23

〉
) slip systems, and twinning on the {101̄2}

〈
1̄011

〉
tensile twin sys-

tem. Secondary twinning (twinning within already twinned parts of grains) is not
considered. The reference slip/twinning rate γ̇0 and rate sensitivitym are assumed
to be the same for all slip/twinning systems, and are taken as γ̇0 = 0.001 s−1 and
m = 0.05, respectively. We further assume that there are no latent hardening effects
between slip systems, i.e., qi j=1 (i=1, basal slip; i=2, prismatic slip; i=3, pyrami-
dal slip). Values of the other material parameters in the Taylor model and VPSC
model with various SCSs are taken from Wang et al. (2010b) and are listed in Ta-
ble 1. It should be noted that qi4 represents the latent hardening effect between a
slip/twining system (i=4, tensile twinning) and the twining system. It is important
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(a) (b)  

Figure 2: Initial textures represented in terms of {0001} and {101̄0} pole figures
in (a) θ - z (e2− e3) plane, and (b) r-θ (e1− e2) plane.

to point out that the values of the material parameters for the Taylor model and
Secant models are the same. It has been found that the predictions of these two
models are almost the same for all deformation processes studied in Wang et al.
(2010b). Figs. 3 and 4 present the uniaxial tensile stress and strain curves along
the axial direction for the initial random and extrusion textures, respectively. Gen-
erally speaking, all the models show roughly the same response to uniaxial tension
for both the initial random and extrusion textures. The Taylor model and Secant
model give virtually the same results. Noticeable differences are that the Taylor
and Secant models are above the other models when ε < 0.06 for the initial ran-
dom texture and ε < 0.12 for the initial extrusion texture. At large strains, the
Tangent model exhibits higher hardening.

The predicted shear stress τ = σθz and normal stress σzz as functions of the shear
strain γ under simple shear in the θ − z plane, characterized by (1) with a strain
rate γ̇ = 0.001 s−1 for the initial random texture, are presented in Fig. 5. For the
shear stress response, the Taylor and Secant are very close to each other throughout
the entire deformation process. At small strains, γ < 0.1, the Taylor and Secant are
higher than the other models. This difference is also seen for the uniaxial results
in Fig. 3. The predicted shear stress based on the Tangent shows a significantly
higher hardening than the ones according to the Affine, Secant and Taylor at strains
γ > 0.2. A noticeable strain softening effect is detected by the Tangent model at
γ ≈ 1.7. The predicted second-order normal stresses are found to be very sensitive
to the models employed. The Taylor and Secant are again very close to each other.
The normal stress predicted by the Taylor and Secant is compressive at γ < 0.15,
tensile when 0.15 < γ < 0.5, and becomes compressive again for strains γ > 0.5.
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Table 1: List of values of material constants for the Taylor model and VPSC model
with various self-consistent schemes.

Model Mode τ0 τ1 h0 h1 qi4 Ath1 Ath1

Taylor Basal
Prismatic
Pyramidal
Tensile
Twin

13
73
110
31

4
35
83
0

5000
400
2500
0

30
60
0
0

4
4
2
4

0.82 0

Affine Basal
Prismatic
Pyramidal
Tensile
Twin

6
77
95
50

1
38
100
0

5000
590
6000
0

50
60
0
0

4
4
2
4

0.7 0

Secant Basal
Prismatic
Pyramidal
Tensile
Twin

13
73
110
31

4
35
83
0

5000
400
2500
0

30
60
0
0

4
4
2
4

0.82 0

me f f =0.1 Basal
Prismatic
Pyramidal
Tensile
Twin

17
77
148
33

6
33
35
0

3800
650
9600
0

100
50
0
0

4
4
2
4

0.81 0

Tangent Basal
Prismatic
Pyramidal
Tensile
Twin

21
90
145
38

5
15
30
0

3000
580
9600
0

140
70
0
0

4
4
2
4

0.81 0

The Affine, me f f =0.1 and Tangent all show a tensile normal stress when the defor-
mation is small. The predicted normal stress based on the Affine model becomes
compressive at γ ≈ 0.35, reaches its maximum at γ ≈ 1.0, and then gradually de-
creases. At γ = 3.0 the predicted normal stress according to the Affine model is
almost zero. For the me f f =0.1 and Tangent models, the early developed tensile
normal stress becomes compressive at γ ≈ 0.25, and then reaches its maximum at
γ ≈ 1.0. After that, the compressive normal stress monotonically increases based
on the Tangent model. The compressive normal stress based on the me f f =0.1 model
gradually decreases and becomes tensile when γ > 2.0. It is interesting to note that
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Figure 3: Predicted uniaxial stress and strain curves based on various polycrystal
plasticity models for the initial random texture.

 

Figure 4: Predicted uniaxial stress and strain curves based on various polycrystal
plasticity models for the initial extrusion texture.
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the predicted normal stresses are reasonably small for all models except the Tangent
model, which shows a significant softening effect in the predicted τ and γ curve at
large shears.

 

Figure 5: Predicted shear stress τ = σθz and normal stress σzz as functions of shear
strain γ under simple shear for the initial random texture.

Figure 6 shows the predicted shear stress τ = σθz and normal stress σzz as functions
of the shear strain γunder simple shear for the initial extrusion texture. The Taylor
and Secant are very similar for both shear stress and normal stress. There is no sig-
nificant softening effect in the τ and γ curve based on the Tangent model. Perhaps,
the most striking difference between the initial random and extrusion textures is that
much larger tensile normal stress is found for the initial extrusion texture. The nor-
mal stresses predicted by the Taylor, Secant and Affine are almost always tensile.
By contrast, the predicted normal stress becomes compressive when γ > 0.6 and
0.9 for the Tangent and me f f =0.1 models, respectively. Furthermore, the predicted
compressive normal stress at large shears is much larger in the Tangent model than
in the me f f =0.1 model.

The differences in the predicted stress responses between the various models shown
in Figs. 5 and 6 may result from different slip/twinning activities in these models.
Figs. 7 and 8 present relative activities of slip/twinning under simple shear for the
initial random and extrusion textures, respectively. It is found that slip/twinning ac-
tivities in the Taylor and Secant models are very similar for both initial textures. For
the initial random texture, twinning activity is noticeable only at very small shears.
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A close observation reveals that twinning is relatively more active in the Affine,
Tangent and me f f =0.1 than in the Taylor and Secant models. In the me f f =0.1 and
Tangent models, Basal slip is the most important slip/twinning activity when shear
is very small and becomes less important at large strains when Pyramidal slip is
more and more active. The predicted slip/twinning activities are very similar in the
Taylor, Secant and Affine models. More specifically, Basal slip activity is an im-
portant contribution to plastic deformation during the entire deformation process,
while Pyramidal slip is more active when Prismatic slip activity gradually decreases
with increasing shear. It is important to note that Pyramidal slip becomes dominant
at large shears in the Tangent model, which may be related to the extremely high
compressive normal stress shown in Fig. 5.

 

Figure 6: Predicted shear stress τ = σθz and normal stress σzz as functions of shear
strain γ under simple shear for the initial extrusion texture.

The twinning activity under simple shear for the initial extrusion texture is signifi-
cantly less than for the initial random texture at very small shear strains. The small
but noticeable second twinning is found at γ ≈ 2.2 for the Taylor, Secant and Affine
models. The predicted trends for activities of Basal, Prismatic and Pyramidal slip
systems are somewhat similar to those for the initial random texture. The most im-
portant difference is that Basal slip activity decreases very rapidly in the me f f =0.1
and Tangent models. In the Taylor, Secant and Affine models, Pyramidal slip is
considerably more active than Basal slip when γ > 0.7 , while these two activities
are roughly at the same level for the initial random texture. Once again, Pyramidal
slip becomes dominant in the Tangent model at large strains, where large compres-
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sive normal stress is predicted (see Fig. 6). Furthermore, Prismatic slip system is
noticeably more active under simple shear for the initial extrusion texture than for
the initial random texture when γ < 0.75. It is noted that within this strain range
the predicted normal stress is tensile and large.

 

Figure 7: Predicted slip/twinning activities for the initial random texture under
simple shear based on various polycrystal plasticity models.

Figures 9 and 10 show the predicted deformation textures under simple shear at a
shear strain γ = 1 for the initial random texture and extrusion texture, respectively.
All the models exhibit shear textures analogous to the experimental textures ob-
served in simple shear by Beausir et al. (2007) and in free-end torsion by Beausir
et al. 2009) for HCP materials. Closer examination reveals that the Taylor and
Secant models are very close, while the deformed textures based on the Affine,
me f f =0.1 and Tangent are very similar.

The development of the second-order normal stress is believed to mainly result
from the initial and deformation induced anisotropy and is thus sensitive to the tex-
ture evolution. Figs. 11 and 12 give the predicted shear stress τ = σθz and normal
stress σzz as functions of the shear strain γ under simple shear for the initial random
texture and extrusion texture, respectively. In these simulations texture evolution
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Figure 8: Predicted slip/twinning activities for the initial extrusion texture under
simple shear based on various polycrystal plasticity models.
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Figure 9: Predicted deformation textures under simple shear at shear strain γ = 1
for the initial random texture.

is excluded. It is important to point out that in these simulations both texture evo-
lution due to slip and reorientation due to twinning are excluded. It is found that
excluding texture evolution dramatically reduces the predicted normal stress for
all the models. For the initial random texture, the predicted normal stresses are
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Figure 10: Predicted deformation textures under simple shear at shear strain γ = 1
for the initial extrusion texture.

nearly zero during the entire deformation process. The corresponding predicted
slip/twinning activities are shown in Figs. 13 and 14 for the initial random tex-
ture and extrusion texture, respectively. For the initial random texture and with
respect to the cases with texture evolution, excluding texture evolution results in:
(I) a monotonic reduction of the Basal slip activities in all the models especially
in the me f f =0.1 and Tangent models, where a very rapid reduction is found; (II)
noticeably active Prismatic slip; and (III) more active Pyramidal slip in the Taylor,
Secant and Affine models at large shears. For the initial extrusion texture and with
respect to the cases with texture evolution, excluding texture evolution results in:
(I) a monotonic decrease of the Basal slip activities; (II) more active Prismatic slip
especially at large strains; and (III) less active Pyramidal slip in the Taylor, Secant
and Tangent models, and much less active in the Affine and me f f =0.1 models, at
large shears. For both initial textures, the twinning activity is noticeable only at
very small shears. The predicted volume fractions of twinned regions for the initial
extrusion texture with and without texture evolution are presented in Fig. 15. It
is found that all the models show roughly the same trend. It is also observed that
texture evolution makes twinning more difficult to occur.

We now proceed to study the large strain fixed-end torsion of a circular solid bar. As
mentioned previously, each material point in the circular solid bar is simply loaded
in simple shear under an additional hydrostatic pressure, where the shear strain
γ is directly proportional to the radius r. Thus, the simple shear results reported
above can be extended to the analysis of the fixed-end torsion of the circular solid
bar using the semi-analytical approach developed by Neale and Shrivastava (1985)
and recapped in Section 2. Figs. 16 and 17 show the predicted mean shear stress
τ̄ and mean axial stress σ̄ as functions of the shear strain Γ at the outer radius
of the bar under fixed-end torsion for the initial random and extrusion textures,
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Figure 11: Predicted shear stress τ = σθz and normal stress σzz as functions of
shear strain γ under simple shear for the initial random texture. Texture evolution
is excluded.

respectively. It is clear that the predicted torsional responses are much smoother
than the corresponding simple shear results, especially at large strains. For the
initial random texture, the predicted mean axial stress σ̄ is compressive at large
strains for all the models. Furthermore, the softening effect in the τ vs. γ curve
under simple shear predicted by the Tangent model (Fig. 5) is significantly reduced
in the τ̄ vs. Γ curve under fixed-end torsion. It is expected that the solid bar may
elongate axially if the axial constraint is removed; i.e., under free-end torsion. For
the initial extrusion texture, the Taylor, Secant and Affine models predict tensile
mean axial stresses during the entire deformation process. The calculated mean
axial stresses are tensile at small strains and become compressive when Γ > 1.5 and
1.0 for the me f f =0.1 and Tangent models, respectively. This may imply that a solid
bar with the initial extrusion texture under free-end torsion shortens in the axial
direction based on the Taylor, Secant and Affine models. However, the predicted
axial response under free-end torsion based on the me f f =0.1 and Tangent models
may exhibit a complicated trend: contracting first and then elongating axially. It is
important to note that Beausir et al. (2009) have investigated the free-end torsion
for magnesium alloy AZ71 at various temperatures and strain rates. They found
that, within the shear strain range of Γ < 0.8, axial contraction occurs in all the
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Figure 12: Predicted shear stress τ = σθz and normal stress σzz as functions of
shear strain γ under simple shear for the initial extrusion texture. Texture evolution
is excluded.

cases examined. The predicted σ̄ vs. Γ curve under fixed-end torsion shown in Fig.
17 seems in a good qualitative agreement with the experimental axial strain vs. Γ

curve under free-end torsion reported by Beausir et al. (2009).

Based on the simple shear results reported previously, it is expected that texture
evolution has a significant influence on the predicted torsional response. The effects
of texture evolution on the predicted mean shear stress τ̄ and mean axial stress
σ̄ as functions of the shear strain Γ at the outer radius of the circular solid bar
under fixed-end torsion for the initial random and extrusion textures are respectively
presented in Figs. 18 and 19. Texture evolution is excluded in these simulations. It
is observed that the second-order mean axial stress is dramatically reduced for both
initial textures and for all the models employed. For the initial random texture, the
predicted axial stress remains very small. For the initial extrusion texture, when
the strains are not very large all the models give a tensile mean axial stress. At
large strains, the mean axial stresses predicted by the me f f =0.1 and Tangent models
remain tensile although small, while compressive mean axial stresses are calculated
from the Taylor, Secant and Affine models. These observations are opposite to what
was found in the cases where texture evolution is accounted for (see Fig. 17).

Finally, it is worth mentioning that the polycrystal plasticity models employed in



276 Copyright © 2010 Tech Science Press CMC, vol.19, no.3, pp.255-284, 2010

 

Figure 13: Predicted slip/twinning activities for the initial random texture under
simple shear based on various polycrystal plasticity models.

the present study are such that a superimposed hydrostatic pressure has no effect
on the predicted textures. Furthermore, each element of the solid bar in torsion
is in a state of simple shear under an additional hydrostatic pressure. Therefore,
deformed textures under simple shear are sufficient to describe the texture evolution
throughout the solid bar.

5 Conclusions

In this paper, the large strain uniform simple shear of Hexagonal Close Packed
(HCP) polycrystals has been first studied numerically, based on the classical Tay-
lor model and the Visco-Plastic Self-Consistent (VPSC) model with various self-
consistent schemes. In these polycrystal plasticity models, both slip and twinning
contribute to plastic deformation. The simple shear results have been extended to
the large strain fixed-end torsion of solid circular bars.

It has been found that the development of the second-order normal stress in fixed-
end torsion is very sensitive to the initial anisotropy due to the initial texture, and
the deformation induced anisotropy due to the texture evolution. Numerical re-
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Figure 14: Predicted slip/twinning activities for the initial extrusion texture under
simple shear based on various polycrystal plasticity models. Texture evolution is
excluded.

sults have indicated that excluding texture evolution dramatically reduces the de-
velopment of the axial force. It has been also observed that the predicted normal
force depends strongly on the polycrystal plasticity models employed. For the ex-
truded solid bars, the Taylor, Secant and Affine models predict tensile normal forces
throughout the deformation process, while the me f f =0.1 and Tangent models show
tensile normal forces at relatively small strains and compressive normal stresses at
large strains. These findings imply that the torsion test can provide an effective
means for assessing the adequacy of constitutive models. Therefore, the polycrys-
tal plasticity models for HCP materials considered in the present paper can be effi-
ciently evaluated when experimental data for fixed-end torsion of HCP polycrystals
become available.

Finally, it is worth mentioning that the Crystal Plasticity Finite Element Model
(CPFEM) has also been applied to study the large strain behavior of HCP polycrys-
tals (see e.g. Mayama et al., 2009; Choi et al., 2010). In CPFEM simulations an
element of the FE mesh represents either a single crystal or a part of a single crys-
tal, and the constitutive response at an integration point is described by the single
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Figure 15: Predicted volume fractions of twinned regions for the initial extrusion
texture with and without texture evolution.

crystal constitutive model. This approach enforces both equilibrium and compat-
ibility throughout the polycrystalline aggregate in the weak FE sense (Anand and
Kalidindi, 1994; Wu et al., 2004). Furthermore, it facilitates consideration of grain
morphology and the modeling of localized deformations in single and polycrystals
(Wu et al., 2007b; Shi et al., 2010). However, this method is computationally much
more intensive than the polycrystal plasticity models.
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