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Abstract: In order to understand the underlying mechanisms of inelastic mate-
rial behavior and nonlinear surface interactions, which can be observed on macro-
scale as damping, softening, fracture, delamination, frictional contact etc., it is
necessary to examine the molecular scale. Force fields can be applied to simulate
the rearrangement of chemical and physical bonds. However, a simulation of the
atomic interactions is very costly so that classical molecular dynamics (MD) is re-
stricted to structures containing a low number of atoms such as carbon nanotubes.
The objective of this paper is to show how MD simulations can be integrated into
the finite element method (FEM) which is used to simulate engineering structures
such as an aircraft panel or a vehicle chassis. A new type of finite element is re-
quired for force fields that include multi-body potentials. These elements take into
account not only bond stretch but also bending, torsion and inversion without using
rotational degrees of freedom. Since natural lengths and angles are implemented
as intrinsic material parameters, the developed molecular dynamic finite element
method (MDFEM) starts with a conformational analysis. By means of carbon nan-
otubes and elastomeric material it is demonstrated that this pre-step is needed to
find an equilibrium configuration before the structure can be deformed in a suc-
ceeding loading step.

Keywords: Force fields, molecular dynamic finite element method (MDFEM),
carbon nanotubes, elastomeric material, particle mechanics, continuum mechanics.

1 Introduction

A common question that arises at the beginning of a numerical simulation is how
to capture relevant effects while keeping the numerical effort as low as possible:
Can the material be treated as homogeneous and isotropic, or is it necessary to
consider each individual atom? Cracks in materials which might be observed as a
result of mechanical exposure or aging are usually treated at another analysis level
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than buckling phenomena of thin-walled engineering structures like e. g. cooling
towers.

A lot of constitutive material models have been developed so far to describe, e. g.,
softening behavior, hysteresis loops, friction or fatigue. Though many of these
models are physically motivated, they are often enriched by rheological, i. e. phe-
nomenological components like dashpot or friction elements in order to account for
inelastic effects. Rheological models are suited for efficient simulations. However,
in order to provide an explanation for the physical background of material inelas-
ticity, the aforementioned phenomena have to be deduced from the formulation and
breaking of chemical and physical bonds.

Fig. 1 gives an overview of different simulation levels starting with the quantum
scale up to macroscale. The most complex and detailed level is the quantum scale
which is based on the Schrödinger equation that describes the interactions between
electrons, neutrons and protons. The second level is the nanoscale which can be
reached by neglecting quantum effects (step 1). Force fields treat atoms as point
masses connected by spring elements that represent different bonding types. The
mechanical behavior observed in these classical MD simulations can be used as
motivation for models on microscale (step 2). For larger structures such as e. g.
tires, the results on microscale must be transferred to macroscale which is usually
done by homogenization (step 3). Certain problems require the introduction of
further simulation levels. For instance, if cracks have to be taken into account,
they are often considered by mesoscale models (step 4c). If crack propagation can
be neglected (step 4a) or if there are lots of microcracks which can be smeared
(step 4b), macroscale models will suffice.

Regardless of the length scale, numerical models can be classified by the simula-
tion technique used, namely particle mechanics or continuum mechanics. In parti-
cle mechanics the physical system is treated in a “discrete” way using particles and
particle-interactions. From a mathematical point of view particles do not have to
be atoms but can be seen in a more general way so that even whole galaxies can be
simulated by means of particle mechanics which is based on Newton’s second law:
The force acting on a body equals the product of mass and acceleration. Particle
mechanics is based on force fields which use potentials to describe the interactions
between two ore more bodies. The most simple example is Hooke’s law for linear
springs which is derived from a so-called harmonic potential, a quadratic polyno-
mial. Other well-known examples include the potential for gravitational attraction
between objects with mass, the Coulomb potential for electrostatic forces, or van
der Waals-bonds and hydrogen bonds that are often analyzed by using the potential
of Lennard-Jones (1929), a universal approach that considers both attraction and
repulsion forces.



The Molecular Dynamic Finite Element Method 59

Figure 1: Simulation models at different length scales
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Simulations based on particle models, especially molecular dynamic simulations,
are usually very expensive in terms of computational time. Typical models e. g.
to study crystal crack propagation, comprise up to several million particles which
at first glance seems to be a lot. However, compared to one cubic meter gas at a
temperature of 273.15 kelvin and a hydrostatic pressure of pn = 101.325 kilopascal
which contains NL = 2.686763 · 1025 m−3 molecules (the Loschmidt constant) or
compared to 12 gram of the carbon isotop C12 which consists of NA = 6.0221367 ·
1023 mol−1 atoms (the Avogadro constant) or compared to the 200 billion stars
comprising milky way, it is obvious that not all problems can be handled by particle
mechanics.

For homogeneous structures, continuum mechanical approaches can be applied
which are capable of simulating engineering structures like bridges, airplanes, cars
etc. However, a simple question of how to explain crack propagation exceeds the
capabilities of both particle and continuum mechanics, so that concurrent multi-
scale simulations are necessary.

A common approach to link a discrete atomic structure to a continuum region is
to apply the Cauchy-Born hypothesis which goes back to Born and Huang (1954)
and Ericksen (1984): The bond distance vector r = Fr0 in the deformed configu-
ration can be mapped from the bond distance vector r0 in the undeformed config-
uration by the deformation gradient tensor F. F can be decomposed into a stretch
and a rotation part, so that the bond length |r| can be given in terms of the right
Cauchy-Green strain tensor. It should be noted that the Cauchy-Born rule involves
an approximation because according to the continuum mechanics framework, line
elements mapped by F from the undeformed to the deformed configuration must be
infinitesimally small. Bond vectors, however, are of finite length. In order to over-
come stability problems, unrealistic wave reflections and other numerical problems
resulting from the transition region, various alternative formulations can be found
in the literature like the exponential Cauchy-Born rule proposed by Arroyo and
Belytschko (2002).

Among different solution techniques that can be applied to a continuum region, the
finite element method (FEM) is the most versatile and widespread approach. Due
to its very broad range of applications it has become the dominating engineering
simulation method. This leads to the desire to also integrate molecular dynamic
(MD) simulations to the well-established FEM framework. As shown by Nasdala
and Ernst (2005) by the example of the Dreiding force field proposed by Mayo,
Olafson, and Goddard (III) (1990), the “molecular dynamic finite element method”
(MDFEM) requires special finite elements if multi-body potentials have to be con-
sidered.

This paper is addressed to users of finite element codes who want to learn more
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about MDFEM, its background in molecular mechanics, the new class of finite
elements needed to obtain the same results as traditional MD software, applicable
time integration schemes and other implementation issues.

Two examples are provided. In order to demonstrate the robustness and reliability
of MDFEM even for geometrically highly nonlinear problems, the first example
is about carbon nanotubes with Stone-Wales defects that buckle when subjected
to torsional loads. The second example illustrates the benefits for computational
material scientists. It is shown that inelastic material behavior can be deduced from
the rearrangement of bonds which makes the use of rheological elements obsolete.

2 Chemical and physical bonds

For a better understanding of MDFEM, particularly concerning the numerical ef-
fort, a brief overview of the different bond types is given in this chapter. There are
two main classes:

• Chemical bonds, the so-called strong bonds:

The three types of chemical bonds are ionic bonds, covalent bonds and metal-
lic bonds. The electrons of an atom’s outermost orbital are called valence
electrons. With the exception of the noble gases whose atoms’ outer electron
shells are completely filled, each atom tries to obtain a noble gas configu-
ration by either gaining or losing valence electrons, depending on its elec-
tronegativity. The electronegativity difference between two atoms of a cova-
lent bond is usually less than 1.7 eV. When the difference is 1.7 eV or greater,
the bond is predominantly ionic. In a metallic bond, valence electrons are
free to move through the crystalline lattice.

• Physical bonds or interactions, which are often referred to as weak bonds:

The range of weak bondings comprises dipole-dipole interactions, dipole-
ion interactions, van der Waals interactions and hydrogen bondings. The
distinction between these categories is ambiguous, e. g. hydrogen bondings
are often considered to be a special case of van der Waals bonds.

The term “orbital” refers to a mathematical function that describes the probability
of an electron’s position. The first and simplest one is a sphere and is denoted as
s-orbital. It is followed by the p-orbital which has the shape of a dumbbell. Further
examples include the d-orbital and the f-orbital.

From an energetic point of view, the overlap of the orbitals must be as large as
possible. As shown in Fig. 2, one s-orbital can mix with one, two or three p-orbitals
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(a) One s-orbital and one p-orbital combined to two sp1-hybrid orbitals

(b) One s-orbital and two p-orbitals combined to three sp2-hybrid orbitals

(c) One s-orbital and three p-orbitals combined to four sp3-hybrid orbitals

Figure 2: Orbital hybridizations of the second shell

to form so-called hybrid orbitals. While the two sp1-hybrid orbitals are located on
a straight line, the three sp2-hybrid orbitals are in a plane at an included angle of
120°. Between the four energetically equivalent sp3-hybrid orbitals, which are also
referred to as q-orbitals, there is a tetrahedral angle of 109.5°. For the chemical
element carbon, all three types are possible: The two carbon atoms of acetylene
are sp1 hybridized, the carbon atoms of graphite have sp2-hybrid orbitals, and to
achieve the high strength of diamond, carbon must be sp3 hybridized.
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2.1 Covalent bonding

A covalent bond can be formed by two atoms of the same kind as well as by dif-
ferent types of atoms. In contrast to ionic bonds, the electrons are not transferred
completely but shared pairwise between the participating atoms. The overlapping
atomic orbitals form joint electron clouds, the so-called molecular orbitals. Since
they provide more space for the electrons, according to Heisenberg’s uncertainty re-
lation, molecular orbitals have a smaller impulse and therefore also a lower kinetic
energy than the individual atomic orbitals.

(a) Ethene, C2H4

(b) Ethyne, C2H2

Figure 3: Double and triple bonds composed of σ - and π-bonds

If two s-orbitals or an s-orbital and a hybrid orbital are involved, we speak of a
σ -bond. Each atom contributes one of its valence electrons to the common bond
cloud. Diamond owes its high hardness to the fact that each of its carbon atoms
forms four σ -bonds which are very strong due to the low kinetic energy. The
interaction between two aligned p-orbitals is called π-bond.

While single bonds such as as the hydrogen-carbon bond are σ -bonds, the valence
electrons of double and triple bonds are also connected by one or two π-bonds.
Fig. 3 shows ethene (ethylene), a main component of many elastomeric materials,
which has a double bond, and ethyne where each atom has to share three of its
valence electrons. Multiple bonds are not very stable.
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2.2 Ionic bonding

When atoms have a large difference in electronegativity, one or more electrons can
be completely transferred from the atom with distinct metallic properties to the
atom with nonmetallic properties. This process results in a positively charged ion
and a negatively charged ion being attracted to each other by electrostatic forces. A
typical feature of ionic bonds is the formation of regular ionic crystals, e. g. sodium
chloride, commonly known as table salt NaCl.

2.3 Metallic bonding

In a metallic bond, the atoms are organized in a regular crystalline structure. In
contrast to the previously introduced valence bonds, the electrons are no longer
assigned to specific atoms. Instead, valence electrons separate from the atoms,
which then become positively charged metallic ions, while the electrons can move
freely and randomly through the crystalline lattice. This “electron gas” accounts
for the high electrical and thermal conductivity of metals.

2.4 Van der Waals bonding

The type of bonding that is named after the physicist Johannes Diderik van der
Waals (1837-1923) describes the electrostatic interaction between dipoles. As
shown in Fig. 4, dipoles are caused by an uneven distribution of electron density
within atoms or molecules. As a consequence, there is an offset between the cen-
ter of mass of all electrons and the protons’ center of mass, so that partial charges
evolve. Opposite partial charges attract each other whereas equal partial charges re-
pel. Depending on the electronegativity, some compounds have a permanent dipole
while other molecules are initially non-polar. When such non-polar molecules ap-
proach a dipole, they become dipoles themselves, so-called induced dipoles.

Even if two non-polar atoms or molecules approach one another, they can induce
dipoles. The constant fluctuation of the electrons in a non-polar molecule evokes
a momentary dipole for a short amount of time which may then polarize a neigh-
boring molecule. These types of van der Waals bondings are often referred to as
London dispersion forces and temporary dipoles as the electrical charges are oscil-
lating back and forth.

Compared to an intramolecular force of a covalent or ionic bond, each van der
Waals interaction is very weak and only significant when two atoms come close
to one another. However, as an intermolecular force, van der Waals bondings can
act simultaneously in various directions. Long hydrocarbon chains which can be
found in fats and oils as well as in elastomers and polymers owe their elasticity
and strength to the collective action of lots of van der Waals forces. They are
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Figure 4: Van der Waals interaction (dipole-dipole interaction)

responsible also for many other chemical properties such as the high boiling point
of fats or the fact that even noble gas atoms unite as noble gas crystals - but only
at very low temperatures. Van der Waals-interactions are the only linkage between
the different walls of a multi-walled carbon nanotube, see e. g. Xie, X.Han, and
Long (2007) and Xie and Long (2006).

When the kinetic energy increases, the probability that atoms approach one another
decreases. Hence, van der Waals bondings tend to break with rising temperatures.
This kind of bond degradation often comes along with a phase transition from the
solid to the liquid state or from the liquid to the gaseous state.

2.5 Hydrogen bonding

Hydrogen bonding can be regarded as a special and important case of van der Waals
bonding. When a hydrogen atom is covalently bonded to a strong electronegative
atom, such as fluorine, oxygen or nitrogen, very strong permanent dipoles arise
because each hydrogen atom contains only one proton and therefore cannot attract
the joint electron pair very well. As the hydrogen atom has a large positive partial
charge, it can now form hydrogen bonds to other molecules with negative partial
charges.

The part which provides the hydrogen atom is called donor while the other part is
the acceptor. Examples of H-donors include −OH, −NH2 or −COOH. Typical H-
acceptors are compounds that contain oxygen or nitrogen atoms. Hydrogen bonds
are considerably strong physical bondings. For this reason water is a very stable
compound.
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3 From quantum to molecular mechanics

In the last section, different types of bonds have been introduced, however, without
quantifying how strong they really are or how the equilibrium distances and angles
between the individual atoms can be predicted. In theory, the exact behavior of all
chemical and physical bonds can be computed with the help of the famous Schrö-
dinger equation formulated by Erwin Schrödinger (1926). It is the central equation
of quantum mechanics, as it describes the interactions between the electrons and
the atomic nuclei accurately. An exact solution is available as of today only for the
hydrogen atom. Therefore, a variety of approximation procedures has been devel-
oped. The range extends from ab initio methods over semi-empirical models up to
classical molecular dynamics. A large body of literature exists on this topic, see
e. g. Levine (1991), Pauling and Wilson Jr. (1985), and Shen and Atluri (2004).
The most important methods will be discussed subsequently.

3.1 Schrödinger wave equation

A time-depended and a time-independent version of the Schrödinger wave equation
have been derived. For a system that consists of K nuclei and N electrons, the
general time-depended Schrödinger equation reads

ÊΨ(R,r, t) = ĤΨ(R,r, t) (1)

with the energy operator

Ê = ih̄
∂

∂ t
(2)

and the Hamilton operator, the Hamiltonian
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N
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− h̄2

2

K

∑
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1
M j

∆R j︸ ︷︷ ︸
=T̂K

.

(3)

As solution of the general time-dependent Schrödinger equation, the state func-
tion Ψ(R,r, t) depends on the coordinate vectors R = (R1,R2, . . . ,RK) and r =
(r1,r2, . . . ,rN) of nuclei and electrons as well as on the time t and yields, according
to Heisenberg’s uncertainty principle, probability distributions of the location and
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the impulse of these particles. In terms of its structure, the Schrödinger equation
can be seen in analogy to an electromagnetic wave as a wave equation. Hence, Ψ

is often denoted as wave equation. When neglecting the spin, the external forces
acting on the system and relativistic interactions, the Hamiltonian Ĥ comprises the
operators of the Coulomb potentials V̂e, V̂eK and V̂K as well as the operators of
the kinetic energies T̂e and T̂K. M j and Z j are the masses and charge numbers of
the nuclei, me is the mass of an electron, ε0 the electric field constant, i =

√
−1

the imaginary unit and h̄ = h
2π

a natural constant based on Planck’s quantum of ac-
tion h. The Laplace operators ∆R j =

∂ 2

∂R2
j,x

+ ∂ 2

∂R2
j,y

+ ∂ 2

∂R2
j,z

and ∆r j =
∂ 2

∂ r2
j,x

+ ∂ 2

∂ r2
j,y

+ ∂ 2

∂ r2
j,z

indicate that the kinetic energies depend on the curvature of the wave equation.

For reasons of simplicity, the Hamiltonian Ĥ in Eq. 3 has been assumed to be
independent of time t. In this case, a decoupling of the state function

Ψ(R,r, t) = ψ(R,r) · f (t) (4)

into a time-independent part ψ(R,r) and a time-dependent part f (t) is possible.
Substitution into Eq. 1 yields

ψ(R,r) · Ê f (t) = f (t) · Ĥψ(R,r) . (5)

After division by f (t) 6= 0 and using

E =
Ê f (t)
f (t)

(6)

we obtain the stationary Schrödinger equation

Ĥψ(R,r) = Eψ(R,r) (7)

which is easier to solve. E is in contrast to Ê not an operator but a simple number.
The total energy of the solution

Etot = ih̄
1

f (t)
∂ f (t)

∂ t
(8)

is both space- and time-dependent.

Although the stationary Schrödinger equation given in Eq. 7 is not time-dependent,
this does not imply that only static problems can be solved. It just means that the
time-dependence of the solutions is known. After multiplication with f (t), Eq. 8
represents a first order differential equation. Its solution

f (t) = cexp
(
− iEtott

h̄

)
(9)
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yields the temporal evolution of the wave equation, simple sine or cosine oscilla-
tions.

An important feature of the Schrödinger equation is that new solutions can be ob-
tained by superposition, which is a typical property of wave equations. For the
time-dependent Schrödinger equation, Eq. 1, the general solution approach for ψ

and its corresponding complex conjugate ψ∗ is given by

Ψ(R,r, t) = ∑
n

cn exp
(
− iEnt

h̄

)
ψn(R,r) (10)

with

cn =
∫

ψ
∗
n (R,r)Ψ(R,r,0) dRdr . (11)

To obtain a unique solution, initial conditions have to be defined.

3.2 Ab initio molecular dynamics

Between both extremes, pure ab initio methods on the one hand, which can be used
to solve the Schrödinger equation for hydrogen exactly, and classical molecular
dynamics on the other hand, where atoms are treated as point masses, a variety of
different approaches exists. In order to distinguish themselves from “empirical”
classical molecular dynamics, many methods claim to be an “ab initio” approach.
As different notations and ratings can be found in the literature, for non-physicists,
an evaluation of these methods can be quite challenging. The same approach can
be denoted as “quantum mechanical method” by some authors, while others prefer
to write “semi-empirical method”. Additional information on “ab initio methods”
can be found in Marx and Hutter (2000).

3.2.1 Born-Oppenheimer approximation

A basic simplification of the Schrödinger equation which is named after Max Born
and Julius Robert Oppenheimer is to separate the equations of motion with regard
to the electrons and the nuclei. It exploits the fact that electrons have a much lower
mass and move faster that the nuclei, which allows for an immediate adaption to
new nuclei positions. The Schrödinger equation of the nuclei is replaced by New-
ton’s equation of motion. The remaining part is called the electronic Schrödinger
equation.

Hence, with the help of the Born-Oppenheimer approximation, the Schrödinger
equation can be reduced to a many-electron problem. To solve this problem, further
approximations such as the Hartree-Fock approach (HF) or the density functional
theory (DFT) are necessary.
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3.2.2 Hartree-Fock theory

The approach developed by Hartree (1928, 1932) and Fock (1930) reduces the
many-electron problem to coupled one-electron problems. The electron-electron
interaction terms are replaced by an averaged potential for each electron consider-
ing the average potential of the other electrons. On the other hand, the neglect of
electron correlation effects is the main source of error of the HF method.

The HF method is comparable to the Ritz approach. In order to determine the
Hamiltonian’s ground state, trial functions within the framework of a variational
principle are introduced. A possible choice of test functions are the so-called Slater
determinants Slater, Wilson, and Wood (1969) of one-electron wave equations.

3.2.3 Density functional theory

The density functional theory is based on a publication by Hohenberg and Kohn
(1964). They show that the electron energy in the ground state is not only well-
defined by a functional of the wave function but also by a functional of the electron
density. On this basis, Kohn and Sham (1965) present the so-called local-density
approximation (LDA) which can be used to approximate the electron ground-state
energy. In combination with a variational principle for the density functional, this
approach finally leads to the one-electron Schrödinger equations, also known as
Kohn-Sham equations.

Compared to pure ab initio methods with high numerical effort of order O(N4), a
reduction to order O(N3) can be achieved. Methods based on the DFT approach
with a reduced effort of O(N2) are Car-Parrinello molecular dynamics and the con-
jugate gradient method (CG) whereas the latter is considered to be a bit more effi-
cient then the method developed by Car and Parrinello (1985).

3.3 Semi-empirical models

The time-dependent self-consistent field (TDSCF) approximation introduced by
Dirac (1930) is based on an estimation of the electron distribution, which is used
to determine the potential for each single electron with respect to the remaining
electrons. Atomic nuclei are assumed to move according to the rules of classical
mechanics. The electron’s effective potential is also known as Ehrenfest potential,
see Ehrenfest (1927) for details. The computed electron distribution acts as a start-
ing point for a new iteration step, which is repeated until the atomic orbitals are
determined with sufficient accuracy.

Originally introduced by Bloch (1928) and revised by Slater and Koster (1954), the
tight-binding method is another typical representative of the semi-empirical meth-
ods. A linear combination of atomic orbitals (LCAO) allows for a parametriza-
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tion of the Hamiltonian such that the total energy and the eigenvalues of the elec-
tronic Schrödinger equation can be determined. Interatomic forces are computed
by means of the Hellmann-Feynman theorem.

An alternative to semi-empirical methods are the so-called hybrid QM/MD meth-
ods. As in a typical multiscale model, only a small portion of the system is treated
quantum-mechanically, while for the rest of the system MD simulations based on
force fields are carried out.

3.4 Classical molecular dynamics

In classical molecular dynamics, the parameterized potential functions only depend
on the nuclei positions. Not having to bother with the electrons, it is possible to
simulate the interactions between many thousands or even many millions of atoms.
In the following, the equations of motion are given in three different forms, which
can be easily transformed into each other.

3.4.1 Newton’s equation of motion

For a system of N atoms, the equations of motion, also known as Newton’s second
law, are given as

F j = İ j = M jR̈ j =−∇R jV with j = 1, . . . ,N (12)

with the total empirical potential V = V (R1,R2, . . . ,R j, . . . ,RN). F j, M j and R j

denote the inner forces, masses and coordinates of atom j, respectively. I j = M jṘ j

is the momentum vector.

3.4.2 Lagrange’s equation of motion

Using the Lagrangian

L = Ekin−V , (13)

the Lagrange form of the equations of motion reads

d
dt

∂L
∂ Ṙ j
− ∂L

∂R j
= 0 with j = 1, . . . ,N . (14)

Utilizing the generalized coordinates (q1,q2,q3,q4, . . .) = (R1,x,R1,y,R1,z,R2,x, . . .),
it can be written as

d
dt

∂L
∂ q̇i
− ∂L

∂qi
= 0 with i = 1, . . . ,3N (15)



The Molecular Dynamic Finite Element Method 71

and the kinetic energy

Ekin =
N

∑
j=1

M j
Ṙ2

j

2
=

3N

∑
i=1

Mi
q̇2

i

2
. (16)

3.4.3 Hamilton’s equation of motion

Hamilton’s equations of motion comprise two first-order differential equations

ṗi =−∂H
∂qi

and q̇i =
∂H
∂ pi

(17)

with the Hamilton’s principal function

H = Ekin +V =−L+
3N

∑
i=1

piq̇i (18)

and the generalized momentum

pi =
∂L
∂ q̇i

(19)

with (p1, p2, p3, p4, . . .) = (I1,x, I1,y, I1,z, I2,x, . . .). Like the Hamiltonian (Eq. 3),
Hamilton’s principal function (Eq. 18) consists of both a kinetic energy Ekin con-
tribution and a potential energy V contribution.

4 The molecular dynamic finite element method

4.1 Requirements for the finite element method

Since MD simulations do not belong to the standard applications of FEM codes,
the user has to make the necessary adjustments. In this section, all aspects of the
molecular dynamic finite element method (MDFEM), in particular the differences
to traditional MD software, are discussed from a FEM user’s point of view.

4.1.1 Force fields

In molecular dynamics, the potential energy which, in the previous chapter, is de-
noted by the variable V as it is usual in quantum mechanics to avoid confusion with
the energy operator, is denoted by the variable E and called force field. Force fields
can be derived in two complementary ways:

• from quantum mechanical calculations,

• from experimental work,
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see e. g. Ercolessi and Adams (1994). Well-known force field approaches in-
clude AMBER (Assisted Model Building with Energy Refinement, see e. g. Weiner
and Kollman (1981)), CHARMM (Chemistry at HARvard Molecular Mechanics,
see Brooks, Bruccoleri, Olafson, States, Swaminathan, and Karplus (1983)), the
“Molecular Mechanics”-force fields MM1, MM2, MM3 and MM4 (Allinger and
Chen (1996)), ECEPP (Roterman, Lambert, Gibson, and Scheraga (1989)), and
UFF (Universal Force Field, see Rappé, Casewit, Colwell, Goddard (III), and Skiff
(1992)).

Main application of classical molecular dynamic simulations is a calculation of
equilibrium configurations within a so-called conformational analysis, without con-
sidering bond forming and bond rupture reactions, cf. e. g. Schlick (2002). Force
field potentials are often extended and adapted in order to account for specific ma-
terial aspects. The potential by Stillinger and Weber (1985) for instance is well-
suited and efficient for the approximation of crystalline silicon as it includes terms
to enforce a diamond-like tetrahedral local structure which results in a more sta-
ble and realistic than compact structure. For the treatment of non-bonded interac-
tions, the popular potential by Lennard-Jones (1929) is often preferred due to its
efficiency, while for example the Buckingham (1938) potential introduces an expo-
nential function of distance to capture the exchange repulsion stemming from the
Pauli exclusion principle more precisely. Some approaches make use of the concept
of local environment, with bond strengths depending on the bonding environment
e. g. the many-body potentials by Tersoff (1988) and Brenner (1990). ReaxFF by
van Duin, Dasgupta, Lorant, and Goddard (III) (2001) replaces explicit bonds with
bond orders to account for continuous formation and breaking of bonds.

In general, MDFEM can be applied to all kinds of force fields. However, it should
be noted that many force fields are designed for a limited range of chemical ele-
ments or rather very special substances like proteins or peptides and cannot be used
to examine other structures.

4.1.2 Short- and long-range force field potentials

Most chemical and physical bonds can be described using pair potentials. From a
numerical point of view, a distinction has to be made between short-range (bonded)
and long-range (non-bonded) interactions. In the following, the implications for
the finite element method are discussed by the example of the Dreiding force field
(Mayo, Olafson, and Goddard (III) (1990)).

The bond stretch between the atoms I and J can be expressed by a linear approach

E lin
B =

1
2

ke(RIJ−Re)2 (20)
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(parabolic potential) that is well-suited for small deformations. It depends on the
natural bond length Re, the interatomic distance RIJ and the stiffness ke. To account
for nonlinear bending at large deformations, the function derived by Morse (1929)

EB = De [exp(−αn(RIJ−Re))−1]2 with α =
1
n

√
ke

2De
(21)

is applied. The parameter De denotes the fracture energy. n is the bond order, e. g.
n = 1 for the σ -bonds of diamond, n = 1.333 for graphene, n = 1.5 for benzene,
n = 2 for the π-bond of ethene or n = 3 for the π-bond of ethyne. The nonlinear
Morse approach corresponds to the linear one if deformations are small RIJ → Re.

Bond stretch can be seen as a quite stable connection between an atom and its clos-
est neighbors. For instance, hydrogen has one neighbor, the carbon atoms of ethyne
have two neighboring atoms, and the carbon atoms of graphene are neighbored by
3 atoms. The number of neighboring atoms is limited to 4 which is the case for
diamond.

An approach widely used to describe long-range van der Waals interactions is given
by Lennard-Jones (1929). The general form reads

ELJ
m,n (RIJ) =

ε

n−m

(
nn

mm

) 1
n−m
[(

σ

RIJ

)n

−
(

σ

RIJ

)m]
with m < n . (22)

While repulsion forces are expressed by the first term, the second term accounts
for attraction forces. ε denotes the size of the forces and σ refers to the zero-
crossing of the potential. Often the form (m,n) = (6,12) is applied, whereas m = 6
reflects the actual van der Waals force for large distances, and n = 12 is chosen
for simplicity reasons without a physical motivation. The resulting large repulsion
forces avoid that two atoms come too close. Substituting the parameters ε and

σ = 6
√

1
2 Re,vdW with the fracture energy De,vdW and the natural length Re,vdW leads

to the (6,12)-form of the Lennard Jones (LJ) potential

ELJ
vdW (RIJ) = De,vdW

[(
RIJ

Re,vdW

)−12

−2
(

RIJ

Re,vdW

)−6
]

. (23)

Hydrogen bondings are characterized with the help of a modified Lennard-Jones
approach. The general equation 22 is altered by substituting (m,n) = (10,12) and
multiplying with cos4 ΘDHA. The potential function then reads

Ehb(RDA,ΘDHA) = Dhb

[
5
(

RDA

Rhb

)−12

−6
(

RDA

Rhb

)−10
]

cos4
ΘDHA . (24)
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ΘDHA denotes the angle between the donor D, hydrogen H and acceptor A. RDA
is the distance between the donor and the acceptor. Both material parameters, the
modified fracture energy Dhb and the natural equilibrium distance Rhb, depend on
the hydrogen bridge type and hence have to be fitted to experimental data.

Other force fields often use a simple (10,12)-Lennard-Jones approach

ELJ
hb (RDA) = Dhb

[
5
(

RDA

Rhb

)−12

−6
(

RDA

Rhb

)−10
]

(25)

to describe hydrogen bonding.

Coulomb or electrostatic interactions can be simulated by means of the Coulomb
potential

EQ(RIJ) =
1

4πε0

qIqJ

RIJ
(26)

for two point loads qI and qJ with a distance RIJ . ε0 denotes the dielectric con-
stant. Charges with equal algebraic signs repel whereas opposite charges attract
each other.

In contrast to bond stretch, the long-range van der Waals, hydrogen and Coulomb
interactions connect an atom to a multitude of atoms. In theory, each atom has a
direct connection to all atoms of the same structure. For practical applications, it is
recommended to introduce cutoff distances or special algorithms in order to reduce
the numerical effort of a MDFEM analysis:

• Since interaction forces approach zero for large distances, bondings that ex-
ceed a certain range, e. g. three times the natural length, can be neglected.

• For a geometric nonlinear analysis, the selection should be revised in regular
intervals as the interatomic distances are supposed to change.

• For very large structures and e. g. long-range interactions that decay slowly
with distance, it is necessary to bundle long-range interactions using special
algorithms. For instance, the Ewald summation has been derived for the
fast treatment of electrostatic interactions and is often used in biomolecular
systems such as proteins and enzymes in a crystalline state, whereas methods
based on multipole expansions are often used for non-periodic systems, such
as an enzyme in solution. For details, see e. g. Schlick (2002).

For static and implicit dynamic procedures, long-range potentials lead to a very
large bandwidth of the stiffness matrix. Therefore, it should be considered to use
an explicit time-integration scheme, even if the problem is quasi-static.
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4.1.3 Multi-body force field potentials

Sophisticated force field approaches also include multi-body potentials. The sim-
plest example is a three-body potential that considers an energy increase if the
angle ΘIJK between two bonds IJ and JK differs from the natural angle Θ0

J . The
resulting deformation mode is called bending. In analogy to the natural lengths
introduced in the previous section, the natural angle yields the energy-free equilib-
rium configuration with regard to bending. For small deformations, the Dreiding
force field approach for bending reads

E lin
A =

1
2

KIJK
[
ΘIJK−Θ

0
J
]2

. (27)

For large deformations, an extended cosine approach

EA =


1
2CIJK

[
cosΘIJK− cosΘ0

J

]2 for Θ0
j 6= 180◦

KIJK [1+ cosΘIJK ] for Θ0
j = 180◦

(28)

can be used which accounts for additional natural angles.

The Dreiding torsion energy

ET = EIJKL =
1
2

VIJKL
[
1− cos

[
nJK(ϕ−ϕ

0
JK)
]]

(29)

is a function of the dihedral angle ϕ = ϕIJKL that is defined by the two planes IJK
and JKL, the natural angle ϕ0

JK and the periodicity nJK . A linearization of Eq. 29
can be carried out in case of small deformations ϕ→ ϕ0

JK . This leads to the torsion
energy

E lin
T =

1
4

VIJKLn2
JK(ϕ−ϕ

0
JK)2 . (30)

As shown in section 4.2, special user elements are required to consider multi-body
potentials within the MDFEM framework.

4.1.4 Natural lengths and angles

Instead of studying the behavior of molecules under external loading, MD simu-
lations usually aim to determine minimum energy conformations. In most cases,
molecules can be seen as statically overdetermined systems and as such the equi-
librium distances and angles of the overall structure usually differ from the natural
lengths and angles which are also referred to as constitutive lengths and angles.

In order to utilize force fields in finite element simulations, molecular dynamic fi-
nite elements must be able to “memorize” the natural distances and angles with
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the help of intrinsic material parameters. As a consequence, in contrast to stan-
dard elements, the coordinates of the initial configuration only have to be given
approximately.

4.1.5 Linear and nonlinear analysis

It is obvious that the finite element code must be able to consider both geometrical
and physical nonlinearities since interatomic bonds and interactions can undergo
large motions and rotations leading to bond breakage or rather a rearrangement of
bonds.

Nevertheless, it is often desirable to also have the opportunity to perform a linear
analysis. As already mentioned and shown in section 4.1.9 in more detail, the
equilibrium configuration is generally unknown, even for an unloaded structure.
A linear analysis using the harmonic force field potentials can improve the initial
configuration at low numerical cost since no iteration is required. Then, the linear
force field potentials are exchanged by their nonlinear counterparts and a nonlinear
simulation step is performed to finish the conformational analysis.

4.1.6 Material parameters

In structural mechanics, usually comprehensive tests are required to obtain mate-
rial parameters for sophisticated material models such as a viscoplastic damage
model. MDFEM users, however, do not have to worry about expensive and time-
consuming testing issues because all the parameters are already provided by the
force fields. The different force field approaches can be seen as large databases
from which the required parameters can be extracted.

It is recommended to start with a so-called “universal” force field which usually
includes the complete range of chemical elements. Force fields developed for spe-
cial applications such as the analysis of proteins or DNAs may give better results
if similar structures are to be examined, but are often limited to a small subset of
the periodic table of the chemical elements. Hence, bevor applying a specialized
force field, the user has to check whether all chemical elements of his structure are
involved.

To evaluate the convergence of the numerical solution, FE solvers use error toler-
ances which are based either on relative or on absolute values for the displacements
and forces. The latter case is inadmissible if SI units are used because, among other
reasons, the tolerances would be too high so that false results could be accepted as
true. Therefore, a general recommendation is to replace the SI units m, N, kg
and s by the following unit system: nm = 10−9 m = 10 Ångström, nN = 10−9 N,
akg = 1atto kg = 10−18 kg and ns = 10−9 s.
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4.1.7 Finite elements without rotational degrees of freedom

In molecular dynamics, atoms are treated as point masses which possess only trans-
lational degrees of freedom, implying that only finite elements without rotational
degrees of freedom should be used. However, a common approach is to describe
the atomic interactions by means of standard beam elements which have rotational
degrees of freedom, cf. Wang and Wang (2004), Tserpes and Papanikos (2005),
Harik (2002) and Li and Chou (2004). At this point, it must be stressed that beam
models can only be regarded as a workaround, being used for simplicity reasons.

As shown in section 4.2, special user elements with the following characteristics
have to be introduced:

• To be able to decouple bending and torsion energies, the finite elements must
not have rotational degrees of freedom.

• The force field parameters can be applied directly.

• Compared to beam models that use rotational degrees of freedom, only half
the number of degrees of freedom is necessary which is much more efficient.

Note that for a beam element model the force field parameters have to be trans-
formed to normal, bending and torsional stiffnesses and strengths. And what is
more: It can be shown that the specification of the bending and torsion param-
eters is ambiguous because even for the pure torsion mode depicted in Fig. 6(e)
some beam elements, namely the cantilever beams, are subjected to bending. That
means, torsion between the planes of two adjacent atom groups IJK and JKL can
be considered both by torsion of the beam JK and by bending of the beams IJ
and KL.

4.1.8 Time integration schemes

The equation of motion can be written in the general form

R = Mü+ I−P = 0 (31)

with the residual vector R, the mass matrix M, the acceleration vector ü and the
vectors of the internal and external forces I = I(u, u̇) and P = P(u, u̇).
In molecular dynamics, often explicit time integration schemes are applied. Verlet
(1967) developed one of the most popular algorithms, which can be derived using a
double Taylor series with two time points t0−∆t and t0 +∆t, that is truncated after
the cubic term. However, the Verlet algorithm is not available in most finite element
codes. In addition, it is unusual to apply multi-step algorithms such as the higher
order Runge-Kutta methods. Considering this, we concentrate on the three most
important time integration schemes available in commercial finite element codes:
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• The implicit HHT method

The HHT method is an extension of the implicit time integration scheme
developed by Newmark (1959) that is based on a Taylor series expansion of
the displacements

un+1 = un +∆t u̇n +∆t2
[(

1
2
−β

)
ün +β ün+1

]
(32)

and the velocities

u̇n+1 = u̇n +∆t [(1− γ)ün + γün+1] (33)

where quadratic and higher order terms are approximated by a quadrature
rule. After rearranging the equations, we obtain the displacements at time tn+1

u̇n+1 =
γ

β∆t
(un+1−un)+

(
1− γ

β

)
u̇n +∆t

(
1− γ

2β

)
ün (34)

and the accelerations at time tn+1

ün+1 =
1

β (∆t)2 (un+1−un)−
1

β∆t
u̇n +

(
1− 1

2β

)
ün . (35)

The accuracy and stability depends on the choice of the quadrature param-
eters β ∈]0,1] and γ ∈]0,1]. For example, if β = 1

4 and γ = 1
2 (constant

acceleration) or β = 1
6 and γ = 1

2 (linear acceleration), the Newmark method
is unconditionally stable, i. e. its robustness is independent of ∆t.

Hilber, Hughes, and Taylor (1978) extended Newmark’s method by introduc-
ing the parameter α

Mü|tn+1
+ (1+α)(I−P)|tn+1

− α(I−P)|tn = 0 (36)

which shifts the force vector term from the new time point tn+1 to an inter-
mediate time point tn+1+α with α ∈

[
−1

3 ,0
]
. This damps high frequencies

and stabilizes the time integration scheme. A typical value is α = − 1
20 . For

α = 0, the HHT algorithm is equivalent to Newmark’s method.

• The implicit Euler backward method

Like the HHT method, the Euler backward method is an implicit time inte-
gration scheme, which implies that displacements

un+1 = un +∆t u̇n+1 (37)
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and velocities

u̇n+1 = u̇n +∆t ün+1 (38)

have to be updated iteratively. The Euler backward method is unconditionally
stable.

When time increments become large, the dynamic response is affected by
numerical damping, which is more distinct compared to the HHT method.
Hence, the HHT integration scheme is a good choice, when dynamic effects
are important, while the Euler backward method should be preferred over
HHT for a quasi-static analysis.

• The explicit midpoint method

No iterations are required for the explicit time integration scheme. Velocities

u̇n+1/2 = u̇n−1/2 +
∆tn+1 +∆tn

2
ün (39)

and subsequently the displacements

un+1 = un +∆tn+1u̇n+1/2 (40)

are updated by means of the explicit midpoint rule. Multiplying the equation
of motion, Eq. 31, with the inverse mass matrix M−1 yields the accelerations

ün+1 = M−1(Pn+1− In+1) (41)

as a function of the internal forces In+1 = I(un+1, u̇n+1/2) and the external
forces Pn+1 = P(un+1, u̇n+1/2). Since atoms are regarded as point masses, M
is a diagonal mass matrix and thus can be easily inverted.

The stability and accuracy depends on the time increment ∆t. For linear
problems, i. e. if the harmonic force field potentials are chosen, the optimal
time increment size

∆t =
2

ωmax
(42)

is limited by the highest eigenfrequency ωmax. Since for systems including
a large number of atoms, it is not feasible to determine ωmax, the highest
element eigenfrequency or rather “bond eigenfrequency” ωelem

max can be used
instead. In structural mechanics, this corresponds to a time increment size of

∆t =
Lmin

c
(43)
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where Lmin is the smallest characteristic element dimension and c is the di-
latational wave speed c of the material.

Based on the angular frequency ω =
√

k
m of the simple harmonic oscillator,

we propose to update the time increment for each increment in accordance
with Eq. 42

∆t = 2η

√
mIJ

|kIJ|
with 0 < η ≤ 1 (44)

where kIJ and mIJ denote the current bond stiffness, which may also be neg-
ative, and the mass of the two atoms I and J. The parameter η controls
accuracy and efficiency of the explicit time integration scheme, e. g. η = 0.5.

4.1.9 Relaxation step to determine the reference configuration

Usually, the equilibrium configuration of an atomic structure is unknown because
the interatomic distances and angles differ from the natural bond distances and
angles. From a numerical point of view, damping can help to determine the equi-
librium state. The conformational analysis then becomes a “relaxation step”. This
technique can be compared to a conventional FEA analysis where initial stresses or
bolt pretensions are applied in a first analysis step. In general, equilibrium config-
urations can be obtained in three different ways:

1. For statically determinate systems or symmetric structures such as graphene,
it is possible to specify the coordinates of the atoms exactly.

2. If the structure is statically indeterminate, but the equilibrium configuration
can be given approximately, a simple static analysis is sufficient. As an ex-
ample, consider a (10,10) armchair carbon nanotube with a Stone-Wales de-
fect. The initial configuration is shown in Fig. 5, top left. Using the nonlin-
ear force field potentials, within a single static analysis step the equilibrium
state shown top right can be reached. If more than one equilibrium con-
figuration exists, a two-step static conformational analysis is recommended
starting with the harmonic potentials.

3. For complex structures with multiple equilibrium states, convergence of a
pure static analysis is quite unlikely. Even a dynamic analysis usually faces
numerical problems because the initial potential energies of the bonds can be
fairly high if the distance between two atoms is too close which often cannot
be avoided. The high potential energy then is transformed to kinetic energy
resulting in enormous oscillations or rather “explosions”.
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An example where numerical damping has to be introduced to dissipate the
energy is elastomeric material. Fig. 5, bottom left, shows seven polymer
chains which are interconnected by van der Waals forces. While the chem-
ical bonds between the 107 atoms can be modeled in accordance with the
natural lengths and angles, the van der Waals bonding lengths are generated
more or less randomly. The equilibrium state shown bottom right is sim-
ulated using the Euler backward method in combination with an automatic
time incrementation algorithm. Even though no additional damping is in-
troduced, the quasi-static solution can be achieved in “only” about 250 time
increments.

For static analyses and dynamic analyses using a different time integration
scheme, it is recommended to start with large values for the damping param-
eters, e. g. for a Rayleigh damping model. During the relaxation step, damp-
ing should be reduced in accordance with the bonds’ energies until a valid
quasi-static equilibrium state is reached. The simulation times are compara-
ble with the Euler backward scheme.

Figure 5: Reorganization of bonds during conformational analysis
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4.2 User elements

Since conventional finite elements do not meet the requirements listed in the pre-
vious section, in the following, a new class of finite elements is introduced that
can be used for MD simulations within the FEM framework. As pointed out in
section 4.1.7, the developed finite elements which are presented in Fig. 6 only use
translational degrees of freedom.

Bending and torsional moments are applied by means of force couples. The lever
arms depend on the bond lengths R0

IJ , R0
JK and R0

KL and angles Θ0
J and Θ0

K shown
in Fig. 6(a). The force directions are described using the unit vectors depicted in
Fig. 6(b). The 2-, 3- and 4-node elements for bond-stretch, bending and torsion
given in Fig. 6(c), (d) and (e) have been implemented in the finite element codes
Feap and Abaqus using a superposition technique.

Figure 6: Molecular dynamic finite elements without rotational degrees of freedom

In this section, the force vectors, the so-called right-hand-side vectors are given.
They are obtained by derivatives of the force field potentials which respect to the
atomic coordinates and have to be defined for all analysis types. In contrast to the
explicit time integration scheme which does not use the Newton-Raphson method
given in Appendix A, user elements for static and implicit dynamic analyses also
require stiffness matrices. They can be found in Appendix B.
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4.2.1 2-node element for bond stretch

The element force vector of the 2-node element includes the node vectors of the
atoms i and j

Fi =−Fi jni j , F j =−Fi (45)

and can be used for both chemical and physical bonds. It is defined by its unit di-
rection vector ni j and the magnitude Fi j which depends on the force field potential.
The derivative of Eq. 20 yields

F lin
i j = ki j(|x j−xi|−R0

i j) . (46)

From the Morse potential Eq. 21 we get

FMorse
i j =−2αi jni jDi j

[
exp(−2αi jni j(|x j−xi|−R0

i j))

− exp(−αi jni j(|x j−xi|−R0
i j))
]

.
(47)

For the Lennard-Jones (LJ) approach Eq. 23, the force magnitude is given as

FLJ
i j = 12

Di j,vdW

R0
i j,vdW

−( |x j−xi|
R0

i j,vdW

)−13

+

(
|x j−xi|
R0

i j,vdW

)−7
 (48)

and the electrostatic force derived from Eq. 26 reads

FQ(RIJ) =− 1
4πε0

qIqJ

R2
IJ

. (49)

Note that Coulomb forces can be neglected for the examples given in section 5.

4.2.2 3-node element for bending

The force vector of the 3-node bending element consists of the three components

Fi = Fi jkni , Fk = Fk jink , F j =−Fi−Fk . (50)

The magnitude Fi jk result from the derivative of the harmonic potential Eq. 27

F lin
i jk =

Ki jk

R0
i j

[
Θi jk−Θ

0
j
]

(51)

or the extended cosine approach Eq. 28

Fi jk =


−Ci jk

R0
i j

[
cosΘi jk− cosΘ0

j

]
sinΘi jk for Θ0

j 6= 180◦

−Ki jk

R0
i j

sinΘi jk for Θ0
j = 180◦

(52)
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with respect to the unknown bending angle

Θi jk = arccos(−ni j ·n jk) ∈ [0◦,180◦] . (53)

The unit vectors ni j and n jk defining Θi jk can be taken from Fig. 7. Considering
that the lever arms are generally different, if follows for the magnitude

Fk ji = Fi jk
R0

i j

R0
jk

. (54)

Figure 7: Bending and torsion angles derived from unit vectors

At this point it should be noted that angles between 180◦ and 360◦ can be omitted.
For symmetry reasons, they are covered by the torsion potential with its 0◦- and
180◦-equilibrium angles. For example, the combination Θi jk = 190◦ and ϕIJKL = 4◦

is equivalent to Θi jk = 170◦ and ϕIJKL = 184◦.

Instead of Eq. 53 for the computation of the bending angle, many authors suggest
to make use of the formula Θi jk = 180◦−arcsin |ni j×n jk|. However, it is necessary
to point out that this approach is not suitable for large deformations because it only
covers values between 90◦ and 180◦.

4.2.3 4-node element for torsion

As shown in Fig. 6(e), there are six concentrated forces acting on the 4-node torsion
element whose magnitudes generally differ from each other. The element vector

FI = FIIJKnIJK

FL = FLJKLnJKL

FJ = FJIJKnIJK +FJJKLnJKL = αJIJKFI +
αJJKL

αLJKL
FL

FK = FKIJKnIJK +FKJKLnJKL = αKIJKFI +
αKJKL

αLJKL
FL

(55)

contains four node vectors. While the first index of the force magnitudes denotes
the node the force is acting on, indices 2 to 4 refer to one of the two planes IJK and
JKL, represented by the unit vectors nIJK and nJKL, see Fig. 7.
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Considering the lever arm R0
IJ sinΘ0

J , the magnitude FIIJK follows from the deriva-
tive of Eq. 30

F lin
IIJK =− VIJKL n2

JK

2R0
IJ sinΘ0

J
(ϕIJKL−ϕ

0
JK) (56)

or Eq. 29

FIIJK =− VIJKL nJK

2R0
IJ sinΘ0

J
sin
[
nJK(ϕIJKL−ϕ

0
JK)
]

(57)

with respect to the dihedral angle ϕIJKL. For the determination of ϕIJKL, a case
distinction is required depending on the number of natural angles ϕ0

JK , e. g. for
graphene ϕ0

JK = 0◦ if nIJK ·nJKL ≥ 0 or ϕ0
JK = 180◦ if nIJK ·nJKL < 0, and thus:

ϕIJKL =

{
+arcsin[(nIJK×nJKL) ·nJK ] ∈ [−90◦,+90◦] for nIJK ·nJKL ≥ 0

180◦−arcsin[(nIJK×nJKL) ·nJK ] ∈ [+90◦,+270◦] for nIJK ·nJKL < 0 .

(58)

Furthermore, it is necessary to project the cross product nIJK×nJKL on the associ-
ated unit vector nJK in order to determine the sign of ϕIJKL for ϕ0

JK = 0◦ or rather
if ϕIJKL is larger or smaller than 180◦ for ϕ0

JK = 180◦.

From simple geometric considerations, we get the magnitudes

FKIJK−
R0

IJ cosΘ0
J

R0
JK︸ ︷︷ ︸

= αKIJK

FIIJK , FJIJK =−FIIJK−FKIJK = (−1−αKIJK)︸ ︷︷ ︸
= αJIJK

FIIJK (59)

associated with plane IJK and the forces

FLJKL =−
R0

IJ sinΘ0
J

R0
KL sinΘ0

K︸ ︷︷ ︸
= αLJKL

FIIJK

FJJKL =−R0
KL cosΘ0

K

R0
JK

FLJKL = (−αLJKL
R0

KL cosΘ0
K

R0
JK

)︸ ︷︷ ︸
= αJJKL

FIIJK

FKJKL =−FLJKL−FJJKL = (−αLJKL−αJJKL)︸ ︷︷ ︸
= αKJKL

FIIJK

(60)

which act normal to plane JKL.

To avoid a coupling of the different energy potentials, changes of the lever arms
due to changes of the equilibrium distances are neglected.
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4.3 Inversion

Some force fields such as the Dreiding approach also include potential energies
for inversion. In geometry, inversion in a point or point reflection is equivalent to
a 180◦-rotation and a reflection at a plane, as illustrated in Fig. 8. In molecular
dynamics, inversion is only relevant when at least four atoms are involved which
must be arranged in a specific manner. In contrast to torsion, where the four atoms
form a chain-like structure, three atoms form a triangle through which the fourth
may pass. Hence, for some structures such as elastomeric material consisting of
several polymer chains, inversion is irrelevant.

It is not trivial to set up an appropriate potential since inversion can be separated
from the other energy forms only in very rare cases such as for ammonia NH3. For
most molecules, interactions between inversion and torsion energy and, for spacial
structures, also bending energy has to be considered. Therefore, some approaches
such as the CHARMM force field represent inversion by “improper” torsion, i. e.
inversion is incorporated by means of torsion energy.

Figure 8: Inversion as a combination of rotation and reflection

4.3.1 Spacial structures

From a mechanical point of view, inversion of spacial structures such as an ammo-
nia molecule NH3 is a snap-through problem, as illustrated in Fig. 9. As opposed
to planar structures, spatial structures have two equilibrium states or even more
if multiple local inversions can occur. Ammonia has two natural bending angles:
Θ0

J = 106.7◦ and 2 ·120◦−106.7◦ = 133.3◦.
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Figure 9: Energy profile during snap-through (inversion) of a NH3-molecule

4.3.2 Planar structures

For planar structures such as graphene, inversion refers to the motion of an atom
out of the plane defined by its three neighbors, cf. Fig. 10(a). The out-of-plane
displacement w of node I is expressed by the inversion angle

Ψ = Ψl +Ψr = arctan
(

2w
Re

)
+ arctan

(
w
Re

)
(61)

which corresponds to the angle between plane HIO and bond IJ. Due to the struc-
ture’s symmetry, the same angle can be found between plane IJO and bond HI and
between plane IJH and bond IO. As depicted in Fig. 10(b), the deformation leads
to so-called “improper” torsion, e. g. for the atoms I, J, K and L.

(a) Inversion (b) Additional torsion

Figure 10: Improper torsion resulting from inversion for the example of graphene
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Fig. 11 illustrates that a total of 24 torsion angles are affected when atom I is moved
out of plane HJO. For small deformations, the following torsion angles emerge:

ϕHIJD = ϕOIHG = ϕJIOP = +
4w√
3Re

, ϕOIJK = ϕJIHB = ϕHION =− 4w√
3Re

ϕIJKQ = ϕIHBC = ϕIONM = +
2w√
3Re

, ϕIJDC = ϕIHGM = ϕIOPQ =− 2w√
3Re

ϕHIJK = ϕOIHB = ϕJION = ϕIJKL = ϕIHBA = ϕIONS = 180◦+
2w√
3Re

ϕOIJD = ϕJIHG = ϕHIOP = ϕIJDE = ϕIHGF = ϕIOPT = 180◦− 2w√
3Re

.

(62)

Figure 11: Torsion angles affected by deflection of atom I out of plane defined by
atoms H, J and O with color coding according to Eq. 62

4.3.3 Force field potentials

In spectroscopy, the calculation of the inversion energy is often carried out with the
help of the linear approach

E lin
I =

1
2

Kinv(Ψ−Ψ0)2 . (63)

To address the fact that the derivative of the inversion energy has to vanish, dEI
dΨ

= 0,
when reaching the snap-through point Ψ = 0◦, Mayo, Olafson, and Goddard (III)
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(1990) suggest the following formulation:

EI =


1
2Cinv (cosΨ− cosΨ0)2 for Ψ0 6= 0◦

Kinv(1− cosΨ) for Ψ0 = 0◦
(64)

with the stiffness Kinv = sin2
Ψ0Cinv, e. g. Kinv = 40 kcal

mol rad2 for graphene. The
approach distinguishes between spatial structures Ψ0 6= 0◦ and planar structures
Ψ0 = 0◦. For spatial structures, the maximum energy at the snap-through point
Ψ = 0◦ is

Ebar
I = 2Cinv sin2

(
1
2

Ψ0

)
, (65)

e. g. Ebar
I = 6 kcal

mol for ammonia.

4.3.4 Modeling inversion by improper torsion

For planar structures, the inversion energy can be taken into account using addi-
tional torsion energy. For demonstration purposes, we consider the example of
graphene shown in Fig. 10 and Fig. 11. The deflection w of atom I leads to an
inversion energy with the direct neighbors H, J and O. As a consequence, atom J
moves out of its plane IDK by −w

3 , etc.

With the inversion and torsion angles given in Eq. 61 and Eq. 62, the ratio of inver-
sion energy to torsion energy for small deformations can be derived as:

E lin
I,ges

E lin
T,ges

=
E lin

I (Ψl +Ψr)+3E lin
I (Ψr)

6E lin
T (ϕHIJD)+18E lin

T (ϕIJKQ)
=

=

1
2

Kinv

(
3w
Re

)2

+3 · 1
2

Kinv

(
w
Re

)2

6 · 1
4

VIJKL n2
JK

(
4w√
3Re

)2

+18 · 1
4

VIJKL n2
JK

(
2w√
3Re

)2 =

=
6Kinv

14VIJKL n2
JK

=
6 ·40

14 ·6.25 ·22 = 68.6% .

(66)

Hence, torsional stiffness has to be increased by 68.6 % while, in turn, the inversion
energy can be neglected. This way, we can obtain identical results for planar sym-
metric structures like graphene if deformations are small. For large deformations,
a small error has to be accepted. Nevertheless, this approach is recommended as
it is favorable from a mathematical and mechanical point of view when all energy
forms are independent of one another.
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5 Numerical Examples

In order to demonstrate the capabilities of MDFEM and to verify the robustness and
reliability of the finite elements introduced in section 4.2, two different examples
are presented. The first one deals with single-walled carbon nanotubes as for such
structures chemical bonds are dominant. Neglecting physical interactions, even
with an implicit time integration scheme, structures with more than 1 million atoms
can be simulated.

For the second example, a model of elastomeric material, physical bondings have to
be considered. As a consequence, static and implicit dynamic analyses are limited
to a few thousand atoms because the long-range potentials lead to a very large
bandwidth of the stiffness matrix. To overcome this limitation, the explicit midpoint
method is used.

5.1 Torsion of single-walled carbon nanotube

Carbon nanotubes are subject of many numerical investigations in literature, as their
mechanical and electrical properties are remarkable, but very hard to determine
experimentally. Defects e. g. stemming from the manufacturing process may lead
to drastic changes in the material behavior.

A systematic investigation of the effects of atomistic defects on the nanomechanical
properties and fracture behavior of single-walled carbon nanotubes using MD sim-
ulation is e. g. provided by Cheng, Hsu, and Chen (2009). Their results show that
the properties highly depend on the defect rate but also on the distribution pattern
and that the failure of the nanotubes can be regarded as brittle whereas the cracks
propagate along the areas with high tensile stress concentration.

Figure 12: Buckling of carbon nanotube with two Stone-Wales defects at the top
and at the bottom (SW3) at about 50◦-torsion
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The effects of the nanotube helicity, the nanotube diameter and the percentage of
vacancy defects on the bond length, bond angle and tensile strength of zigzag and
armchair single-walled carbon nanotubes is subject of a study by Jeng, Tsai, Huang,
and Chang (2009). A good agreement of the stress-strain response between molec-
ular dynamics and molecular statics simulations is observed.

The MDFEM simulation in Fig. 12 shows the failure mode of a (10,10)-armchair
carbon nanotube with two Stone-Wales defects at a torsion angle of about 50◦. The
cross-section, which is initially circular adopts an elliptic shape that propagates
helically over the entire length of the tube until the opposite walls come close to
each other. A similar behavior was observed by Rochefort, Avouris, Lesage, and
Salahub (1999) and Chakrabarty and Cagin (2008).

Figure 13: Influence of Stone-Wales defects on torsion load resistance

The torque-rotation curves in Fig. 13 demonstrate the influence of the Stone-Wales
(SW) defects. While for a nanotube without defects (SW0) a bifurcation can be
observed, defects transform the bifurcation problem into a snap-through problem.
Instead of an instantaneous collapse the shape of the nanotube changes slowly.
The maximum torsional moment of 33aNm (SW0) decreases to 22aNm for the
nanotube with two defects at the bottom site (SW2), 21.5aNm for the nanotube with
only one defect (SW1) and 20aNm for the nanotube in Fig. 12 with two opposing
defects (SW3).

At this point, it should be stressed that the results are identical to a classical MD
simulation, given that the same force field potentials are applied. Here, we used
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the Dreiding approach proposed by Mayo, Olafson, and Goddard (III) (1990). The
reader who is interested in different load cases, namely when the nanotubes are
subjected to tension, compression or bending loads, is referred to the publication
by Nasdala, Ernst, Lengnick, and Rothert (2005).

5.2 Inelastic behavior of elastomeric material

As pointed out in section 4.1.9, MDFEM simulations usually start with a relaxation
step. Elastomeric material is a good example where it is impossible to guess a
valid equilibrium state. In addition to the challenging conformational analysis, this
example also provides explanations for inelastic material behavior. Using elastic
force field potentials, it is possible to simulate softening and hysteresis effects.

5.2.1 Relaxation step

For demonstration purposes, we start with the small example shown in Fig. 5, bot-
tom. Since only 107 atoms are involved, it is possible to apply the implicit Euler
backward method for the relaxation step. This method is very efficient since large
time increments lead to high numerical damping which dissipates the kinetic en-
ergy of the system.

Figure 14: Convergence problems of analyses without damping

If the implicit HHT method is used without introducing additional damping, the
analysis does not converge, as demonstrated in Fig. 14. In contrast to the equilib-
rium state, the van der Waals bond energies are significantly higher than the bond
stretch energies of the chemical bonds. This stems from the fact that the van der
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Waals bond energies are very high for atoms close to each other according to the
Lennard-Jones approach. In a dynamic analysis, the potential energy is transformed
to kinetic energy but as the bond fracture energies are small compared to the ini-
tial bond potential energies, the bonds are destroyed. Depending on the size of the
RVE, an “implosion” may occur first, then followed by an “explosion” or, if the
RVE is small, the analysis already starts with the second part.

For larger structures, which may be more than 1000 atoms, the explicit time in-
tegration method is preferable. For the example shown in Fig. 15 that consists of
10051 atoms, computational costs can be efficiently reduced, when the analysis
starts with a very high amount of damping, e. g. α-Rayleigh damping, which then
is reduced in about 10 steps, each time by an order of magnitude. This approach
can be optimized by setting the velocities to zero before starting each new step.

Figure 15: Conformational analysis of an elastomer with 10051 atoms

5.2.2 Loading step

Both models are subjected to cyclic loading at 25 %, 50 % and 100 % strain ampli-
tude, 3 cycles at each amplitude. Constraints keep the volume of the RVE constant.
The loading can be regarded as quasi-static. As can be seen in Fig. 16 for cycles 4
to 6 of the 107-atom model, there is a continuous rearrangement of chains within
the polymer network. The chemical bonds can sustain the applied load. Some
van der Waals interactions, however, break when the fracture energy is exceeded
while other interactions come into existence when two atoms approach each other.
Note that the physical bondings as well as covalent interchain cross-linkages, build
during the vulcanization process, are not shown, for the sake of clarity.
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Figure 16: Continuous reorganization of bonds during cyclic loading

The 107-atom model is too small for being representative, i. e. the load-deflection
curve is very jagged and similar models would lead to different results. Therefore,
we shall discuss only the response of the 10051-atom model, shown in Fig. 17.
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Figure 17: Load-deflection curve of an elastomer with 10051 atoms

It is remarkable that all the main characteristics of elastomeric materials, namely

• the Mullins effect (softening),

• curvature change from negative to positive,

• a permanent set (plasticity or viscoelasticity), and

• hysteresis loops (energy dissipation)

can be found in the simulated force-deflection curve though only (elastic) force
fields potentials are used.

It should be noted that the load-deflection curve is not smooth. This is due to the
fact that a rupture of bondings reduces the overall stiffness while the creation of
bondings strengthens the structure.

The results proof that it is generally possible to simulate inelastic material behavior
without using damping or friction elements. The underlying mechanism is the
rearrangement of bondings which causes the polymer chains to vibrate. Potential
energy is transformed to kinetic energy. The oscillations on the nanoscale can be
observed on the macroscale as a temperature increase of the material.
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6 Conclusions

It is possible to perform molecular dynamic simulations within the framework of
the finite element method. However, this is not an easy task since a special class of
finite elements are required for force fields using multi-body potentials. This paper
presents the theoretical background of the MDFEM elements as well as guidelines
for the implementation and usage.

Apart from mesh generation techniques, which are not covered, all important as-
pects of MDFEM are discussed from a FEA software user’s point of view: what
time integration schemes are usually available and when to use which, what is the
difference between natural and equilibrium bond lengths and angles, how to ob-
tain an equilibrium configuration, or when inversion energy is important and how it
can be transformed to torsion energy. Two examples demonstrate the accuracy and
efficiency of the introduced MDFEM elements.

MDFEM provides a framework that is more than performing simple MD simula-
tions. Conventionally, MD programs are used in chemistry and physics to perform
conformational studies based on force fields. Goal is to determine equilibrium
states rather than to study the response of atomic structures under mechanical load-
ing.

The main benefit of MDFEM is that concurrent multiscale simulations, i. e. a com-
bination of continuum and atomistic regions, are feasible. Complex models can
be developed to predict e. g. the properties of composites containing nanoparticles
which determine the macroscopic material behavior. For such models, parametric
studies in terms of computer-aided material design can be carried out to analyze the
influence of changes in the atomic structure, namely the particle size, distribution
or the particle-matrix interface. The results can then be used to identify the basic
mechanisms that lead to the enhancement of characteristic values of such compos-
ites and subsequently exploited to improve the manufacturing processes.
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Appendix A: The Newton-Raphson method

In statics and implicit dynamics, the Newton-Raphson method, also known as New-
ton’s method, is the predominant technique for solving the system of nonlinear
equations

R(u) = 0 . (67)

As a direct calculation of the solution vector

u = u+ c (68)

or the vector c, which has to be added to a previously determined approximation u,
is not feasible, a Taylor series expansion

R(u) = R(u)+DR(u) ·u+ . . . (69)

is performed which then is truncated after the linear term DR(u) ·u:

DR(u) = gradR =
dR
dx

=
dR
du

= KT . (70)

In structural mechanics, R denotes the vector of the residual forces and KT the
tangential stiffness matrix

KT,i j(uk) =
∂Ri

∂u j

∣∣∣∣
uk

(71)
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with the degrees of freedom i and j. The solution vector c of the system of linear
equations

KT(uk) · c =−R(uk) (72)

has to be is added to the approximation of the previous iteration step k

uk+1 = uk + c (73)

until increment c and residuum R are sufficiently small. Alternatively, an “energy
norm” R · c can be computed, which may also be used to verify the quadratic con-
vergence rate of the Newton-Raphson method

(R · c)k+2

(R · c)k+1 ≈
[
(R · c)k+1

(R · c)k

]2

(74)

in the vicinity of the solution.

Figure 18: Illustration of Newton-Raphson method

To illustrate the Newton-Raphson method, Fig. 18 shows a system of two nonlinear
equations R = 0 or (R1,R2) = (0,0) with the degrees of freedom u1 and u2. The
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solution u = (u1,u2) can be interpreted geometrically as the intersection point of
the two planes R1 = R1(u1,u2) and R2 = R2(u1,u2) with the u1-u2-plane. For the
solution, at first two tangential planes are constructed using the points R1(uk

1,u
k
2)

and R2(uk
1,u

k
2) defined by the approximation uk = (uk

1,u
k
2) of the time increment k.

The intersection point of the two planes with the u1-u2-plane yields a better approx-
imation uk+1 = (uk+1

1 ,uk+1
2 ) which then is used to start the next iteration step.

Appendix B: Stiffness matrices of MDFEM elements

A consistent linearization of the MDFEM elements introduced in section 4.2 is
required to obtain a quadratic convergence rate of the Newton-Raphson method.
For the 2-node element, the derivative of the nodal forces Fi with respect to the
displacements u j is obtained by means of the product rule

∂Fi

∂ui
=−∂Fi

∂u j
=−

∂F j

∂ui
=

∂F j

∂u j
=−ni j⊗

∂Fi j

∂ui
−Fi j

∂ni j

∂ui
(75)

with the derivatives of the unit vectors

∂ni j

∂ui
=−

∂ni j

∂u j
=

ni j⊗ni j−1
|x j−xi|

(76)

and the derivatives of the force magnitudes. Depending on the chosen approach,
we get

∂F lin
i j

∂ui
=−

∂F lin
i j

∂u j
=−ki jni j (77)

or

∂FMorse
i j

∂ui
=−

∂FMorse
i j

∂u j
=−(2αi jni j)2Di j

[
exp(−2αi jni j(|x j−xi|−R0

i j))

−0.5exp(−αi jni j(|x j−xi|−R0
i j))
]
ni j

(78)

for the chemical bonds and

∂FLJ
i j

∂ui
=−

∂FLJ
i j

∂u j
= 12

Dij,vdW(
R0

ij,vdW

)2

−13

(
|x j−xi|
R0

ij,vdW

)−14

+7

(
|x j−xi|
R0

ij,vdW

)−8
ni j

(79)

for van der Waals bondings.
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In case of the 3-node element, we obtain

∂Fi

∂ua
= ni⊗

∂Fi jk

∂ua
+Fi jk

∂ni

∂ua

∂Fk

∂ua
= nk⊗

∂Fk ji

∂ua
+Fk ji

∂nk

∂ua

∂F j

∂ua
=− ∂Fi

∂ua
− ∂Fk

∂ua
with a = i, j,k

(80)

as a function of

∂ni

∂ua
= ni j×

∂ni jk

∂ua
−ni jk×

∂ni j

∂ua

∂nk

∂ua
= n jk×

∂ni jk

∂ua
−ni jk×

∂n jk

∂ua
with a = i, j,k

(81)

with

∂ni jk

∂ua
=

∂ (ni j×n jk)
∂ua

|ni j×n jk|− (ni j×n jk)⊗
∂ |ni j×n jk|

∂ua

|ni j×n jk|2

=

(
ni j×

∂n jk
∂ua
−n jk×

∂ni j
∂ua

)
−ni jk⊗ni jk

(
ni j×

∂n jk
∂ua
−n jk×

∂ni j
∂ua

)
|ni j×n jk|

=

(
1−ni jk⊗ni jk

)(
ni j×

∂n jk
∂ua
−n jk×

∂ni j
∂ua

)
|ni j×n jk|

with a = i, j,k

(82)

and the derivatives of the magnitudes

∂F lin
i jk

∂ua
=

Ki jk

R0
i j

∂Θi jk

∂ua
with a = i, j,k (83)

or

∂Fi jk

∂ua
=


Ci jk

R0
i j

[
cosΘ0

j cosΘi jk− cos(2Θi jk)
]

∂Θi jk
∂ua

for Θ0
j 6= 180◦

−Ki jk

R0
i j

cosΘi jk
∂Θi jk
∂ua

for Θ0
j = 180◦ with a = i, j,k

(84)

with

∂Θi jk

∂ua
=

ni j ·
∂n jk
∂ua

+n jk ·
∂ni j
∂ua√

1− (ni j ·n jk)2
. (85)
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The derivatives ∂ni j
∂ua

are given in Eq. 76. Note that the following derivatives vanish:
∂ni j
∂uk

= 0, if k 6= i∧ k 6= j. The derivatives of the load magnitudes Fi jk and Fk ji with
respect to the displacements ua depend on the lever arms and are related as follows:

∂Fk ji

∂ua
=

∂Fi jk

∂ua

R0
i j

R0
jk

. (86)

For the 4-node torsion element, the computation of

∂FI

∂ua
= nIJK⊗

∂FIIJK

∂ua
+FIIJK

∂nIJK

∂ua

∂FL

∂ua
= nJKL⊗

∂FLJKL

∂ua
+FLJKL

∂nJKL

∂ua

∂FJ

∂ua
= αJIJK

∂FI

∂ua
+

αJJKL

αLJKL

∂FL

∂ua

∂FK

∂ua
= αKIJK

∂FI

∂ua
+

αKJKL

αLJKL

∂FL

∂ua
with a = I,J,K,L

(87)

requires the derivatives ∂ni jk
∂ua

already given in Eq. 82. Note that ∂nIJK
∂uL

= 0 and
∂nJKL

∂uI
= 0. The derivatives of the nodal force magnitudes are given as

∂F lin
IIJK

∂ua
=− VIJKL n2

JK

2R0
IJ sinΘ0

J

∂ϕIJKL

∂ua
with a = I,J,K,L (88)

or

∂FIIJK

∂ua
=− VIJKL n2

JK

2R0
IJ sinΘ0

J
cos
[
nJK(ϕIJKL−ϕ

0
JK)
] ∂ϕIJKL

∂ua
with a = I,J,K,L (89)

with

∂ϕIJKL

∂ua
=



+
(nIJK×nJKL) ∂nJK

∂ua
+nJK

(
nIJK× ∂nJKL

∂ua
−nJKL× ∂nIJK

∂ua

)
√

1− [(nIJK×nJKL) ·nJK ]2
for (nIJK ·nJKL)≥ 0

−
(nIJK×nJKL) ∂nJK

∂ua
+nJK

(
nIJK× ∂nJKL

∂ua
−nJKL× ∂nIJK

∂ua

)
√

1− [(nIJK×nJKL) ·nJK ]2
for (nIJK ·nJKL) < 0 .

(90)

Note that the torsion angle ϕIJKL = ϕIJKL(uI,uJ,uK ,uL) depends on the displace-
ments of all four atoms involved.


