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Application of Cosserat Theory to the Modelling of
Reinforced Carbon Nananotube Beams
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Abstract: This paper develops a mechanical model for multifunctional reinforced
carbon nanotube (CNT) beams. The model is obtained by introducing the couple
stresses into the constitutive equations of linear viscoelastic theory. The material
functions are determined using the homogenization method.
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1 Introduction

Traditionally viscoelastic and elastomeric materials are used for damping treatment
[Liao and Wang (1997); Brackbill, Ruhl, Lesieutre and Smith (2000)]. Although
the integration of these materials into composites experiences good energy dissi-
pation, the structural integrity of such composites presents significant challenges.
For example, viscoelastic and elastomeric materials cannot be used to reinforce the
stiffness/strength of a composite because of the large strains needed in the film to
create damping, which requires a soft material. In addition, damping films exhibit a
loss in performance at high temperatures (above 60◦C) due to the resin penetration
and poor thermal stability of the viscoelastic polymer [Biggerstaff and Kosmatka
(1998); Biggerstaff and Kosmatka (1998)].

In order to overcome these limitations, carbon nanotubes have been studied exten-
sively in relation to high strength components for reinforced nanocomposites [Sri-
vastava and Atluri (2002); Brenner, Shenderova, Areshkin, Schall and Frankland
(2002); Shen and Atluri (2004); Munteanu and Chiroiu (2009)]. Carbon nanotubes
have an extremely small size and low density, a very high elastic modulus (>1 TPa),
the electric current carrying capacity of order 1011− 1012A / cm2 and a very high
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specific surface area with the aspect ratio of order 103 [Calvert (1992); Robert-
son (1993); Overney (1993); Chiroiu, Munteanu and Donescu (2006)]. The me-
chanical properties of carbon nanotubes are size dependent with respect to various
dimensions and geometries [Theodosiou and Saravanos (2007); Chen, Cheng and
Hsu (2007); Solano, Costales, Francisco, Pendáas, Blanco, Lau, He and Pandey
(2008); Giannopoulos, Georgantzinos, Katsareas and Anifantis (2010)]. The de-
pendency on the size of the carbon nanotube of the dispersive characteristics and
group velocities have been studied by Xie and Long (2006)). The spreading of in-
tershell distances and the inlayer van der Waals interactions in carbon nanotubes
depends on the size of the tube [Brenner, Shenderova, Areshkin, Schall and Fran-
kland (2002); Srivastava and Atluri (2002); Nair, Farkas and Kriz (2008); Cheng,
Hsu and Chen (2009)]. The importance of the interatomic potentials relies on sim-
plifications of the quantum mechanics and ab initio complexity. These simplifi-
cations are very important once they can provide analytical solutions of materials
properties [Chakrabarty and Cagin (2008)].

So far, a few continuum mechanics methods have been adopted for studying the
carbon nanotubes [Ru (2001); Li and Chou (2003); Nasdala, Ernst, Lengnick and
Rothert (2005); Teodorescu, Munteanu, Chiroiu, Dumitriu and Beldiman (2008);
Chiroiu, Munteanu, Paun and Teodorescu (2009)]. The necessity for Cosserat the-
ories [Voigt (1887); Cosserat (1909)] originates in the inability of classical theories
to account for modelling the deformation processes associated with anisotropic de-
formable solids with consideration of their rheonomic properties [Pobedria (1998),
(1997); Pobedria and Omarov (2007a)]. In the generalized Cosserat theory, the
couple-stresses are introduced together with the classical stress tensor. In this con-
text, to the displacement vector, the rotation vector (spin-vector) is attached.

In this paper, a reinforced carbon nanotube beam is studied by using the generalized
Cosserat theory. The effective material functions are calculated from the relaxation
tensors using the homogenization method. The results obtained via the proposed
method are compared with the bending experimental results reported by Koratkar
et al. (2003).

2 The generalized Cosserat theory

The paper focuses on a nanocomposite beam obtained by introducing a nanofilm
interlayer between the plies of the composite. The concept of this nanocomposite
was introduced by Koratkar, Wei and Ajayan in 2003. It involves integrating light
weight, minimally intrusive nanotube films, composed of densely packed highly
interconnected networks of multiwalled carbon nanotube into the interlamina inter-
faces of the host composite. The nanofilm and epoxy filler interlayer is stacked in
between a piezoelectric (PZT-5H) and a Silica sheet. The piezoelectric sheet was
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selected since it provided a convenient mechanism (via induced-strain actuation)
for exciting the beam modal dynamics. Silica was chosen for the sandwich beam
since it can conveniently serve as a foundation for anchoring the nanotube film.

Consider that the sandwich beam occupies a volume V ⊂ R3 and let Σ1 and Σ2 be
parts of the surface enclosing the volumeV . The thicknesses of the silica sheet,
nanofilm and piezoelectric sheet are denoted byh1,h2 and h3, respectively. The
cross-sectional dimensions of the beam are (a×b), where b = h1 +h2 +h3, while its
length is L� b (see Fig. 1). We introduce two dimensionless coordinates, namely
the slow coordinates xi, i = 1,2,3, and the fast coordinates ξi = xi/α , i = 1,2,3,
where the parameterα is given by b/L. The relaxation tensors are functions of the
coordinates since it is assumed they depend on ξi, i = 1,2,3.

In the linear theory of viscoelasticity, the constitutive law can be written in the

 

Figure 1: Elementary cell with integrated carbon nanotube film.
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following form

σi j =
t∫

0

Ri jkl(x, t− τ)dεkl(τ)≡ Ři jkl(x)εkl, i, j,k, l = 1,2,3, (2.1)

σi j =
t∫

0

Ri jkl(x, t− τ)dεkl(τ)≡ Ři jkl(x)εkl, i, j,k, l = 1,2,3, (2.2)

where σi j are the stress tensor components, εkl are the strain tensor components,
Ri jkl(x, t − τ) are the relaxation kernel tensor components which depend on the
spatial, x, and temporal, t, variables,

Ri jkl(x, t) = λ (x, t)δi jδkl + µ(x, t)(δikδ jl +δilδ jk), i, j,k, l = 1,2,3. (2.3)

Here λ (t− τ) and µ(t− τ) are the stress-relaxation Lamé functions. The tensors
Ri jkl(x, t− τ) satisfy the following symmetry conditions [Pobedria (1995)]

Ri jkl = R jikl = Ri jlk = Rkli j, i, j,k, l = 1,2,3. (2.4)

The effective relaxation kernel tensor Ři jkl(x) depends only on x and is given by

Ři jkl(x) = λ̌ (x)δi jδkl + µ̌(x)(δikδ jl +δilδ jk), i, j,k, l = 1,2,3, (2.5)

The constitutive law can be written in the inverse form

εi j =
t∫

0

Ji jkl(x, t− τ)dσkl(τ)≡ J̌i jkl(x)σkl, i, j,k, l = 1,2,3, (2.6)

where Ji jkl(x, t− τ) are the creep kernel tensor components which depend on the
spatial x and temporal t variables, and J̌i jkl(x) is the effective creep kernel tensor
which depends on x only.

The equation on motion in the absence of body forces can be written as

[Ři jkluk,l], j−ρ üi = 0, i, j,k, l = 1,2,3, (2.7)

where ρ is the mass density of the body. Boundary and initial conditions should be
prescribed, namely

ui|Σ1 = u0
i , Ři jkluk,l|Σ2 = S0

i , i, j,k, l = 1,2,3, ∀t, ui|t=0 = u0
i0, u̇i|t=0 = u0

pi0

(2.8)
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where u0
i , S0

i , u0
i0 and u0

pi0 are known quantities.

The generalized Cosserat theory is obtained from Eqs. (2.1)-(2.5) by introducing
the couple-stresses into the constitutive equations of the linear theory of viscoelas-
ticity. In addition to the stress tensorσi j,σi j 6= σ ji, the couple-stress tensor µi j 6= µ ji

is introduced, and to the displacement vector components ui, which are related to
the strain components by εi j = 1/2(ui, j +u j,i), the rotation vector (spin-vector)
components ωi = uk,lεikl are also introduced. The curvature tensor is the gradient
of ωi. The componentsκi jof the curvature tensor are given by

ωi, j = uk,l jεikl = κi j, i, j = 1,2,3, (2.9)

with eithe orthonormal basis of the coordinate system.

By generalizing relation (2.1), the constitutive laws can be represented as [Pobredia
(1998)]

σi j = Ši jkluk,l + ši jklκkl, µi j = Ďi jkluk,l + Ěi jklκkl, (2.10)

where new unknown material functions are introduced, namely the relaxation ten-
sors Ši jkl , ši jkl , Ďi jkl and Ěi jkl . These tensors do not satisfy the symmetry property
(2.2).

By using Eq. (2.6), the constitutive laws (2.7) become

σi j = Ši jkluk,l + ši jklum,nlεkmn, µi j = Ďi jkluk,l + Ěi jklum,nlεkmn. (2.11)

The equation of motion (2.4) in the absence of body forces and body couples recasts
as

σ ji, j−ρ üi = 0, µ ji, j + εi jkσ jk−ρ jω̈i = 0, (2.12)

where j is the microinertia. We mention that σ ji, µ ji can be expressed by using Eq.
(2.7) in terms of the displacements ui, i = 1,2,3.

Then the boundary and initial conditions (2.5) become

ui|Σ1 = u0
i , σi j|Σ2 = S0

i , ωi|Σ1 = ω
0
i , µ jin j|Σ2 = M0

i , ∀t, (2.13)

ui|t=0 = u0
i0, u̇i|t=0 = u0

pi0,

where u0
i , S0

i , ω0
i , M0

i , u0
i0 and u0

pi0 are known quantities.

The couple-stress tensor components µi j depend on the stresses and the structure
of the composite. Therefore, according to the method of Pobedria and Omarov
(2007b), we introduce the following relation

µi j = σikεlk jϕl(ξ1,ξ2,ξ3), (2.14)
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where the vector ϕ specifies the structure of the composite beam [Pobedria and
Omarov (2007a)]

ϕi(ξ1,ξ2,ξ3) = αξi(1+αa jξ j +α
2b jkξ jξk + ...), (2.15)

and a j,bk, ... are known quantities.

3 Homogenenization technique

The problem (2.9) and (2.10) is solved by the homogenization method discussed
by Pobedria (1984). The generalized solution to this problem is sought in the fol-
lowing form ui(x1,x2,x3, t) = Ui(x1,x2,x3)exp(iω̌t), where ω̌ is the frequency. For
Ui(x1,x2,x3), we chose the asymptotic expansion of the qth level with respect to
the small parameter α

Ui = vi +αŇ(1)
i jk1

v j,k1 +α
2Ň(2)

i jk1k2
v j,k1k2 + ...αqŇ(q)

i jk1...kq
v j,k1...kq , q = 0,1, ..., (3.1)

where vi(x1,x2,x3), i = 1,2,3 are the components of the displacement vector for
the reduced medium, Ň(q)

i jk1...kq
(ξ1,ξ2,ξ3) are the local relaxation kernels of the qth

level. These kernels are periodic in (ξ1,ξ2,ξ3) and satisfy the following conditions

N(0)
i j ≡ δi j, N(q)

i jk1...kq
= 0 for q < 0,

〈
N(q)

i jk1...kq

〉
= 0 for q > 0. (3.2)

where we have denoted by 〈 f 〉 the homogenization operator applied to a function
f with respect to the variables (ξ1,ξ2,ξ3).
The expansion (3.1) is used to express the stresses (2.1) and the couple-stresses
(2.11) in terms of displacements and rotations. By substituting Eq. (3.1) into Eqs.
(2.9) and (2.10) we obtain two sequences; more precisely, one of the aforemen-
tioned sequences is used for findingvi(x1,x2,x3, t), while the second one is em-
ployed for retrieving the local relaxation kernelŇ(q)

i jk1...kq
(ξ1,ξ2,ξ3).

If the local relaxation functions Ň(q)
i jk1...kq

(ξ1,ξ2,ξ3) are known then the effective
relaxation tensors can be calculated by

h(q)
i jkl1...lq+1

=
〈

Ři jmlq+1N(q)
mkl1...lq + Ři jmnN(q+1)

mkl1...lq+1|n

〉
, q = 0,1, ... (3.3)

where the derivative with respect to the fast variables ξi, i = 1,2,3, is denoted by
f|i.

Substituting the asymptotic expansion

vi =
∞

∑
p=0

wp
i , (3.4)
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into Eq. (3.1), we obtain

Ui =
∞

∑
p=0

wp
i +

∞

∑
q=0

α
q

q

∑
p=0

Ň(p)
i jk1...kp

w(q−p)
j,k1...kp

. (3.5)

Thus, the problem (2.9) and (2.10) can be reduced to two recurrent sequences of
problems. The first sequence related to the original problem consists of solving the
following boundary value problems associated with the linear viscoelastic theory
for anisotropic homogeneous media

ȟ(0)
i jlk1

w(p)
l,k1 j−ρ

∞

∑
p=0

(
ẅp

i + Ň(p)
i jk1

ẅ(p)
j,k1

)
= 0, w(p)

i |Σ1 = u(p)
i , ȟ(0)

i jlk1
w(p)

l,k1
n j|Σ2 = S(p)

i

(3.6)

The input data are defined by

S(p)
i =−

p

∑
q=1

h(q)
i jlk1...kq+1

w(p−q)
l,k1...kq+1

n j|Σ2 for p > 0, S(p)
i = S0

i for p = 0, (3.7)

and

u(p)
i =−

p

∑
q=1

N(q)
i jlk1...kq

w(p−q)
j,k1...kq

|Σ1 for p > 0, u(p)
i = u0

i for p = 0, (3.8)

where h(q)
i jlk1...kq+1

are the components of the effective relaxation tensor of the qth

level with h(q)
i jlk1...kq+1

≡ 0 for q < 0.

The relaxation tensor h(q)
i jlk1...kq+1

is determined from the second sequence related to
the original problem, which consists of solving the following boundary value prob-
lems associated with the linear viscoelastic theory for an inhomogeneous medium
with periodic cells, i.e.(

Ři jmlN(q+2)
mnk1 ...kq+2|l

)
| j
+
(

Ři jmkq+2N(q+1)
mnk1 ...kq+1

)
| j
+Řikq+2mlN(q+1)

mnk1 ...kq+1 |l
+Řikq+2mkq+1N(q)

mnk1 ...kq

= h(q)
ikq+2nk1...kq+1

. (3.9)

The unknown relaxation tensors Ši jkl , ši jkl , Ďi jkl and Ěi jkl of the constitutive laws
(2.8) cannot be studied experimentally, however they can be found by this homog-
enization method [Pobedria and Omarov (2007a)].
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For the zeroth- and first-order approximation theories, it is sufficient to consider
only one or two problems in each of the recurrent sequences. When the first two
local functions N(1)

i jk1
and N(2)

i jk1
are found, the zeroth- and first-order approximation

theories give

Ši jkl = Ři jmnN(1)
mkl|n

+Ri jkl, ši jkl =−2αεnmk(Ři jpsN(2)
pnml|s

+ Ři jplN(1)
pnm

),

Ďi jkl = ε jnmϕm(ŘinpqN(1)
pkl|q

+Rinkl), Ěi jkl =−2αεqp jϕq(ŘipmsN(2)
pnml|s

+ŘipmlN(1)
mnr

)εnrk,

(3.10)

with ϕk defined by Eq.(2.12).

Therefore, for the zeroth- and first-order approximation theories, the material func-
tions Ši jkl , ši jkl , Ďi jkl and Ěi jkl can be expressed by Eq. (3.10) with respect to
Ri jkl ,Ři jmn, N(1)

mkl
, N(2)

pnml
, ϕq and α , with no additional experimental tests.

4 Results

Consider a reinforced carbon nanotube beam cantilevered at the root and excited by
the piezoelectric sheet with a sinusoidal control voltage. The present computations
were carried out for the same sandwich beam tested experimentally by Koratkar et
al., namely L =22.86mm, a =25.4mm, b =0.91mm, h1 =0.61mm, h2 =0.05mm,
h3 =0.25mm. The piezo-induced strain generates a cross-sectional bending mo-
ment resulting in the flat-wise bending deformation. The PZT-SH is characterized
by the Young’s modulus E =69GPa and the density ρ =7.8g/cm3. For Silica the
Young modulus is E =131GPa and the density is given by ρ =2.33 g/ cm3. The
nanofilm is composed of multiwalled nanotubes and epoxy and it is characterized
by the Young modulusE = 284GPa and the density ρ =1.1 g/cm3.

Herein we use Voigt’s convention to denote each pair of indexes of the elastic con-
stants by a single index, namely

(i, j)→ iδi j +(9− i− j)(1−δi j).

According to this convention we have M̌klmn = M̌αβ (for Ři jmn, Ri jkl , Ši jkl , ši jkl ,
Ďi jkl and Ěi jkl) where the Latin subscripts range over the values 1,2,3, while the
Greek subscripts range over the values 1,2,. . . ,6. The components σkl and εkl are
replaced by σkl = σα , 2εkl(1+δkl) = εα , k, l = 1,2,3, α = 1,2, ...6. So, we have

Ř11 = Ř23 = λ̌ (ξ )+2µ̌(ξ ), Ř12 = Ř13 = Ř23 = λ̌ (ξ ),

Ř33 = Ř44 = Ř55 = Ř66 = µ̌(ξ ).
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In Fig. 1 we plot the variation of the local normalized relaxation function N(q) =
Ň(q)

i jk1...kq
/Ň(1)

i jk1
with respect to ξ1, for i = j = k = 1 and q = 1,2,3,4 for a can-

tilevered beam. The function N(1) exhibits a short sudden decrease of its value in
the vicinity of ξ1 =333. The curve becomes flat for N(2) with a decrease of its
value from approximately ξ1 =120 to ξ1 =570. For q = 3 and q = 4 the flat curves
are shorter than those for the case discussed above, but larger than those obtained
for q = 1. The variation of the local relaxation functions seems to give informa-
tion about the properties of the effective material functionsŠαβ ,šαβ ,Ďαβ and Ěαβ .
These functions calculated for α = β = 1 are presented in Fig. 2. It can be seen
from this figure that the values of these functions have a flat zone in the vicinity of
ξ1 =300.

The Young’s modulus of the composite is a measure of the stiffness against small
axial stretching and compression strains, as well as non-axial bending and torsion
strains on the beam.

This is expressed as Ě(x) = (3λ̌+2µ̌)µ̌

λ̌+µ̌
. The axial elastic modulus of the beam is cal-

culated from the second derivatives of the potential energy functional with respect
to the axial strain Y =− 1

V Π,εε [Chen, Cheng and Hsu (2007)].

Π =
1
2

∫
V

(Ši jkl + Ďi jkl)εklεi jdV +
1
2

∫
V

(ši jkl +Ěi jkl)κklκi jdV−
∫

∂V

tiuidΣ−
∫

∂V

qiωidΣ.

where ti = σi jn j is the traction vector, qi = µi jn j is the couple tractions vector and
ni is the outward unit normal vector to the surface.

A relevant result is shown in Fig. 3, where the variation of the Young’s modulus
with respect to b is plotted in comparison with the classical Young’s modulus. We
find that the modulus is higher than that of the Silica and PZT-SH materials. These
results indicate an increase in Young’s modulus of up to 18.8% in comparison with
the classical theory.

We have also performed computations for the dynamic trajectories of the rota-
tion vector (spin-vector). The phase portrait of the components ω1 and ω2 in the
plane(ξ1,ξ3) is plotted in Fig. 4. The spiraling behavior of the spin trajectories
suggests the effect of the relaxation properties and the existence of a stable circular
orbit. This stable limit cycle attracts all neighboring trajectories. As a consequence,
the beam can exhibit self-sustained spin oscillations.

In order to compare the present results with the experimental ones of Koratkar,
Wei and Ajayan (2003), we calculate the response of the cantilevered beam for a
frequency test (50 Vrms voltage input to the piezoelectric sheet). Fig.5 compares
the variation of the root microstrain with respect to the frequency for the no rein-
forced and reinforced cases. Both the baseline and the CNT-reinforced beams have
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Figure 2: Variation of the local normalized relaxation functions with respect to
ξ1 for q = 1,2,3,4.

the same cross-sectional dimensions (25.4mm×0.91mm) and cantilevered length
(22.86mm). These results are comparable to those obtained using the Koratkar
experimental data, indicating a significant decrease in the root microstrain (about
25%) with increasing frequency.

Fig. 6 presents the variation of the root microstrain with respect to the frequency
for the clamped beam with and without carbon nanotube reinforcement. A signifi-
cant decrease in the root microstrain (about 25%) with increasing frequency is also
found.

Fig. 7 presents snapshots of various shapes of the deformed carbon nanotube
clamped beam and excited by the piezoelectric sheet with a sinusoidal voltage.
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Figure 3: Variation of the material functions Š11, š11, Ď11 and Ě11 with respect to
ξ1.

 

Figure 4: Variation of the Young’s modulus with respect to b in comparison to the
classical modulus.

5 Conclusions

Carbon nanotubes are attractive for the structural reinforcement because they can
potentially be integrated within composites and offer multifunctionality in terms of



12 Copyright © 2010 Tech Science Press CMC, vol.19, no.1, pp.1-16, 2010

 

Figure 5: Trajectories of the spin component ω1 and ω2.

improved damping, stiffness, strength, and fracture toughness.

The model of the sandwich beam presented in this paper was obtained by intro-
ducing the couple-stresses into the constitutive equations of the linear viscoelastic
theory. The effective material functions were calculated, in the framework of the
zeroth- and first-order approximation theories, from the local relaxation tensors
by a homogenization method, without the requirement of additional experimental
tests. The variation of the beam root microstrain was compared with the bending
experimental results reported by Koratkar et al. (2003). The results presented in
this study showed an enhancement in both the structural damping and stiffness of
this composite beam due to the nanotube reinforcement.
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Figure 6: Variation with respect to frequency of the root microstrain for the can-
tilevered baseline and the nanotube reinforced beams.

 

Figure 7: Variation with respect to frequency of the root microstrain for the clamped
baseline and the nanotube reinforced beams.
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Figure 8: Snapshots of various shapes of the deformed clamped beam.
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