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Abstract: The Reissner mixed variational theorem (RMVT)- and principle of vir-
tual displacements (PVD)-based finite layer methods (FLMs) are developed for the
quasi-three-dimensional (3D) free vibration analysis of simply-supported, multi-
layered composite and functionally graded material (FGM) plates. The material
properties of the FGM layers are assumed to obey either an exponent-law expo-
nentially varied with the thickness coordinate or the power-law distributions of the
volume fractions of the constituents. In these formulations, the plate is divided into
a number of finite layers, where the trigonometric functions and Lagrange polyno-
mials are used to interpolate the in- and out-of-plane variations of the field variables
of each individual layer, respectively. Because an h- rather than p-refinement pro-
cess is adopted to yield the convergent solutions in this analysis, a layerwise linear
or parabolic function distribution through the thickness coordinate is assumed for
the related field variables. The unified formulations of these two kinds of FLMs
with freely-chosen orders are presented, which are used for expansion of in- and
out-of-plane field variables through the thickness coordinate. The natural frequen-
cies and their corresponding modal field variable distributions through the thickness
coordinate of the multilayered composite and FGM plates are studied using the var-
ious RMVT- and PVD-based FLMs developed in this paper, and the accuracy and
convergence rate of these are assessed by comparing their solutions with the exact
3D solutions available in the literature.
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1 Introduction

In recent decades, functional graded materials (FGMs) have been developed to
replace fiber reinforced composite materials as a new generation of engineering
materials, and have been widely utilized in various advanced industrial structures,
with beam-, plate- and shell-like forms. Unlike the multilayered composite struc-
tures, in which the material properties are layerwise constant-varied through the
thickness coordinate, the material properties of multilayered FGM structures vary
smoothly and continuously throughout. Because of this superior feature of the mul-
tilayered FGM structures, some drawbacks of conventional multilayered composite
structures resulting from the abrupt changes of material properties at the interfaces
between adjacent layers have been overcome, such as residual stress concentration,
de-lamination and matrix cracking. The development of theoretical methodologies
and numerical modeling for the analysis of this new class of FGM plates/shells has
thus attracted considerable attention, and some comprehensive literature surveys
for the computational models of multilayered composite and FGM plates/shells
have been undertaken (Noor and Burton, 1990a, b, 1992; Soldatos, 1994; Tang et
al., 1996; Saravanos and Heyliger, 1999; Carrera, 2000a, b, 2003a, 2004; Wu et
al., 2008). Among the various computational models, we will focus on the discrete
layer ones for the static and free vibration analyses of multilayered composite and
FGM plates in this paper.

Sciuva (1986) developed a discrete layer first-order shear deformation theory (FSDT)
for the bending, vibration and buckling of simply supported thick multilayered
orthotropic plates. Based on a discrete layer third-order shear deformation the-
ory (TSDT), Cho et al. (1991) studied the free vibration of laminated rectangular
plates, in which the natural frequencies and their corresponding modal stress and
displacement distributions through the thickness coordinate were determined. A
generalized discrete layer TSDT was developed by Kant and Swaminathan (2001)
for the free vibration analysis of laminated composite and sandwich plates, in which
the warping of the transverse cross-section was modeled more realistically than in
the other discrete layer theories in the literature. Wu and Kuo (1992, 1993) and
Wu and Chen (1994) developed a local TSDT and its related mixed finite element
method (FEM) for the static and free vibration analyses of multilayered composite
plates, in which the displacement and transverse stress continuity conditions at the
interfaces between adjacent layers were imposed as the constraints and introduced
into the potential energy functional by the Lagange multiplier method.

Based on a discrete layer theory combined with the Ritz method, Ramirez, Heyliger
and Pan (2006a, b) investigated the static behaviors of functionally graded (FG)
elastic plates and the free vibration responses of FG magneto-electro-elastic plates.
Hussein and Heyliger (1996) presented a semi-analytical discrete layer theory,
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where the unknown field variables were formed by combining the finite element
approximations through the thickness coordinate with Fourier and/or power se-
ries in the axial and circumferential coordinates, for the analysis of axisymmet-
ric laminated cylindrical shells with distributed piezoelectric layers. Saravanos et
al. (1997) developed a finite element formulation for the quasi-static and dynamic
analyses of smart composite plates using the layerwise representations of displace-
ments and electric potential. Based on the principle of virtual displacements (PVD),
Carrera (2003b) and Demasi (2008) developed the Carrera and Generalized Unified
Formulations (CUF and GUF), respectively, for the analysis of multilayered com-
posite plates. In the CUF, the order of each displacement variable expanded in the
thickness coordinate remains the same, and can be freely chosen. Morever, the
stiffness (or compliance) matrices of all possible theories are generated from the
expansion of 3 by 3 matrices (fundamental nuclei). In the case of GUF, the order of
each displacement variable expanded in the thickness coordinate can be indepen-
dently chosen with respect to the others. The stiffness (or compliance) matrices of
all possible theories are generated from the expansion of 1 by 1 matrices.

These multilayered composite and FGM plate theories and their related numerical
models are all based on the PVD, where the generalized displacement components
are regarded as the primary variables, and the in-plane stress components can be
calculated from the determined primary variables using Hooke’s law. While these
theories might give an accurate prediction on the displacement and in-plane stress
components of the deformed multilayered composite and FGM plates/shells, they
might fail to yield the same accuracy for the transverse shear and normal stresses.
A subsequent correction process for the calculation of transverse shear and normal
stresses is thus usually needed to improve the accuracy for those stresses, where
they are calculated using the integrations derived from the stress equilibrium equa-
tions.

Another variational theorem, namely the Reissner Mixed Variational Theorem (RMVT),
was proposed by Reissner (1984, 1986) for the analysis of laminated composite
plates, where the displacement and transverse stress components are regarded as
the primary variables and the in-plane stress components can be calculated by the
primary variables that are determined. The related developments, ideas, and evalu-
ations based on the RMVT with regard to the modeling of multilayered plates were
described by Carrera (2001). Based on the RMVT, Murakami (1986) and Toledano
and Murakami (1987) proposed the mixed laminated plate theories with global first-
order and higher-order zig-zag displacement models, respectively, to improve the
in-plane responses of the laminated composite plates. Based on Toledano and Mu-
rakami’s mixed plate model, Carrera (1999) studied the effect of transverse nor-
mal stress on vibration of multilayered composite plates and shells. The CUF and
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GUF mentioned above can also be extensively applied to the theories based on
the RMVT, and a variety of the so-called PVD- and RMVT-based equivalent sin-
gle layer theories (ESLTs) can be included as special cases of the CUF and GUF.
Carrera et al. (2008) combined the CUF with a variable kinematic (VK) model to
investigate the static behavior of FGM plates, in which both the closed-form and
finite element solutions were presented. The CUF has also been extensively used
to study the static behaviors of functionally graded (FG) elastic and piezoelectric
plates by Brischetto et al. (2008) and Brischetto and Carrera (2009). Based on
the RMVT instead of PVD, Brischetto and Carrera (2008) developed a GUF for
the bending analysis of FGM plates, in which various RMVT-based ESLTs were
included as special cases. Zenkour (2006) developed a generalized shear deforma-
tion theory for the bending analysis of FGM plates. On the basis of RMVT, Kant
et al. (2007) presented a general partial discritization methodology for interlaminar
stress computation in composite laminates. Desai et al. (2003) developed a discrete
layer finite element model on the basis of the RMVT for the three-dimensional (3D)
dynamic analysis of laminated composite plates. In conjunction with the Reddy
third-order displacement model and the RMVT, Wu and Li (2010a) presented an
RMVT-based TSDT for the analysis of multilayered composite and FGM plates,
which was also studied by Wu and Li (2010b) using the RMVT- and PVD-based
finite layer methods (FLMs), and Wu et al. (2010) using the meshless collocation
and element-free Galerkin methods. A series of five articles with regard to the de-
velopment of a RMVT-based generalized unified formulation and its applications to
the multilayered composite plates were presented by Demasi (2009a–e), in which
a variety of RMVT-based first-order and higher-order shear deformation, zig-zag,
and layerwise theories were included.

Some 3D solutions of multilayered composite and FGM plates and shells are avail-
able in the literature. Pagano (1969, 1970) presented a classical method for the 3D
analysis of multilayered composite elastic strips under cylindrical bending and with
sandwich plates under the sinusoidally distributed load, and this classical method
was also extended to the 3D bending, vibration and buckling problems of rectan-
gular laminated composite plates by Srinivas and Rao (1970). Based on the 3D
elasticity and thermoelasticity, Noor (1990c), Savoia and Reddy (1995) and Kar-
domateas (2009) presented 3D solutions for the static analysis of rectangular mul-
tilayered composite and sandwich plates under mechanical and thermomechanical
loads, which was also studied by zenkour (2007) and Demasi (2008a, 2008b) using
the state space, as well as 2D, quasi 3D and 3D elasticity approaches, in which
Demasi’s work extended the GUF to the case of orthotropic materials, and the
corresponding ∞3 theories were presented. Carrera et al. (2010) developed some
3D and 2D closed form plate models for the static analysis of simply supported
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square isotropic plates, in which attention is mainly paid on localized loading con-
ditions. Vel and Batra (2001, 2002, 2003, 2004) presented the 3D solutions for
the thermoelastic deformations, and free and forced vibrations of FG elastic plates,
as well as the cylindrical bending of laminated plates with embedded piezoelec-
tric shear actuators using the power series method, in which the effective material
property distributions through the thickness coordinate were estimated using either
the Mori-Tanaka (Mori and Tanaka, 1973) or self-consistent (Hill, 1965) schemes.
Kashtalyan (2004) presented the 3D elasticity solution for bending of FG isotropic
plates, in which the Young’s modulus of the plate was assumed to vary exponen-
tially through the thickness coordinate, and the Poisson’s ratio to be constant. Lü et
al. (2007, 2008) developed a 3D semi-analytical method for the cylindrical bending
vibration of angle-ply laminated composite plates and the static behavior of lami-
nated composite plates. Li et al. (2008) presented the 3D free vibration analysis of
FGM sandwich plates, in which the displacement components were expanded by
a series of Chebyshev polynomials multiplied by appropriate functions satisfying
the essential boundary conditions, and a 3D Ritz method was used to determine the
natural frequencies of the sandwich plates. Pan (2003) studied a three-dimensional
(3D) exact analysis of FG anisotropic elastic plates using the state space formula-
tion, which was also extended to the static and dynamic analyses of multilayered
and FGM plates by Heyliger (1997), Pan and Heyliger (2002), and Pan and Han
(2005). A series of 3D dynamic analysis of multilayered composite and FGM plates
and shells was also presented using the multiple scale (Wu et al., 1996, 1998; Wu
and Wu, 2000; Wu and Tsai, 2009, 2010) and modified Pagano methods (Wu and
Lü, 2009). Finally, a review of the 3D analytical approaches of multilayered and
FG piezoelectric plates and shells was undertaken by Wu, Chiu and Wang (2008).
These early 3D solutions may provide a reference for our kinematic and kinetic
assumptions a priori when we are deriving a 2D theory of FGM plates, and may act
as a standard for us to assess the various 2D theories of multilayered FGM plates
in the literature.

A finite layer method (FLM), which is extended from the finite strip method (Che-
ung, 1976) was used to study the 3D static problems of piezoelectric composite
laminates by Cheung and Jiang (2001). In the FLM, the simply-supported laminate
is divided into a number of finite layers, and the trigonometric functions and La-
grange polynomials are used to interpolate the in- and out-of-plane variations of the
field variables, respectively, for each individual layer. It has been demonstrated that
a semi-analytical FLM is more effective in reducing computational effort and core
requirements for simply supported laminates. This FLM was also extended to the
3D static, vibration and stability as well as thermal buckling analyses of piezoelec-
tric composite plates by Akhras and Li (2007, 2008). Again, the FLMs mentioned
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above were also based on the PVD rather than the RMVT. Thus, Wu and Li (2010b)
developed the RMVT- and PVD-based FLMs to investigate the quasi-3D static be-
havior of multilayered and FGM plates, in which the unified formulations of these
two FLMs with freely-chosen orders used for the expansions of the in- and out-
of-plane field variables through the thickness coordinate were presented, and an
h-refinement process was used to yield the convergent solutions.

In this paper, the RMVT- and PVD-based FLMs mentioned above are extended to
the quasi-3D free vibration analysis of multilayered composite and FGM plates.
The system motion equations are derived using the Hamilton principle. The solu-
tions of the natural frequencies and their corresponding modal field variable dis-
tributions through the thickness coordinate are determined and compared with the
3D solutions available in the literature to assess their convergence rate and accu-
racy. The numerical instability (Demasi, 2009e), resulting from the relative orders
used for the expansion of the stresses and displacements in RMVT- and PVD-based
FLMs, is also examined. Finally, a parametric study of the effects of the material-
property gradient index and the span-thickness ratio on the natural frequencies and
their modal field variable distributions through the thickness coordinate of the FGM
plates is undertaken.

2 RMVT-based finite layer methods

2.1 The kinematic and kinetic assumptions

We consider a simply supported, multilayered composite and FGM plate, as shown
in Fig. 1a. A Cartesian global coordinate system (x, y and ζ coordinates) is located
on the middle plane of the plate; and a set of Cartesian local thickness coordinates,
zm (m = 1, 2, 3, · · · , N), is located at the mid-plane of each individual layer, as
shown in Fig. 1b, where N is the total number of the layers constituting the plate,
and is taken to be three as a special case. The thicknesses of each individual layer

and the plate are hm (m = 1, 2, · · · , N) and h, respectively, and h =
N
∑

m=1
hm. Lx

and Ly denote the in-plane dimensions in the x and y directions, respectively. The
relationship between the global and local thickness coordinates in the mth-layer is
ζ = z̄m + zm, in which z̄m = (ζm +ζm−1)/2, and ζm and ζm−1 are the global thick-
ness coordinates measured from the mid-plane of the plate to the top and bottom
surfaces of the mth-layer, respectively.

A discrete layer displacement model with either linear or quadratic function dis-
tributions through the thickness coordinate for the displacements is adopted as the
kinematic field of the mth-layer of the plate in the present formulation, of which the
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Figure 1: The configuration and coordinates of a multilayered FGM plate.

domain is in 0≤ x≤ Lx, 0≤ y≤ Ly and (−hm/2)≤ zm ≤ (hm/2), and is given by

u(m)
x (x, y, zm, t) =

Nu+1

∑
i=1

[
ψ

(m)
u (zm)

]
i

[
u(m) (x, y, t)

]
i
, (1)

u(m)
y (x, y, zm, t) =

Nu+1

∑
i=1

[
ψ

(m)
u (zm)

]
i

[
v(m) (x, y, t)

]
i
, (2)

u(m)
ζ

(x, y, zm, t) =
Nw+1

∑
j=1

[
ψ

(m)
w (zm)

]
j

[
w(m) (x, y, t)

]
j
, (3)

where t is the time variable; (u(m)
x , u(m)

y , u(m)
ζ

) denote the displacement compo-

nents of the mth-layer of the plate in the x, y and ζ directions, respectively;
(
u(m)

)
i,(

v(m)
)

i,
(
w(m)

)
j with (i = 1, 2, · · · , Nu + 1) and ( j = 1, 2, · · · , Nw +1) are the

displacement components at the nodal planes of the mth-layer of the plate; and(
ψ

(m)
u

)
i

(i = 1, · · · , Nu + 1) and
(

ψ
(m)
w

)
j

( j = 1, 2, · · · , Nw + 1) are the cor-

responding shape functions, in which Nu and Nw denote the related orders used
for the expansion of the in-plane and out-of-plane displacements, respectively. For
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the quadratic and linear layers, the shape functions in the thickness coordinate are
given as follows:

For a quadratic layer with three nodal planes (i.e., Nk = 2, and k = u or w), they
are[
ψ

(m)
k (zm)

]
1
=
(
2/h2

m
)

zm (zm−hm/2) ,

[
ψ

(m)
k (zm)

]
2
=
(
2/h2

m
)

zm (zm +hm/2) ,[
ψ

(m)
k (zm)

]
3
=−

(
4/h2

m
)

(zm +hm/2) (zm−hm/2) ;

and for a linear layer with two nodal planes (i.e., Nk = 1, and k = u or w), they are[
ψ

(m)
k (zm)

]
1
= (−1/hm) (zm−hm/2) ,

[
ψ

(m)
k (zm)

]
2
= (1/hm) (zm +hm/2) .

The transverse shear and normal stresses are regarded as the primary variables in
the present RMVT-based rather than PVD-based FLMs, and are assumed as fol-
lows:

τ
(m)
xζ

(x, y, zm, t) =
Nτ+1

∑
i=1

[
ψ

(m)
τ (zm)

]
i

[
τ

(m)
13 (x, y, t)

]
i
, (4)

τ
(m)
yζ

(x, y, zm, t) =
Nτ+1

∑
i=1

[
ψ

(m)
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]
i
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(m)
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i
, (5)

σ
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(x, y, zm, t) =
Nσ +1
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[
ψ
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σ (zm)
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i
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σ

(m)
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i
, (6)

where
(

τ
(m)
13

)
i
,
(

τ
(m)
23

)
i
,
(

σ
(m)
3

)
j
with (i = 1, 2, · · · , Nτ +1) and ( j = 1,2, · · · ,Nσ +

1) are the transverse stress components at the nodal planes of the mth-layer of the
plate; and (ψ(m)

τ )i (i = 1, 2, · · · , Nτ +1) and
(

ψ
(m)
σ

)
i

(i = 1, 2, · · · , Nσ +1) are
the corresponding shape functions, in which Nτ and Nσ denote the related orders
used for the expansion of the transverse shear and normal stresses, respectively.

According to Demasi (2009e), it is concluded that the relative orders used for the
expansions of the in-plane and out-of-plane displacements, as well as the transverse
shear and normal stresses, should be the crucial assumptions for the RMVT-based
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plate/shell theories, because these assumptions can be the source of numerical in-
stabilities. The orders of various displacements and transverse stresses are thus
taken to be variable, and can be freely-chosen, as in the present formulations (i.e.,
either Ni = 1 or Ni = 2 for an h-refinement process, in which i = u, w, τ and σ ).
The relevant numerical instability for various RMVT-based FLMs will be investi-
gated later in this paper.

The linear constitutive equations for the mth-layer, which are valid for the or-
thotropic materials, are given by

σ
(m)
x

σ
(m)
y

σ
(m)
ζ
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(m)
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τ
(m)
xζ

τ
(m)
xy


=
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12 c(m)
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33 0 0 0

0 0 0 c(m)
44 0 0

0 0 0 0 c(m)
55 0

0 0 0 0 0 c(m)
66





ε
(m)
x

ε
(m)
y

ε
(m)
ζ

γ
(m)
yζ

γ
(m)
xζ

γ
(m)
xy


, (7)

where (σ (m)
x , σ

(m)
y , · · · , τ

(m)
xy ) are the stress components; (ε(m)

x , ε
(m)
y , · · · , γ

(m)
xy )

are the strain components; and c(m)
i j are the elastic coefficients, which are constants

through the thickness coordinate in the homogeneous elastic layers, and variable
through the thickness coordinate in the FG elastic layers (i.e., c(m)

i j (ζ )).
The strain-displacement relations for each individual layer, based on the assumed
displacement model in Eqs. (1)–(3), are given by

ε
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γ
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= u(m)
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where the commas denote partial differentiation with respect to the suffix variables;

and Dψ
(m)
j =

dψ
(m)
j

dzm
( j = u, w, τ and σ).

2.2 The RMVT-based Hamilton principle

The RMVT-based Hamilton principle is used to derive the motion equations of the
plate for the RMVT-based FLMs, and its corresponding energy functional for the
plate is written in the form of

IR =
∫ t2

t1
(T −VR)dt, (14)

where T and VR denote the kinetic and RMVT-based potential energy of the plate,
respectively, and given as

T =
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in which ρ(m) is the mass density of the mth-layer; Ω denotes the plate domain
on the x− y plane; Γσ and Γu denote the portions of the edge boundary, where
the surface traction and displacement components (i.e., t̄(m)

i , ū(m)
i in which i=x, y

and zm) are prescribed, respectively; and B(σ (m)
i j ) is the complementary density

function.
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In the present formulation, we take the displacement and the transverse stress com-
ponents to be the primary variables subject to variation. By using the kinematic
and kinetic assumptions given in Eqs. (1)–(3) and (4)–(6), we may express the
first-order variation of the energy functional IR as follows:

δ IR =
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y − ū(m)

y )δ t(m)
y

+(u(m)
ζ
− ū(m)
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ε
(m)
p =

[
ε

(m)
x ε

(m)
y γ

(m)
xy

]T
= B(m)

1 u(m),

ε
(m)
s =

[
γ

(m)
xζ

γ
(m)
yζ

]T
= B(m)

3 u(m) +B(m)
4 w(m),

ε
(m)
ζ

= B(m)
6 w(m),

σ
(m)
p =

[
σ

(m)
x σ

(m)
y τ

(m)
xy

]T
= Q(m)

p B(m)
1 u(m) +Q(m)

ζ
B(m)

2 σ
(m),

σ
(m)
s =

[
τ

(m)
xζ

τ
(m)
yζ

]T
= B(m)

5 τ
(m), σ

(m)
ζ

= B(m)
2 σ

(m),

u(m)
p =

[
u(m)

x u(m)
y

]T
= B(m)

7 u(m), u(m)
ζ

= B(m)
8 w(m),
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u(m) =

[
u(m)

i

v(m)
i

]
i=1,2,··· ,Nu+1

, w(m) =
[
w(m)

i

]
i=1,2,··· ,Nw+1

,

τ
(m) =

(τ
(m)
13

)
i(

τ
(m)
23

)
i


i=1,2,··· ,Nτ+1

, σ
(m) =

[(
σ

(m)
3

)
i

]
i=1,2,··· ,Nσ +1

,

S(m) =

(1/c(m)
55

)
0

0
(

1/c(m)
44

) , Q(m)
p =

Q(m)
11 Q(m)

12 0
Q(m)

12 Q(m)
22 0

0 0 Q(m)
66

 ,

Q(m)
ζ

=


(

c(m)
13 /c(m)

33

)(
c(m)

23 /c(m)
33

)
0

 ,

B(m)
1 =


(

ψ
(m)
u

)
i
∂x 0

0
(

ψ
(m)
u

)
i
∂y(

ψ
(m)
u

)
i
∂y

(
ψ

(m)
u

)
i
∂x


i=1,2,··· ,Nu+1

, B(m)
2 =

[(
ψ

(m)
σ

)
i

]
i=1,2,··· ,Nσ +1

,

B(m)
3 =

(Dψ
(m)
u

)
i

0

0
(

Dψ
(m)
u

)
i


i=1,2,··· ,Nu+1

, B(m)
4 =

(ψ
(m)
w

)
i
∂x(

ψ
(m)
w

)
i
∂y


i=1,2,··· ,Nw+1

,

B(m)
5 =

(ψ
(m)
τ

)
i

0

0
(

ψ
(m)
τ

)
i


i=1,2,··· ,Nτ+1

, B(m)
6 =

[(
Dψ

(m)
w

)
i

]
i=1,2,··· ,Nw+1

,

B(m)
7 =

(ψ
(m)
u

)
i

0

0
(

ψ
(m)
u

)
i


i=1,2,··· ,Nu+1

, B(m)
8 =

[(
ψ

(m)
w

)
i

]
i=1,2,··· ,Nw+1

;

and the superscript of T denotes the transpose of the matrices or vectors; and Γu

and Γσ stand for the boundary edges, in which the essential and natural conditions
are prescribed.
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2.3 The system motion equations of RMVT-based FLMs

The free vibration of simply-supported, multilayered composite and FGM plates
is studied in the following illustrative examples, where the tractions on the lateral
surfaces of the plate are free and given as[
τ

(N)
xζ

τ
(N)
yζ

σ
(N)
ζ

]
= [0 0 0] on zN = hN/2 (or ζ =−h/2) .

(16a)

[
τ

(1)
xζ

τ
(1)
yζ

σ
(1)
ζ

]
= [0 0 0] on z1 = h1/2 (or ζ =−h/2) .

(16b)

The edge boundary conditions of each individual layer are considered as fully sim-
ple supports, which requires that the following quantities are satisfied.

u(m)
y = u(m)

ζ
= σ

(m)
x = 0, at x = 0, x = Lx and m = 1, 2, · · · , N; (17a)

u(m)
x = u(m)

ζ
= σ

(m)
y = 0, at y = 0, y = Ly and m = 1, 2, · · · , N. (17b)

By means of the separation of variables, the primary field variables of each indi-
vidual layer are expanded as the following forms of a double Fourier series so that
the boundary conditions of the simply supported edges are exactly satisfied. They
are given as

(
u(m)

x , τ
(m)
xζ

)
=

∞

∑
m̂=1

∞

∑
n̂=1

(
u(m)

m̂n̂ , τ
(m)
13m̂n̂

)
cos(m̃x) sin(ñ y) eiωt , (18)

(
u(m)

y , τ
(m)
yζ

)
=

∞

∑
m̂=1

∞

∑
n̂=1

(
v(m)

m̂n̂ , τ
(m)
23m̂n̂

)
sin(m̃x) cos(ñ y) eiωt , (19)

(
u(m)

ζ
, σ

(m)
ζ

)
=

∞

∑
m̂=1

∞

∑
n̂=1

(
w(m)

m̂n̂ , σ
(m)
13m̂n̂

)
sin(m̃x) sin(ñ y) eiωt , (20)

where ω denotes the frequency of the natural vibration of the plate; m̃ = m̂π/Lx,
ñ = n̂π/Ly; and m̂ and n̂ are positive integers.

After introducing Eqs. (18)–(20) in Eq. (15) and applying the MRVT-based Hamil-
ton principle, which is δ ΠR = 0, we obtain the system motion equations of the plate
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as follows:

N

∑
m=1


(
−ω

2)


M(m)
I I 0 0 0
0 M(m)

II II 0 0
0 0 0 0
0 0 0 0

+


K(m)

I I K(m)
I II K(m)

I III K(m)
I IV

K(m)
II I K(m)

II II K(m)
II III K(m)

II IV

K(m)
III I K(m)

III II K(m)
III III K(m)

III IV

K(m)
IV I K(m)

IV II K(m)
IV III K(m)

IV IV




ũ(m)

w̃(m)

τ̃(m)

σ̃ (m)

 =


0
0
0
0

 , (21)

where K(m)
i j =

(
K(m)

j i

)T
(i, j = I, II, III, IV);

K(m)
I I =

∫ hm/2

−hm/2

(
B̃(m)

1

)T
Q(m)

p B̃(m)
1 dzm,

K(m)
I II = K(m)

II I = K(m)
II II = 0, K(m)

I III =
∫ hm/2

−hm/2

(
B(m)

3

)T
B(m)

5 dzm,

K(m)
I IV =

∫ hm/2

−hm/2

(
B̃(m)

1

)T
Q(m)

ζ
B(m)

2 dzm, K(m)
II III =

∫ hm/2

−hm/2

(
B̃(m)

4

)T
B(m)

5 dzm

K(m)
II IV =

∫ hm/2

−hm/2

(
B(m)

6

)T
B(m)

2 dzm, K(m)
III III =

∫ hm/2

−hm/2

(
B(m)

5

)T
S(m) B(m)

5 dzm

K(m)
IV IV =

∫ hm/2

−hm/2

(
1/c(m)

33

) (
B(m)

2

)T
B(m)

2 dzm,

M(m)
I I =

∫ hm/2

−hm/2
ρ

(
B(m)

7

)T
B(m)

7 dzm, M(m)
II II =

∫ hm/2

−hm/2
ρ

(
B(m)

8

)T
B(m)

8 dzm,

B̃(m)
1 =


−m̃

(
ψ

(m)
u

)
i

0

0 −ñ
(

ψ
(m)
u

)
i

ñ
(

ψ
(m)
u

)
i

m̃
(

ψ
(m)
u

)
i


i=1,2,··· ,Nu+1

,
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B̃(m)
4 =

m̃
(

ψ
(m)
w

)
i

ñ
(

ψ
(m)
w

)
i


i=1,2,··· ,Nw+1

;

and

ũ(m) =

(u(m)
m̂n̂

)
i(

v(m)
m̂n̂

)
i


i=1,2,··· ,Nu+1

, w̃(m) =
[(

w(m)
m̂n̂

)
i

]
i=1,2,··· ,Nw+1

,

τ̃
(m) =

(τ
(m)
13m̂n̂

)
l(

τ
(m)
23m̂n̂

)
l


i=1,2, ··· ,Nτ+1

, σ̃
(m) =

[(
σ

(m)
3m̂n̂

)
i

]
i=1,2,··· ,Nσ +1

.

It is noted that the determination of the local mass and stiffness sub-matrices de-
rived and given in Eq. (21), requires an integration evaluation, in which the inte-
grands are the multiplication of the related shaped functions and thickness-dependent
material properties. A numerical integration technique, the Gaussian quadrature
commonly used in the FEMs, is used to evaluate these local stiffness sub-matrices.
To achieve this, we construct a background integration mesh in the thickness co-
ordinate for each individual layer, in which it is further divided into Nl integration
layers and the Ng-term Gaussian quadrature formula is applied to each integration
layer. The implementation of the present FLMs shows that using a 20-layer inte-
gration mesh (Nl = 20) with seven-term Gaussian quadrature formula (Ng=7) may
evaluate each integration to five-decimal accuracy, and this is adopted for the later
work of the present analysis.

After using Eq. (21) and assembling the local mass and stiffness sub-matrices of
each layer constituting the plate by following the standard process of the FEMs, in
which the displacement and transverse stress continuity conditions at the interfaces
between adjacent layers are imposed and thus satisfied a priori for these RMVT-
based FLMs, we may construct the global mass and stiffness matrices for the plate,
which are given as
(
−ω

2)


M11 0 0 0
0 M22 0 0
0 0 0 0
0 0 0 0

+


K11 0 K13 K14

0 0 K23 K24
K31 K32 K33 0
K41 K42 0 K44





u
w
τ

σ

=


0
0
0
0

 . (22)

From the last two equations in Eq. (22), we obtain[
τ

σ

]
=−

[
K33 0

0 K44

]−1 [K31 K32
K41 K42

] [
u
w

]
. (23)
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Using Eq. (23), Eq. (22) can be condensed in the following form{[
K11−ω2M11 0

0 −ω2M22

]
−
[

K13 K14
K23 K24

] [
K33 0

0 K44

]−1 [K31 K32
K41 K42

]}
[

u
w

]
=
[

0
0

]
. (24)

Equation (24) represents a standard eigenvalue problem, and a nontrivial solution
of this exists if the determinant of the coefficient matrix vanishes. Thus, the natural
frequencies of the plate for a set of fixed values (m̂, n̂) can be obtained by∣∣∣∣∣
[

K11−ω2M11 0
0 −ω2M22

]
−
[

K13 K14
K23 K24

] [
K33 0

0 K44

]−1 [K31 K32
K41 K42

] ∣∣∣∣∣= 0.

(25)

Once Eq. (25) is solved, the eigenvalues and their corresponding eigenvectors,
which are the natural frequencies and modal displacements at each nodal plane,
respectively, can be obtained. Subsequently, the modal transverse stresses at each
nodal plane can be determined using Eq. (23), while the modal in-plane stresses at
the nodal planes can be obtained using Hooke’s law, and are given by(

σ
(m)
x , σ

(m)
y

)
=

∞

∑
m̂=1

∞

∑
n̂=1

(
σ

(m)
1m̂n̂, σ

(m)
2m̂n̂

)
sin(m̃x) sin(ñ y) eiωt , (26)

τ
(m)
xy =

∞

∑
m̂=1

∞

∑
n̂=1

τ
(m)
12m̂n̂ cos(m̃x) cos(ñ y) eiωt , (27)

where
[
σ

(m)
1m̂n̂ σ

(m)
2m̂n̂ τ

(m)
12m̂n̂

]T
= Q(m)

p B̃(m)
1 ũ(m) +Q(m)

ζ
B(m)

2 σ̃ (m).

Using this unified formulation of RMVT-based FLMs, we may analyze the quasi-
3D free vibration of multilayered composite and FGM plates, and the performances
of various RMVT-based FLMs with different orders used for the expansion of the
in-plane and out-of-plane displacements and transverse shear and normal stresses
can also be studied.

3 PVD-based finite layer methods

3.1 The Hamilton principle

The Hamilton principle is a displacement-based energy principle, in which only the
displacement components are regarded as the primary variables, as given in Eqs.
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(1)–(3). The Hamilton principle is used to derive the system motion equations of
the plate for the PVD-based FLMs, and its corresponding energy functional for the
plate is written in the form of

I =
∫ t2

t1
(T −V )dt, (28)

where the kinetic energy T is in the same form as given in Eq. (14), while V denotes
the potential energy of the plate, and is given as

V = 1
2

N
∑

m=1

∫ hkm/2
−hm/2

∫∫
Ω

[
σ

(m)
x ε

(m)
x +σ

(m)
y ε

(m)
y +σ

(m)
ζ

ε
(m)
ζ

+ τ
(m)
xζ

γ
(m)
xζ

+τ
(m)
yζ

γ
(m)
yζ

+ τ
(m)
xy γ

(m)
xy

]
dxdydzm

−
N
∑

m=1

∫ hm/2
−hm/2

∫
Γσ

[
t̄(m)
x u(m)

x + t̄(m)
y u(m)

y + t̄(m)
ζ

u(m)
ζ

]
dΓdzm.

For an N-layered plate with heterogeneous material properties for each individual
layer, only the displacement components are subject to variation. By using the kine-
matic assumptions given in Eqs. (1)–(3), we may express the first-order variation
of the energy functional I as follows:

δ I =
∫ t2

t1
(δ T −δ V )dt, (29)

where δ T was given in Eq. (15), and

δ V =
∫∫

Ω

N
∑

m=1

∫ hm/2
−hm/2

[(
δε

(m)
p

)T
σ

(m)
p +

(
δε

(m)
s

)T
σ

(m)
s +δεζ σ

(m)
ζ

]
dxdydzm

−
N
∑

m=1

∫ hm/2
−hm/2

∫
Γσ

[
t̄(m)
x δ u(m)

x + t̄(m)
y δ u(m)

y + t̄(m)
ζ

δ u(m)
ζ

]
dΓdzm,

in which ε
(m)
p , ε

(m)
s and ε

(m)
ζ

are in the same forms as those given in Eq. (15), and

σ
(m)
p = C(m)

p B(m)
1 u(m) +C(m)

ζ
B(m)

6 w(m),

σ
(m)
s = C(m) B(m)

3 u(m) +C(m) B(m)
4 w(m),

σ
(m)
ζ

= C(m)
ζ

B(m)
1 u(m) + c(m)

33 B(m)
6 w(m),
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C(m)
p =

c(m)
11 c(m)

12 0
c(m)

12 c(m)
22 0

0 0 c(m)
66

 , C(m)
ζ

=

c(m)
13

c(m)
23
0

 , C(m) =

[
c(m)

55 0
0 c(m)

44

]
.

3.2 The system motion equations of PVD-based FLMs

After introducing Eqs. (18)–(20) in Eq. (29) and applying Hamilton’s principle,
which is δ I = 0, we obtain the system motion equations of the plate as follows:

N

∑
m=1

{(
−ω

2) [M(m)
I I 0
0 M(m)

II II

]
+

[
D(m)

I I D(m)
I II

D(m)
II I D(m)

II II

]} [
ũ(m)

w̃(m)

]
=
[

0
0

]
, (30)

where M(m)
I I and M(m)

II II are in the same forms as those given in Eq. (21); D(m)
i j =(

D(m)
j i

)T
(i, j = I, II),

D(m)
I I =

∫ hm/2

−hm/2

[(
B̃(m)

1

)T
C(m)

p B̃(m)
1 +

(
B(m)

3

)T
C(m) B(m)

3

]
dzm,

D(m)
I II =

∫ hm/2

−hm/2

[(
B̃(m)

1

)T
C(m)

ζ
B(m)

6 +
(

B(m)
3

)T
C(m) B̃(m)

4

]
dzm,

D(m)
II II =

∫ hm/2

−hm/2

[(
B̃(m)

4

)T
C(m) B̃(m)

4 +
(

B(m)
6

)T
(c(m)

33 )B(m)
6

]
dzm.

Again, after using Eq. (30) and assembling the local mass and stiffness sub-
matrices of each layer constituting the plate by following the standard process
of the FEMs, in which the displacement continuity conditions, not including the
transverse stress ones, at the interfaces between adjacent layers are imposed, we
may construct the global mass and stiffness matrices for the plate, which are given
as{(
−ω

2) [M11 0
0 M22

]
+
[

D11 D12
D21 D22

]} [
u
w

]
=
[

0
0

]
. (31)

Equation (31) represents a standard eigenvalue problem, and a nontrivial solution
to this exists if the determinant of the coefficient matrix vanishes. Thus, the natural
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frequencies of the plate for a set of fixed values (m̂, n̂) can be obtained by∣∣∣∣ [D11−ω2M11 D12
D21 D22−ω2M22

] ∣∣∣∣= 0. (32)

Once Eq. (32) is solved, the eigenvalues and their corresponding eigenvectors,
which are the natural frequencies and modal displacements at each nodal plane,
respectively, can be obtained. Subsequently, the modal transverse stresses at each
nodal plane can be determined using Hooke’s law, and these are obtained as the
same forms given in Eqs. (26)–(27) and the second terms of Eqs. (18)–(20), in
which[
σ

(m)
1m̂n̂ σ

(m)
2m̂n̂ τ

(m)
12m̂n̂

]T
= C(m)

p B̃(m)
1 ũ(m) +C(m)

ζ
B(m)

6 w̃(m), (33)[
τ

(m)
13m̂n̂ τ

(m)
23m̂n̂

]
= C(m) B(m)

3 ũ(m) +C(m) B(m)
4 w̃(m), (34)

σ
(m)
3m̂n̂ = C(m)

ζ
B̃(m)

1 ũ(m) + c(m)
33 B(m)

6 w̃(m). (35)

As we mentioned above, the transverse stresses in Eqs. (34)–(35) are calculated
using Hooke’s law, and this might lead to the poor predictions for those. However,
an integration approach derived from the dynamic stress equilibrium equations, is
recommended instead of this in the literature, and is given as

τ
(m)
13m̂n̂ =

(
τ

(m−1)
13m̂n̂

)
Nτ+1

+
∫ zm

−hm/2

(
−m̃σ

(m)
1m̂n̂ + ñτ

(m)
12m̂n̂−ρ ω

2 u(m)
m̂ n̂

)
dzm , (36)

τ
(m)
23m̂n̂ =

(
τ

(m−1)
23m̂n̂

)
Nτ+1

+
∫ zm

−hm/2

(
m̃τ

(m)
12m̂n̂− ñσ

(m)
2m̂n̂−ρ ω

2 v(m)
m̂ n̂

)
dzm , (37)

σ
(m)
3m̂n̂ =

(
σ

(m−1)
3m̂n̂

)
Nσ +1

+
∫ zm

−hm/2

(
m̃τ

(m)
13m̂n̂ + ñτ

(m)
23m̂n̂−ρ ω

2 w(m)
m̂ n̂

)
dzm . (38)

Using this unified formulation for PVD-based FLMs, we may analyze the 3D free
vibration of multilayered composite and FGM plates, and the performances of var-
ious PVD-based FLMs with different orders used for the expansion of the in-plane
and out-of-plane displacements can also be studied.

4 Illustrative examples

Because the unified formulations of RMVT- and PVD-based FLMs for the free
vibration analysis of laminated composite and FGM plates were presented above,
various combinations of the orders used for expansion of displacements and trans-
verse stresses can also be freely chosen. Hence, the acronym of LDNu Nw is used
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to represent various PVD-based FLMs, in which the in- and out-of-plane displace-
ments are expanded as the Nu- and Nw-order Lagrange polynomials in the thick-
ness coordinate of each layer, respectively, while that of LMNτ Nσ

Nu Nw
is defined to

represent various RMVT-based FLMs, in which the in- and out-of-plane displace-
ments are expanded as the Nu- and Nw-order Lagrange polynomials, respectively,
and the transverse shear and normal stresses are expanded as the Nτ - and Nσ -order
Lagrange polynomials in the thickness coordinate of each layer, respectively. In
addition, because an h-refinement process is adopted for this analysis, the values of
Ni (i = u, v, τ and σ) are taken to be 1 or 2 in the following examples.

4.1 Laminated composite plates

Dynamic-version of Demasi’s test case 1

Test case 1 in Demasi (2009e) considers the static behavior of laminated compos-
ite and FGM plates subject to mechanical loads applied on the top surface of the
plate, and was used to examine the so-called numerical instability resulting from
the relative orders used for the expansion of the stresses and displacements, for the
earlier GUF (Demasi, 2009e) and the RMVT- and PVD-based FLMs (Wu and Li,
2010b). In this dynamic-version of Demasi’s test case 1, the free vibration of the
simply supported, two-layered composite elastic plates (i.e.,

[
00/900

]
, in which

the 00 and 900 layers are the bottom and top layers, respectively) is studied. The
geometric parameters of the plates are taken to be Lx/Ly = 1, and S = Lx/h=2, 5,
10, 20, 50 and 100; a frequency parameter is defined as Ω =

(
ω L2

x/h
) √

ρ /E22;
and the material properties of the top and bottom layers are identical to those used
in Demasi (2009e), and given as follows:

For the 00 layer (the bottom layer),

E11/E22 = 25, E11/E33 = 25, E11/G12 = 50,

E11/G13 = 50, E11/G23 = 125,

υ12 = υ13 = υ23 = 0.25, E22 = 1.0x106 psi (or 6.89 GPa). (39)

For the 900 layer (the top layer),

E11/E22 = 25, E11/E33 = 25/10, E11/G12 = 50,

E11/G13 = 50, E11/G23 = 125,

υ12 = υ13 = υ23 = 0.25, E22 = 1.0x106 psi (or 6.89 GPa). (40)

where the subscript 1 denotes the direction parallel to the fiber directions, and 2
and 3 transverse to the fiber direction.
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Table 1 shows the fundamental frequency parameters of the plates with different
values of the length-to-thickness ratio (S=Lx/h) using various RMVT- and PVD-
based FLMs with an h-refinement process, in which the plate is divided into nu-
merous equal-thickness layers, such as N=2, 4 and 8. In Table 1, the present
solutions are compared with the 3D exact solutions obtained using the modified
Pagano method (Wu and Lü, 2009) to evaluate the accuracy and convergence rate
of various RMVT- and PVD- based FLMs, and we find that LD22 > LD21 > LD11,
LM22

22 > LM21
21 > LM22

21 > LM11
11, and the symbol “>” means the solutions of the

former are more accurate than those of the latter, and the convergence rate of the
former is faster than that of the latter. In order to have a clearer picture with re-
gard to the dynamic response performance of the FLMs presented in this work, we
show the through-thickness distributions of modal displacement and stress compo-
nents of a thick square plate (S = 4) obtained using the present PVD-based ones
(LD21 and LD22) in Figs. 2–3 and RMVT-based ones (LM21

21, LM22
21 and LM22

22)
in Figs. 5–7, in which the modal stress components are determined using Hooke’s
law and the interpolation functions a priori, respectively. It is seen in Figs. 2–3
that PVD-based FLMs yield good predictions for the modal in-plane stresses and
displacements, while they yield poor predictions for the modal transverse stresses
using Hooke’s Law, especially for the modal transverse normal stress. In addition,
and even worse, they yield two values at the interfaces between adjacent layers due
to the sudden changes of the material properties, violating the requirements of 3D
elasticity. In view of the poor predictions obtained using Hooke’s law, an integra-
tion approach derived from the dynamic stress equilibrium equations is thus recom-
mended. Fig. 4 shows the through-thickness distributions of the modal transverse
stresses of LD21 and LD22, which are obtained using the integration approach. It is
seen in Fig. 4 that the accuracy for the modal transverse stresses is much improved,
and that the eight-layer solutions of LD22 are in excellent agreement with the 3D
exact solutions obtained using the modified Pagano method (Wu and Lü, 2009).
It is seen in Figs. 5 and 7 that the solutions of LM21

21 and LM22
22 smoothly vary

through the thickness coordinate, and they are numerically stable; and the eight-
layer solutions of these two FLMs are in excellent agreement with the 3D exact
solutions, and the rate of convergence of LM22

22 for the modal transverse normal
stress is faster than that of LM21

21. It is observed from Figs. 6 (e, f) that the solu-
tions of through-thickness distributions of modal transverse normal stress obtained
using the interpolation functions a priori in LM22

21 oscillate in the top layer, and the
LM22

21 theory fails to yield the satisfactory predictions for these. This observation
supports Demasi’s conclusions on the numerical instability of RMVT-based theo-
ries (Demasi, 2009e) in the static cases, that is there is no numerical instability if
the order of out-of-plane displacement (uζ ) is the same as that of transverse normal
stress (σζ ), otherwise, numerical instability will occur.
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Figure 2: The through-thickness distributions of various modal field variables in
a
[
00/900

]
laminate obtained using the present LD21 with N=2, 4, 8 (Dynamic

version of Demasi’s test case 1).
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Figure 3: The through-thickness distributions of various field variables in a[
00/900

]
laminate obtained using the present LD22 with N=2, 4, 8 (Dynamic ver-

sion of Demasi’s test case 1).
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Figure 4: The through-thickness distributions of modal transverse stresses in a[
00/900

]
laminate obtained using the present LD21 and LD22 with N=2, 4, 8, where

an integration approach is used (Dynamic version of Demasi’s test case 1).

Dynamic-version of Pagano’s benchmark case

In this case, the free vibration of the simply supported, cross-ply laminated com-
posite elastic plates (i.e.,

[
00/900

]
and

[
00/900/900/00

]
) is studied, where the

geometric parameters of the plates are taken to be Lx/Ly = 1, and S = Lx/h=2, 5,
10, 20, 50 and 100; a frequency parameter is defined as Ω =

(
ω L2

x/h
) √

ρ /ET ;
and the material properties are given as

EL/ET = 40, GLT /ET = 0.6, GT T /ET = 0.5,

ET = 1.0x106 psi (or 6.89 GPa), υLT = υT T = 0.25, (41)
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Figure 5: The through-thickness distributions of various field variables in a[
00/900

]
laminate obtained using the present LM21

21 with N=2, 4, 8 (Dynamic ver-
sion of Demasi’s test case 1).
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Figure 6: The through-thickness distributions of various field variables in a[
00/900

]
laminate obtained using the present LM22

21 with N=2, 4, 8 (Dynamic ver-
sion of Demasi’s test case 1).
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Figure 7: The through-thickness distributions of various field variables in a[
00/900

]
laminate obtained using the present LM22

22 with N=2, 4, 8 (Dynamic ver-
sion of Demasi’s test case 1).
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where the subscripts of L and T denote the directions parallel and transverse to the
fiber directions, respectively.

Table 1: Fundamental frequency parameters of laminated
[
00/900

]
square plates

(Dynamic-version of Demasi’s test case 1)

Theories
S = Lx/h

2 5 10 20 50 100
LD11(N=2)
LD11(N=4)
LD11(N=8)
LD21(N=2)
LD21(N=4)
LD21(N=8)
LD22(N=2)
LD22(N=4)
LD22(N=8)
LM11

11(N=2)
LM11

11(N=4)
LM11

11(N=8)
LM21

21(N=2)
LM21

21(N=4)
LM21

21(N=8)
LM22

21(N=2)
LM22

21(N=4)
LM22

21(N=8)
LM22

22(N=2)
LM22

22(N=4)
LM22

22(N=8)
3D exact

4.567
4.481
4.373
4.526
4.369
4.333
4.444
4.337
4.323
4.367
4.367
4.329
4.382
4.329
4.322
4.451
4.349
4.327
4.381
4.327
4.322
4.321

7.865
7.635
7.495
7.819
7.523
7.460
7.550
7.448
7.440
7.487
7.455
7.441
7.488
7.444
7.440
7.673
7.474
7.445
7.486
7.443
7.440
7.440

9.405
9.082
8.965
9.381
9.033
8.950
8.969
8.926
8.923
8.946
8.925
8.923
8.942
8.924
8.923
9.209
8.961
8.928
8.942
8.924
8.923
8.923

9.980
9.620
9.517
9.973
9.605
9.512
9.495
9.482
9.482
9.489
9.482
9.482
9.487
9.482
9.482
9.791
9.522
9.487
9.487
9.482
9.482
9.482

10.165
9.791
9.694
10.163
9.789
9.693
9.663
9.661
9.661
9.662
9.661
9.661
9.662
9.661
9.661
9.978
9.703
9.666
9.662
9.661
9.661
9.661

10.192
9.817
9.720
10.192
9.816
9.720
9.688
9.688
9.688
9.688
9.688
9.688
9.688
9.688
9.688
10.006
9.729
9.693
9.688
9.688
9.688
9.688

Tables 2–3 show the present solutions of fundamental frequency parameters of the
plates with different values of the length-to-thickness ratio using various RMVT-
and PVD-based FLMs, in which the plates are divided into a certain number of
equal-thickness layers (N), such as N=2, 4 and 8 in Table 2 and N=4, 8 and 12
in Table 3, and the present solutions are compared with those obtained using the
equivalent single layer theories (ESLTs), such as the classical plate theory (CPT),
FSDT (Whitney and Pagano, 1970), Reddy TSDT (Reddy and Phan, 1985); the dis-
crete layer theories, such as the discrete layer TSDT (Cho et al., 1991), local TSDT
(Wu and Chen, 1994) and generalized TSDT (Kant and Swaminathan, 2001); and
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Table 2: Fundamental frequency parameters of laminated
[
00/900

]
square plates

(Dynamic-version of Pagano’s benchmark case)

Theories
S = Lx/h

2 5 10 20 50 100
LD11(N=2)
LD11(N=4)
LD11(N=8)
LD21(N=2)
LD21(N=4)
LD21(N=8)
LD22(N=2)
LD22(N=4)
LD22(N=8)
LM11

11(N=2)
LM11

11(N=4)
LM11

11(N=8)
LM21

21(N=2)
LM21

21(N=4)
LM21

21(N=8)
LM22

21(N=2)
LM22

21(N=4)
LM22

21(N=8)
LM22

22(N=2)
LM22

22(N=4)
LM22

22(N=8)
CPT
FSDT
Reddy TSDT
Generalized TSDT
Discrete layer TSDT
Local TSDT
3D FE model
3D exact

5.119
5.086
4.997
5.083
4.974
4.956
5.073
4.970
4.955
5.007
5.017
4.965
5.030
4.964
4.954
5.035
4.965
4.955
5.027
4.961
4.954
8.499
5.191
5.699
5.074
4.810
4.959
4.953
4.953

8.734
8.700
8.578
8.708
8.544
8.529
8.689
8.539
8.528
8.579
8.572
8.531
8.614
8.534
8.527
8.625
8.535
8.528
8.611
8.533
8.527
10.584
8.757
9.010
NA
8.388
8.527
8.527
8.527

10.453
10.424
10.362
10.441
10.348
10.338
10.414
10.341
10.337
10.362
10.353
10.338
10.377
10.339
10.337
10.393
10.341
10.337
10.377
10.339
10.337
11.011
10.355
10.449
10.415
10.270
10.337
10.338
10.336

11.094
11.069
11.046
11.090
11.046
11.039
11.061
11.038
11.037
11.045
11.041
11.037
11.049
11.038
11.037
11.068
11.040
11.037
11.049
11.038
11.037
11.125
10.941
10.968
11.051
11.016
11.037
11.040
11.037

11.299
11.275
11.267
11.298
11.271
11.265
11.268
11.264
11.264
11.265
11.264
11.264
11.266
11.264
11.264
11.285
11.266
11.264
11.266
11.264
11.264
11.158
11.127
11.132
11.253
11.260
11.264
11.267
11.264

11.329
11.306
11.299
11.329
11.305
11.299
11.298
11.297
11.297
11.298
11.297
11.297
11.298
11.297
11.297
11.317
11.300
11.298
11.298
11.297
11.297
11.163
11.155
11.156
11.283
11.296
11.297
11.298
11.297
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Table 3: Fundamental frequency parameters of laminated
[
00/900/900/00

]
square

plates (Dynamic-version of Pagano’s benchmark cases)

Theories
S = Lx/h

2 5 10 20 50 100
LD11(N=4)
LD11(N=8)
LD11(N=12)
LD21(N=4)
LD21(N=8)
LD21(N=12)
LD22(N=4)
LD22(N=8)
LD22(N=12)
LM11

11(N=4)
LM11

11(N=8)
LM11

11(N=12)
LM21

21(N=4)
LM21

21(N=8)
LM21

21(N=12)
LM22

21(N=4)
LM22

21(N=8)
LM22

21(N=12)
LM22

22(N=4)
LM22

22(N=8)
LM22

22(N=12)
CPT
FSDT
Reddy TSDT
Generalized TSDT
Discrete layer TSDT
3D FE model
3D exact

5.458
5.367
5.340
5.345
5.319
5.316
5.338
5.317
5.315
5.357
5.329
5.318
5.325
5.316
5.315
5.334
5.317
5.315
5.326
5.316
5.315
15.830
5.492
5.576
5.393
5.923
5.315
5.315

10.891
10.741
10.709
10.696
10.684
10.683
10.691
10.683
10.682
10.766
10.687
10.684
10.687
10.683
10.682
10.690
10.683
10.682
10.687
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the 3D theories, such as the 3D FEM (Desai et al., 2003) and 3D modified Pagano
theories (Wu and Lü, 2009). By comparing the present solutions of various RMVT-
and PVD-based FLMs with the 3D exact solutions obtained using the modified
Pagano method (Wu and Lü, 2009), we obtain the same conclusions as those in
the dynamic-version of Demasi’s test case 1, which are LD22 > LD21 > LD11,
LM22

22 > LM21
21 > LM22

21 > LM11
11. The present convergent solutions of LD22, LM21

21
and LM22

22 are in excellent agreement with the 3D exact solutions, and are superior
to those obtained with the other 2D TSDT theories mentioned above.

4.2 Single-layer FGM plates

In this case, the free vibration of a simply-supported, single-layer square plate com-
posed of FG isotropic elastic material is investigated, and this problem has also
been studied by Ramirez (2006b), Vel and Batra (2004) and Wu and Tsai (2010)
using a discrete layer, power series expansion and multiple scale methods, respec-
tively. The plate considered is made of aluminum (Al) and zirconia (ZrO2), the
material properties of which are given as follows:

For Al,

c11 = c22 = c33 = 94.231 GPa, c12 = c13 = c23 = 40.385 GPa,

c44 = c55 = c66 = 26.923 GPa, ρ = 2702 Kg / m3; (42)

For ZrO2,

c11 = c22 = c33 = 269.23 GPa, c12 = c13 = c23 = 115.38 GPa,

c44 = c55 = c66 = 76.923 GPa, ρ = 5700 Kg / m3. (43)

The volume fractions of the ceramic phase (Vc) and of the metal phase (Vm) are
assumed to vary through the thickness coordinate in the following forms:

Vc (ζ ) =
[

ζ +(h/2)
h

]κp

and Vm (ζ ) = 1−Vc (ζ ) , (44)

where κp is the material-property gradient index.

The material properties of the FG elastic plate depend upon the volume fractions
Vc and Vm, and are determined using the Mori-Tanaka scheme, which was also
adopted in Ramirez et al. (2006a) , Vel and Batra (2004) and Wu and Tsai (2010).
The effective material properties of this are expressed as follows:

ρ(ζ ) = ρcVc(ζ )+ρmVm(ζ ), (45a)
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K(ζ ) =
Vc(ζ )(Kc−Km)[

1+(1−Vc(ζ )) Kc−Km
Km+(4/3)µm

] +Km, (45b)

µ(ζ ) =
Vc(ζ )(µc−µm)[

1+(1−Vc(ζ )) µc−µm
µc+ fm

] + µm, (45c)

fm = µm
9Km +8µm

6(Km +2µm)
, (45d)

λ (ζ ) = K(ζ )−2µ(ζ )/3, (45e)

where K(ζ ), Kc and Km are the bulk moduli of the composite, ceramic and metal
materials, respectively; µ(ζ ), µc and µm are the shear moduli; λ (ζ ), λc and λm

are the Lame constants.

The through-thickness engineering elastic constants of the plate can then be deter-
mined by

c11(ζ ) = c22(ζ ) = c33(ζ ) = λ (ζ )+2µ(ζ ), (46a)

c44(ζ ) = c55(ζ ) = c66(ζ ) = µ(ζ ), (46b)

c23(ζ ) = c13(ζ ) = c12(ζ ) = λ (ζ ). (46c)

The geometric parameters are taken as Lx/Ly = 1; Lx/h = 5, 10, 20; the material
property gradient index is taken as κp = 1, 2, 3, 5; and a frequency parameter Ω

is defined as Ω = ω L2
x

√
ρ(b)/E(b)

11 /h, where the superscript b in the parenthesis

denotes the bottom surface of the plate and E(b)
11 =70 GPa in the case.

The LD22 and LM22
22 solutions of the least frequency parameters of the flexural and

extensional modes of these metal-ceramic composite graded plates are presented
in Table 4, where the wave numbers of m̂ and n̂ are fixed at m̂=1 and n̂=1. It
is shown that the rate of convergence of the present solutions is rapid. As κp=1,
the convergent solutions of the least frequency parameter of the flexural mode are
yielded at N=4 for thin plates (Lx/h = 20), N=8 for thick plates (Lx/h = 5), and
those of extensional modes are yielded at N=4 for both thin and thick plates. The
present eight-layer solutions of LD22 and LM22

22 are in good agreement with the
discrete layer (Ramirez et al., 2006b), 3D exact (Vel and Batra , 2004) and 3D
asymptotic (Wu and Tsai, 2010) solutions. Fig. 8 shows the variations of the
through-thickness distributions of modal displacements and stresses with κp, in
which N=12, S=5 and κp=1, 2, 5.

It is seen in Fig. 8 that the effect of κp on the through-thickness distribution of
modal displacement and stress components is minor, and the through-thickness
distribution of modal in-plane displacement appears to be linear, and those of out-
of-plane displacement and stresses are higher-degree polynomial functions.
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Figure 8: Variations of the 12-layer LM22
22 solutions of the through-thickness distri-

butions of various modal field variables in a single-layer FGM plate with κp.
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Figure 9: Variations of the 12-layer LM22
22 solutions of the through-thickness dis-

tributions of various modal field variables in a two-layered FGM plate with wave
numbers (m̂, n̂).
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4.3 Multilayered FGM plates

In this case, the free vibration of simply-supported, two-layered square plates com-
posed of FGM orthotropic layers (i.e., [FGM/FGM] plates) is studied. The material
properties of each layer are assumed to obey an exponent-law exponentially varied
with the thickness coordinate of the plate, and given as

ci j = c(0)
i j eκe [ζ /(h/2) ] when 0≤ ζ ≤ h/2, (47a)

ci j = c(0)
i j eκe [ζ /(−h/2) ] when −h/2≤ ζ ≤ 0, (47b)

where κe denotes the material-property gradient index, and is taken as κe = 1, 2, 3
and 5; when κe = 0, the plates reduce to single-layer orthotropic plates (i.e.,

[
00
]

plates); and c(0)
i j represents the material properties of the reference material (i.e.,

those of 00 layer), and is given as follows:

c(0)
11 = 2.51678×106 psi (or 173.40604 GPa),

c(0)
12 = c(0)

13 = 2.51678×106 psi (or 2.31208 GPa),

c(0)
22 = c(0)

33 = 1.07114×106 psi (or 7.38016 GPa),

c(0)
23 = 0.27114×106 psi (or 1.86816 GPa),

c(0)
44 = 0.2×106 psi (or 1.378 GPa),

c(0)
55 = c(0)

66 = 0.5×106 psi (or 3.445 GPa),

ρ
(0) = 1590 Kg / m3,

which are transformed from the engineering constants of the 00 layer, which are
given in Eq. (41).

Table 5 presents the least frequency parameters of the [FGM/FGM] square plates
for some fixed mode shapes, in which κe = 1, 2, 3 and 5, S=5, 10 and 20, and
(m̂, n̂) = (1, 1) , (1, 2) and (2, 2). Again, it is shown that the convergence of
the solutions of LD22 and LM22

22 are yielded at N=8, and the convergent solutions
are in excellent agreement with the 3D exact solutions obtained using the modified
Pagano method (Wu and Lü, 2009). Fig. 9 shows that the variation of the through-
thickness distribution of modal field variables with wave numbers, in which S=5,
κe = 1, N=12, and (m̂, n̂) = (1, 1), (1, 2) and (2, 2). It is seen in Fig. 9 that
the through-thickness distributions of modal field variables in the case of (m̂, n̂) =
(1, 1), which is the fundamental mode, are not much different from those in the
case of (m̂, n̂) = (1, 2), while much differ from those in the case of (m̂, n̂) =
(2, 2).
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5 Concluding remarks

In this work, we developed the unified formulations of various RMVT- and PVD-
based FLMs to investigate the free vibration of simply supported, multilayered
composite and FGM plates. The dynamic-versions of Demasi’s test and Pagano’s
benchmark cases were used to validate the accuracy and convergence rate of these
RMVT- and PVD-based FLMs, and the so-called numerical instability problems
resulting from the relative orders used for expansion to the displacement and stress
components in the RMVT-based theories were also examined. In the implemen-
tation of various RMVT- and PVD-based FLMs with the h-refinement process,
we found that LD22 > LD21 > LD11 and LM22

22 > LM21
21 > LM22

21 > LM11
11, which

means LD22 is superior to other PVD-based FLMs, and LM22
22 is superior to other

RMVT-based FLMs. By observing the through-thickness distributions of modal
displacement and stress components obtained using various FLMs, we found both
LD22 and LM22

22 may lead to satisfactory results in comparison with the available
3D exact solutions, where the modal transverse stresses were determined using an
integration approach in LD22 and using the interpolation functions a priori in LM22

22.
In addition, although the LM22

21 theory may lead to accurate results for the natural
frequency parameters of the laminated composite and FGM plates, the through-
thickness distributions of the modal transverse normal stress obtained using the
interpolation functions a priori in LM22

21 oscillate in the top layer, and the LM22
21

theory fails to yield the satisfactory predictions for these. This observation coin-
cides with Demasi’s conclusion, which is that numerical instability occurs when the
relative orders used for expansion to the out-of-plane displacement and transverse
normal stress are different to each other. Moreover, the overall performance of the
RMVT-based FLMs is superior to that of the PVD-based FLMs.
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