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Comprehensive Laminate Level Sensitivities of the
Touratier Kinematic Model for Reliability Analyses and
Robust Optimisation of Composite Materials and
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Structures
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summation indices

elasticity tensor

vector of degrees of freedom

unit vectors of the standard Cartesian coordinate axis
tangent vectors to the shell mid-surface

tangent vectors to the deformed shell mid-surface
mutually orthogonal basis vectors

curvilinear co-ordinates of the shell mid-surface
trigonometric functions

laminate-level trigonometric functions

total potential energy

laminate number

transverse shear strains at the mid-surface

shell thickness

unit normal vector to the shell mid-surface

unit normal vector to the deformed shell mid-surface

vector of prescribed and concentrated forces and/or moments.

position vector of the shell mid-surface

position vector specifying a general point within the shell
vector specifying the position of a point on the deformed shell

principal radii of curvature of the un-deformed shell
rigid body rotations the initial mid-surface normal
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u displacement vector

u, vector of mid-surface displacement

Wab strain tensor

X05Y05%0 cartesian co-ordinates of the shell mid-surface

X0, V05 %0 cartesian co-ordinates of the deformed shell mid-surface

1 Introduction

Sensitivities are an essential requirement for first and second-order reliability meth-
ods (FORM/SORM) and optimisation algorithms in which a robust solution is
sought in the presence of uncertainty. Here we present comprehensive mathemat-
ical expressions that can be used for the sensitivity analysis of a laminated, curvi-
linear shell that can undergo large strains, rigid body rotations and transverse shear
deformations. Each lamina is a fibre reinforced composite material and in all cases
the material is assumed to be linear-elastic and reasonably stiff. The strengths of
all the materials and the shell geometry are such that the component of strain in the
through thickness direction is taken to be negligible.

A key consideration in the derivation of our model equations is the adoption of Ab-
solute Nodal Coordinates (and their directional derivatives) instead of displacement
vector components (and their directional derivates) as nodal degrees of freedom
for a finite element formulation. Mikkola & Shabana (2003), and Ibrahimbegovic
(1997), have argued that an Absolute Nodal Coordinate (ANC) formulation is more
accurate at modelling geometrically non-linear structures that are subjected to large
strains and rotations. That is relative to a classical displacement vector formulation.
Dufva & Shabana (2005) have also reported that an ANC formulation is computa-
tionally more efficient at modelling these types of problems. This cited research,
however, is restricted to cases where the shell was composed of a single layer.

The shallow shell theory of Beakou and Touratier (1993) (referred to here as the
Touratier kinematic model) is used to implement transverse shear strains and lami-
nations. The Touratier kinematic model has so far only been used in displacement
vector based finite element formulations, see Beakou and Touratier (1993), Idlbi
et. al. (1997), Dau et al. (2006). It was however shown to be numerically robust
in terms of addressing the various locking instability modes that can arise in shell
computations. A further advantage is that it does not require thickness correction
factors.
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2 Touratier Kinematic Model

Consider an arbitrary curvilinear shell. The initial geometry of a differential shell
element is illustrated in Fig. 1 where the mid-surface is marked with solid curves.

xe, curve of constant &

Figure 1: Absolute Nodal Coordinates (ANCs) and parameterisation of the mid-
surface.

Let the vector ro quantify the position of the mid-surface which can in turn be
parameterised using the curvilinear co-ordinates & and 7 as follows,

rO:xo(67n)ex+y0(gvn)ey"_ZO(é?n)ez' (D

The vectors ey, e, and e, are the unit vectors of the standard Cartesian coordinate
axis. The tangent vectors to the mid-surface are e; and e, and the unit normal
vector is ng. Therefore,

0 ro 0 ro 1

¢ il=—— 6 =——_ NnNy)y=
1 8&’ 2 (91’]7 0 |e1><e2|

e X e. (2)

They are a set of base vectors that define a local coordinate system, (&,1,A) where
A is the coordinate normal to the tangent plane, Let & be the plate thickness, the
mid-surface is then located at A = 0, the top surface at A = /2, and the bottom
surface at A = —h/2. The position vector that specifies a general point within the
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shell, r, which is not restricted to the mid-surface is decomposed into the following
components,

r:r(éanﬂ):1'0(5771)4‘7“10(5777)- (3)

In Beakou and Touratier (1993), the displacement vector (u) is expressed in the
following form,

ll:ll(l') :ukl(uo(éan)ak)""uT (710(5777)775)(5771)71), “4)

where }/? and }/g are the transverse shear strains at the mid-surface and ug is the mid-
surface displacement such that, up = u (r = rp). The components of the vectors uy;
and ur, defined in equation (4), are given by,

A A dw 1
ukl-e§:<1+Rl) (uo-eg)—a—lg, egza—]el,a%:el-el, 5)
A A dw 1
uy -ep = <1+R2> (u0'en)—072%> en = afzez, ;=6 e, (6)
u-ng=up-ng=w(§,n),ur -ng=0, (7

ur-ee = [fi(2)+81 ()| A (€ m)+gl ()R Em), ®)
ur-eq =gl ()R (Em)+ | A)+8” W] B (Em), ©)

The Touratier kinematic model has so far been restricted to cases where the initial
shell geometry was such that the unit tangent vectors, e¢ and ey, were mutually or-
thogonal. Referring to equations (5) and (6) and Fig. 1, Ry and R; are the principal
radii of curvature of the un-deformed shell. The functions f; and f, in equations
(8) and (9) are trigonometric functions which are posed to provide a high order
(that is in terms of the thickness coordinate A) representations of the transverse
shear deformation and so avoid the requirement for thickness correction factors.
The superscript “k” used in equations (8) and (9) refers to a quantity that is defined
in a specific lamina of the laminated shell such that there are a total of N layers.
The expansions of fi, f>, g&k), ggk), ggk) and ggk) include laminate coefficients that
are expressed in terms of the stiffness components of the lamina. However, these
expressions are lengthy and so the reader is referred to Beakou & Touratier (1993)
and Idlbi et. al. (1997) for their full expansions. Given that we wish to analyse
a fibre-reinforced composite laminate, we take the vector e to be pointing in a
tangential direction to the curvilinear coordinate curve that runs along the length of
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the fibre, thought the Touratier kinematic model is not restricted to fibre-reinforced
composite laminates.

The Touratier kinematic model is used to quantify the transverse shear components
of the displacement field. Each lamina is assumed to be made from an orthotropic
material. The laminate constants of this model can then be used to determine the
laminate level sensitivities. The geometric random variables are the thicknesses of
the laminas. First ply failure of the laminated shell is assumed via a Tsai-Wu failure
criterion applied to each lamina.

According to the Tsai-Wu criterion the material is deemed to have failed when:

Fi011 + Fy00 + F3033 + F11 67 + F2 03, + F3305; + Fay 035+

(10)
F550% + Fss0y + 2F 1201102y + 2F 13011033 + 2F2302,033 > 1,
where
1 1 1 1 1 1 1
= Fh=—-— FkBh=———,F1=——,
Xr  Xc Yr Yo Zr  Zc XrXc
1 1 1 1 1 an
F —— Py =—— Fu=—, F55 = —, Fepg = —.
and:

X%k) =tensile strength in the fibre direction;

YT(k) =tensile strength in the directions perpendicular to the fibre;

Xék) =compressive strength in the fibre direction;

Yék) =compressive strength in the directions perpendicular to the fibre;
S®) —shear strength in the curvilinear plane containing the fibres;
RW T®) —transverse shear strength components;

The other coefficients, Fi,, Fi3 and Fy3 (called interaction coefficients) take the
form,

F12— —{1—0pi2 (AL + F2) — 0515 (Fi1 + F) } (12)
Opia
F13— {1 op13 (F1 +F3) — 6;313(F11—|—F33)}, (13)
3
—{1— 0423 (P, + F3) — 033 (Fra + F3) } . (14)
Gins

Op12, Op13 and Opp3 are equibiaxial failure strengths in the curvilinear plane contain-
ing the fibres. Three equibiaxial loading, experimental set-ups would be required
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such that the following measurements in these respective set-ups correspond to ma-
terial failure,

011 = 022 = Op12, O11 = 033 = Op13, 022 = 033 = Op23.

Suitable biaxial data can be generated by means of a combined tension/torsion test.
The Touratier kinematic model equations apply to a degenerate element formula-
tion. Therefore 0, is set to zero in equation (1) and the resulting limit state function
is,

g(X)=1—F1011—F2022—F110121—F226222— (15)
Fi463; — F55073 — FgsG — 2F1201100a.

As already stated, every layer is orthotropic and these layer thicknesses are assumed
to be the only geometrical random variables. If there are a total of N layers then
it follows from these assumptions along with equations (1) - (3) and (6), that the
vector of random variables (X) is,

- (1 1 1 1 1 1 1 1 n-oT

El( )v Eé )’ Eé )a V2(3)’ V1(3)7 "1(2)7 Gg3)? G§3), ng),

xV xMoyh oy RO s T Gl )
2 2 2 2 2 2 2 2 2

A R R

x? xP, y?, ¥y RO, @ 1@ 6D @)

X= ) . (16)

N N N N N N N N N
BB B 0, 6 G Gl

M xR s W) g W) |

X contains a total of 18N random variables where there are 18 variables assigned
to each lamina. The superscripts used for the components of X in equation (7)
are used to denote the index number of the lamina to which a given component
applies; e.g. El(z) is the Young’s modulus in the fibre direction for the material used
to construct the 2"¢ lamina. The vector of direction cosines used in a FORM or
SORM computation (@) is given by,

DsVg

o=-—9° (17)
IDsVell,

where Dy is the diagonal matrix of equivalent-Normal, standard deviations and
Vgis the gradient of the limit state function. In our case g is defined in equation
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(6) and the derivatives are with respect to the variables defined in equation (7). The
vector of sensitivities () is given by,

D; 'TD;Vg

= A 975 (18)
D 'TDsVgl|,

Y

T is the matrix that transforms the vector of correlated, standard-Normal variables
to uncorrelated, standard-Normal space. D, is the diagonal matrix of the square
roots of the eigenvalues of the correlation matrix. The values of the elements of
the correlation matrix, along with the means and standard deviations of the random
variables defined in equation (16), will need to be determined from an appropriate
set of experiments. This paper concentrates on the derivation of the components of
the gradient vector of the limit state function.

3 Orthotropic and Monoclinic Materials

The stress tensor that applies at a general point within an orthotropic material is,

5 (e o 0 0 7 1
o clin cxn 3w g 0 0 i
- 1133 (2233 (3333 _
6_733 _ C(k) C(k) C(k) 2(;23 0 0 w33 7 (19)
?‘23 0 0 0 C(k) 0 0 2W»3
013 0 0 0 0 ¢ 0 | |23
G2 0 0 0 0 0 czflel
k=1.2,..N
2 2
B ()E - ()
Cioy' = 2 G 2 (20)
k k) o (k k k) o (k
() £ (M) £
0 _ gl (00N> k) g (k k) (k) ok
3233 _ B -5 (v12 ) - viy By + v v Y @1
2 ’ K) 2 (0) () A (K
<E1(k)> EWAY EMNEWED AN
GG ) 6 ) (k) (e
CLi = vis viE 4 vy 233 _ vy B+ v vy B 22)
(k) (k) A (k) 7 O\ 2 (k) 4 (k
E\VE, A (E1< )) EXAW
2323 _ ~(K) 1313 _ <) ~1212 _ ~(R) o)
Chy” = Ga3» Cpiy " =Gy, Cpiy " =Gy, 23)
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k k k k k k
" X 1(k) —EVE EW E%k;vliii/Eliki
Ao = wam ||V 1 —E3" vy [E; (24)
E\E,)"E; _vl(/3<) _vz(lg) 1

The bars on top of the stress (LHS) and strain (RHS) tensor components in equation
(10) denote that these are the orthotropic components that apply when the &-axis is
aligned in the fibre direction and the A-axis in the through thickness direction. The
superscript “k” specified in equations (19)-(24) denotes that these stiffness variables
apply to the material of the lamina with index number k. For our degenerate element
formulation we assume that, 633 = 0. Equation (19) can therefore be reduced to,

G611 Q%kl; Q(% . i
022 Q, @ 0 0 0 W2
gal=l0 o o o o2, (25)
613 0o 0 o Q¥ o |23
012 I 0 0 0 0 Qgg)_ 2Ww12
Gl Gl
~k) _ ~1111 k) _ 2000 L
Q“ _C(k) o 3333 Q22 _C(k) - Cc3333 (26)
(k) (k)
2
C1132C2233 [ 3312}
(k) 1122 (k) ~(k) 1212 (k)
0y = Clyy C(3]3)%3 , Q66 = T%%a (27)
Q44 = C(23)23 23v Q55 = C(llg)13 G(ll?' (28)

In the Touratier kinematic model only the mid-surface layer, k = ko, is defined with
all the axes of the model equations aligned in the principal directions. The co-
ordinate system used to derive the laminate constants of the Touratier kinematic
model has its origin located on the mid-surface and one of the axes is aligned in
the fibre direction (£). None of these axes are therefore necessarily constrained to
be aligned in the in-plane principal directions of any of the other layers and so the
stiffness components that apply to these layers will be monoclinic, i.e.

k) oWk (k)

Oy Op 0 0 O
0y 0 0 0 0y
Q=10 0o o o® o], (29)
o o of of o
ol o o o of



Comprehensive Laminate Level Sensitivities of the Touratier Kinematic Model 245

where,

T
Q= T4 (T8)) (30)

T1(1 T1(2 0 0 T1(6
oy 1y 0 0 1y
om=1 0 0 T4(411€) T4(5k) 0
0 0 1 1) 0

k k k
_TG( 1 ) T6(2 ) 0 0 T6(6 )_

The matrix T(Okl%,, is the matrix that transforms the components of the degenerate

stiffness tensor,Q(Ok), from orthotropic to monoclinic components as specified in
equation (30). The full expansions of the components of Tgclz,, are documented by
Arciniega and Reddy (2007), they are combinations of trigonometric functions of
the angle necessary (G}k) say) to rotate the mid-surface fibre axis in order to be
aligned with the fibres in the layer with index number k — see Fig. 2. The mid-

surface base vectors are,
= (31)

where e is the tangent vector parallel to the mid-surface fibres, see Beakou and

Touratier (1993). If egk) and egk) are the respective basis vectors that are paral-

lel and perpendicular to the fibres of the lamina with index number “k” then the

components of the transformation matrix T(Qk,{,, from equation (30) are,

Tl(lk) = (Cll)za Tl(éc) = (012)2, Ti6 = 2cq1012, 32)

Tz(f) = (C21)2a Tz(f) = (022)2, Tz(g) = 2c21022, (33)
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Tﬁ) =, T4(5k) =1, T;P =ci2, T5(5k) =11, (34)
T6(1k) =ci1021, Téﬁ‘) = C12022, Tﬁ(é) =ciicn +aici, (35)
where,
(k) : (k)
e = (¢) ey — e = (6)
! ver-er b Vee ]
: (k)) ( (k))
e ) e @)
2 \€1-€1 ’ 2 V€2 €
A7
¢
Figure 2: Fibre alignment of non, mid-surface layers.
The stress at a general point within the laminated shell is given by,
(k) k) (®)7]
il O e O N
022 Qi Oy 0 0 Qx| w2
on|=[0 0o oF oF o ||ws| k=12, (36)
(k) k)
on W o o %
" Qs O O 0 Qg | 2
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The expansions of the strain tensor components, wyy, wa, w»3, wiz and wy, are
(Shaw et al (2010)),

B 1 8f0 . af‘() _ al‘() ) al'() 2 af‘o . al_l() _ al‘() ) 8no
Wae =5\ Oxe 9x¢ 9x¢ 9xa Jxd Jxd  Jxt Jx®

2,2 81‘10 8ﬁ0_8n0 8n0 8?0 allts laﬁo 8u,s (37)
lau’s-&u”, a = 1,2, where there is no summation on «,
2 dx¢  Jx?
_df dfy _dry dry  , (0F JRy A OFg My Jro Imy
YI2T9E o T 9& om T\ 9E an T om 9E T 9€ om
8r0 8n0 2 81‘10 81‘10 8n0 8n0 8?0 allts 81'0 allm
) (e et O
diy Jduy n iy du,\  duy duy
€ dn  aIdn & 28 an’
_ on d _ duy Ory Jduy
W"Fl(“o'a;lff_“o'a;))*"o'al;;+a;2' 7
(39)

81_10 auts aut_g aum
A . . =1,2

ax 9A T axe a7 h®
Referring to the random variables specified in equation (16), the transverse shear
component of the displacement vector (uy,) is dependent on the random transverse

shear components of stiffness and the lamina thicknesses as follows,

us = s (G, G A, GG, Gl Gl ™). (40)

The mid-surface position vectors before and after deformation, ry and Fy respec-
tively, along with the initial and the deformed normal vectors to the mid-surface,
ny and ng respectively, are all independent of the random variables of equation (16).
It follows from equations (25)-(36) that,

k)

0 k) (k) (K
Q11 —Qu( 1 aEz( ,E§),v2(3),v1(3),v1(2),G§2 ) 4D

gk 0 0 6 G0 43)

k
sz *sz( 2 v E; 7"2(3)7"1(3)7"1(2)7(;52))7 (42)
1 v 2 > 3 7"237"137"127 )

k
Q16 (El ) 2 > E; 7"2(3)7V1(3)>V1(2)7G§2) ) (44)
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k k
Q26 = Q26 ( 1 sz( )7E3( ):V2(3)7V1(3)7V1(2)7G§2)>7 (45)
k k K o) o) K k) (k) Ak
Qés) = Qé6) (El( >7E§ )7E§ )7V2(3)=V1(3)7V1(2)7G§2)> ) (46)

ol = ol (6.6 . o = o (6%.61) . oy = 0 (6¥.61Y) . «m)

4 Random Strength Variables

The remainder of the random variables listed in equation (16) are strength compo-
nents (X (k), Xék), Yc(k>, S(k), R(k), T(k), 61511()2).

As for the stlffness variables, the superscript “k” specified in the above variables
denotes that these strength values apply to the material of the lamina with index
number k where, k = 1, 2, ..., N. The limit state function of equation (15) is
derived from a Tsai-Wu criterion that applies to a single material. Equation (15)
needs to rewritten to take account of the fact that the shell is laminated. The ma-
terial properties will vary from layer to layer and so we need to ensure that the
correct strength components, i.e. those of the material in which the limit state func-
tion evaluation point is located, are substituted into the Tsai-Wu failure criterion.
Therefore,

g(X)=1 *Fl(k)cll sz(k)ng *Fl(f)clzl *Fz(g)(’zzz*

(k) (k) (k)

(k) 2 2 2 (48)
Fyy 033 — F557 013 — Fog 01 — 2F}, 011022,

where “k” is the index number of the lamina in which the thickness coordinate (1)
of the limit state function evaluation point is located and,

po_ 1 1 pw_ L1 opm_ 11
X;k) Xék) YT(k) Yc(k) Z(Tk) Zék)
(k) 1 (k) 1 (k) 1
o S N SN . —
11 X }k) X ék) 22 Y T(k) y C(k) 33 Z(Tk) Zék)
s L w1 w1 “49)
(T®) (RW) (s®)
k 1 k k k O\2 [ (k k
Fy = 02 {1 ~ o) (Fl( '+ K )> - <61£1)2> (F1(1)+F2(2)>}-
2 (Gblz)

It follows that the derivatives with respect to these random strength variables are,
dg O11 {stlf)z (011 +Xék)> — 022 <ng]1<)2 "‘Xék)) }
® ~ ) (x©) 5
IXq Op12 (XT ) Xc

; (50)
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dg 92 {Gb(lf)z (622 +YC(")) —oy (Gb(/f)2+yék))}

— (5D
2 )
o () el
dg _ °on {"22 (X}k) - Gé,f%) %0 ("” - X}k)) } (52)
= 5 ,
o () xa
e _ o on (i) sefh(ox 1)} .
k 2 )
o (&) el
dg _ 20, dg _ 20 dg _ 203 (54)
dg
{0 (1) R ()]
IOy (55)

3
2x{ % v} oni0m / {X}k)xé")YT(")YC(k) (o312) }

5 Top-Level Stiffness and Thickness Derivatives

The Tsai-Wu coefficients Fl(k) , Fz(k) , Fl(f ), Fzgc), F4(f), FS(;( ), Fég) and Fl(f) are inde-

pendent of the stiffness components and the laminate thickness. Differentiating the
degenerate limit state function of equation (48) with respect to the stiffness and
geometric random variables we get,

201
oz

00 B doin (56)
0z ,
j=12,...N, k=1,2,..N, [=1,2,...,7,

dg k k k
= (Ff 26y + 2F1(2)022)
Y

- (Fz(k) +2FY o +2F5 o) 1)

where

k) k)

— gz

k k k
P )

k k k k k k
20 20 =i 2 =Gl

k) k)

z,
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dg 7 (k) ) doi
— = +2F) | o1 +2F), 02
oy~ (0 )oc
£ (k) (k) do2
+2F22 622+2F12 O11
( ) ang?,)
0023 K _ 0013 K _ 0012
~2hlon T ~2slon s 5~ 2Fon .
a3 a a3 aGa?a
j=1,2,..,N,k=1,2,..N,a=1,2,
dg 0 o p®) ) -\ 9011
a/’l(j) ( +2F), 011 +2F), 622> 350
d02
( ()+2F2(2)622+2F1(2)611) ah()
(k ) 3023 (k) d013 (k) do12
—2Fy on 3Ty — 25 0 g oy — 2es o2 g

j=1,2,...,N, k=1,2,....N,

(57)

(58)

The stress tensor derivatives in equations (56)-(58) can be expanded using equa-

tions (36)-(47) to give,

aQ(k) aQ(k) aQ(k) .
Jdo Wity +wa——F + 2w =k
1 _ 11 az[(k) 22 az,‘“ 12 aZ](k) y )

() .
aZlJ Ou J 7é ka

where j,k=1,2,...,N,and [ =1,2,...,7, as in equation (56).

Jo d J J
I9 P PR g P et N a1
Gk JG% 8Ga3 8Ga3

Jo1) (k) Iwi (k) Iwa) (k)awlz

an — 2 gut 90 5,0y T2 e gy A= 12N,
w d w .

8623 2Q44 J 23 —|-2W23 aQ44 +2Q45 3 13 +2W 3(9%(&5)’ j= k,
—_— a3 a3 a3

j aw ow .
0GH | 204 2 +204 2t i#k,
9023 (k) 9W3 aW13 Jdos .
8h Q44 ah + Q45 ah a l() 07 kv.]_1727"'7Na VIa

(59)

(60)

(61)

(62)

(63)

The equivalent expressions for 61, G2, and o3are given in Appendix A, Equa-

tions (A1) — (AS).
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6 Stiffness Derivatives

By differentiating both sides of equation (30) the following relationships between
the monoclinic and orthotropic coordinate forms the derivatives of the normal and
in-plane stiffness terms, quoted in equations (59) are obtained as,

(k) 2 730k 5(k) 2 3w
92, 4 4 97|
Zl(k) _ El(k)7 Zék) _ Eék)j ng) _ E?(’k)7

k k k k k k
240 . 2, 2= )

a0 w0)2 905 W\ 90% w.m
(T 7 = (T , =TT, , (65)
aGg;;) ( 16 ) 3G§I;) ( 26 ) aGg;;) 16 726
(k) (k) K
0% rny, 2% qny 0% (e ®
T

Terms associated with Q12, Q16, O22, Oz, and Qgg are provided in Appendix A
(Equations (A9) — (A13)).

The degenerate element forms of the orthotropic stiffness components defined in
equation (25) are related to the 3D elasticity tensor components through equations
(20)-(24). The transverse shear component derivatives are obtained as, for example,

904 ©\2 904 )
=(T , =(T , (67)

It also follows that,

= 3 3 3\ 2 333
oo acu 21133 H1133 cl133\ 2 53
 _ ) ®_1—12,..6 (68)

(k) (k)
070 " a7 e T\&) oo

where,

ng) _ El(k)7 Zék) _ Eék)’ ng) _ E3(k)7

k k k k k k
20 . 2= 2 )

The derivatives of Qss, Q45 and Q12,02> given in Appendix A, Equations (A14),
(A15) and (A16), (A17) respectively.
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The completed expansions of the derivatives,
1111 2222 3333 1122 1133 2233
8C(k) ac(k) 8C<k) 8C(k> 8C(k) HC(k)
(k) (k) (k) (k) (k) 7 (k)
27, dZ, 2Z, 7, 2Z, 27,

are readily obtained using the definitions provided in equations (20)-(23).

7 Strain tensor component derivatives

The derivatives of the strain tensor components wij, wp and wy,, that appear in
Equations (60)-(63) with (A1)-(A8) can be determined from equations (37)-(39)
as,

owaa (g onyg Jduy 2%y,
gy \oxt  Toxt " oxt ) gyl)gya’ (69)
a=12,x'=¢E x¥*=n,1=1,2,3, j=1,2,...,N,

owiz dty iy duy 9%uy,
(525 %)

arV ' arVan
dto onyg  duy, > 2%y, (70)
_Y _|_A’7 + . - ,

<8§ 9§ 98 ) oay\oe

1=1,2,3, j=1,2,....N,

d Wa3 - 8uts d zuts

i n + . -

8YI(J) a)t, aYl(])axg
dto ony  duy, 2%y, (71)

A : L

x4 ox¢ = Jdx¢ aYl(J) Y

a=12x'=E ¥=n,1=1,2,3, j=1,2,...,N,

where

vV =6, v =G\, v = n. (72)

In the remaining equations the indices a, /, and k take the same values as specified
in equation (69) unless otherwise stated. The transverse shear component of the
displacement vector (u;) can be expressed as

= u@)ég +u(")én. (73)
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It therefore follows that,

uy  oul®) d&e  Juln aén 8214(5) 92u(m
W 7 axe T Gyl axe §t 00
oy Voxe gyl oxt gyl dxt "yl Tona © Y, oxa

2 2..(&) 2,,(n)
s _ JU o &. (75)
aYZ(J)aA 81/,(”8/1 aYZ(J)a)L

&, (74)

Given that the angles 8 and 6, are the rotations about the § and naxes necessary to
align the initial mid-surface normal with the corresponding normal to the deformed
surface, then let,

se =sin (6g), cg =cos (6z), sy =sin(6y), cy = cos(6y). (76)

Using equations (14)-(18) of Shaw et. al. (2010),

aeg 8cn N 8sn+ asg 8s N 3C5 ot
v~ o T (Se g Tonga Jen— (cega tonga mo

77
de; dey dng "
N gt TN Ga T8N G
aén _ aCé: aSé 8en anO
xt a1 a0 T G T G 7
e; = ]el]\el’ ep = \elz]ez’ see equation (22), (79
— :{ 0 ({1—(110 e) } ax’l + [0 - e¢] [“0 oxe T axa}e">+ %0
: o ] . (80)
[1—(n0 eg) }en S /[1—(110 eg) } )
de on de an
£ _ 21dng 0
= {no [1—(110 e) } 5 T [Do-e] [“0 e T axa] n°>+ &1)
|:1—(n0 eg) :|Il() X }/|:1—(n0-e§) :| ;
den _ ds _ dey dig
5 — (g - ey) 3 Se [HO'axa"'en axa] + 82)
_ 8C;’: _ ano al_10
(o 10) 5o 8 R0 o 710 G |
asTI B 8e5 Jng
axe M0 g T G )
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8 Expansion of displacement vector derivatives

Combining equation (73) with equations (8), (9) and (19) of Shaw et. al. (2010)
gives,

oulé)

e [fl +8§k)} 33:101 +g3) 33:2:7 (84)
= | S agl +4p?§{a (35
&(;t)(;') 283 37’: [fz—l— } 3%), (86)

= Wag} e if-%i%f] (87)

Referring to equation (6) of Beakou and Touratier (1993), the trigonometric func-
tions proposed to quantify the profile of the displacement field are,

hoodf hoodf

f1=f(l)—*b55 k,fz fA)— 7b44d7t’ (88)
where

h . [wA
ﬂM:nm[hy (89)
and,
g =aP1+a" i=1,234 k=1.2,.N. (90)

The parameters agk), bss, bag, and dl.(k) are laminate level constants of the same form
such that, for example,

k k 1 2 2 N N
o = (G, G0, G2, G4, ... G0 G, ) on

and similarly for bss, b4, and dl.(k) .

Expansions of the displacement vector derivatives of equations (74) and (75), with
equations (84)-(87), are,

8f1 9g(k) 9g5’
—W Lo+ —2, (92)
8Y aYl(J) 2 aYl(J)
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92u8)
oy 9xa

(93)

ofi  ag¥ oy aglap
oy gyl | ox¢  gyli) ox’

for example. The remaining equivalent derivatives are given in Appendix A, Equa-

tions (A18)-(A21).

9 Shape function and laminate level stiffness derivatives
9.1 Shape function derivatives

The shape function derivatives required by equations (92)-(93) with (A18)-A(21)
are obtained using equation (88) such that,
8f1 h |:7T2,] 8b55 8f2 h |:7l'ﬂ,:| 8b44

- ; XW, 1=1,2, (94)

X ——, < = cos
3Yl(/) 8YZ(1) T
2 2
ThH [M] xaLS?, Ih__g [“} x%, 1=1,2, (95
2™ W ad® a8  9d® 926" 9a

3 Yl(/) = p Cos

!
=), = A — = - [ =1,23. (96)
oA aYl(J) aY[(]) aYl(J) aYl(J)aA aYl(J)

with additional equivalent forms provided in Appendix A, Equations (A22)-(A25).
It follows from equations (11) and (12) of Beakou and Touratier (1993) that,

k S k) (k S k) (k k k) (k k) (k 97
(lg ) gS)agS) 4(15)a4(15)7 aé ) SgS)aé(B) SA(tS)aé(M)’ ( )
k k) (k k) (k k k) (k k) (k
ag ) = 524)(15‘5) +S‘(‘5)a§5), aé(t ) = S£4)a4(14) + ngs)ais). 98)

Referring to equation (29) here and equation (10) of Beakou and Touratier (1993),

k k
g _ 05 g Qi
B0 ) ©\2 P W) k) ®)>
U () ol of! - (o)
0) 9
g/;) _ Q4
k) Ak 0\
0li/oly (o)
Differentiating equations (97) and (98) gives,
(k) PG, Py
94y _ w9455 | (9hs 4y, (100)

dR) 055 gpt) T4 9p)
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with the derivatives with respect to Gg{’zk) given in Appendix A, Equations (A26),
(A27).
Similarly,

k k k
oay _ 9l o0 9l

Rl — TS gplh T4 Hp()

) j?k:1727"‘N7 (101)

k k k
8a§ ) (k) 8a£5) (k) aaz(m)

oG oGy oGy
AR T S L (o)
aG,( ) 8G,(k) P ng) 9 Gl(k) 9 G;k)

The derivatives of ngt), S‘((;) and Sg;) which are required by equations (103), (A30),

& (A33) are obtained from equation (99), as, for example,

ast) { <Q§5)> 8G§k5) * (QgS ) 3G?2> ~2050l¢ 8G?’§)
oGk 2\ 2 ’ (104
k) Ak k
’ (ol - [ok])

with the derivatives of Sfé) and Sg;) given in Appendix A, Equations (A34), (A35).

Using definitions from equations (27) and (28) the derivatives of the monoclinic,
transverse shear stiffness components are given in Appendix A Equation A36, and,

904 N2 90 [w\?: 0% [ w2
(1), 9 _ (g0 9% _ (700) (105)
R S

Referring to equations (97) and (98), the expansions of as4 and ass are,
k
(k) (1) (m=1)  (m) T g2
a;’ = Q; bii+ ( i Y ) (COS [] + bsssin [ ;
© ,E‘z ¢ ¢ h » h (106)
ii=44,55,k=1,2,..N,

and the expansion of aysis,

k e " Ay
aé(l]? = Z <Q4(LS l)+QA(LS)) cos l:h] ; k=1,2,...,N. (107)

m=2
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It follows that, for example,

361({() aa?") (1) k (m—1) (m) TAm ob;;
T oo =% T Qi - Qi sin[ } T
oGY oGl mg’z ( ) h1foGH

© (108)
Ccos n—)Lk =+ bj;sin ﬂ:—lk 90, =k
h 1] h aGEk)v .] - M
with ii = 44, 55.
Similarly,
dal)  adl) k] 90l 100
260 W - S| Th | X g /TR (169)
! ! !

The expressions for the remaining combinations of j and k relating to Equations
(108) and (109) are provided on Appendix A, Equations (A37)-(A42).

The expansions of the laminate level coefficients b4 and bssof equation (108) are,

bii = C— ii = 44,55, (110)
Aji
where
A= oW N (0B ol g [t
=0+ Y (0 =0V sin | T 4 oY i = 4455, (111)
k=1
Z ( "“)) cos [Mh"*‘] i = 44.55. (112)

Differentiating b4sa and bsswith respect to the transverse shear moduli completes
the chain of derivatives in equations (108) (with (A37)-(A40)) to give,

O

.. SA0) u J
ab(”.) _ 9 20 =12, j=1,2,..,N, (113)
8Gl’ Aj
where,
2A; Ay 90 ac;  acy; a0y

D~ 370 350 340~ 390 340 (114)
0G,” 00’ 9G” 9G; 00;’ 9G;
and, for example,
aA(ili):l—i—sin [m} aA(;",)l—sin [MN] (115)
90; IQ; h

The remaining components are provided in Appendix A, Equations (A43)-(A45).
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9.2 Laminate level derivatives

The laminate thickness # is given by,

h

N
=Y h® A =—, At = 2 = Ay — A (116)
= 2 2

It therefore follows that,

1
-5, k< =1,2,..,N+1
oh _ | I { 3o k<mom=12_ N+, 117

_— :1 _— =
oh® — 7 gnm . m>k k=1.2,...N,

D=

The derivatives of aqq and ass from equations (106) with respect to the lamina
thicknesses (h(k)— see equation (115)) are,

a1y ok & O om
Sh =% S+ Z (e -ai) { < ETTl 4’“) X
A

bocos | 2| o le ©gin [FAn] 9P (118)
ii COS h S h S h ah(}) ,

ii = 44,55, j,k=1,2,...N

Similarly the corresponding derivatives of a4 are,

k ha/l,,, _M
aa45 =Y <QE¢’;)—Q%—1)) Sin[nim} X < ahzz >, jk=1,2,..N.

m=2

(119)

The following expansions of the derivates of b;; (Equation (110)) can be determined
from equations (111) and (112),

ab” _A aCn C aAn

=03 " onl /)AZ. "OMUL i_ 12 N, (120)
where

A &[T W k) 0 A1 Ty

InD) k; {h2 (@7 -2i") (h Ih0) l"“) COS[ h ]} (121)

ii=44,55, j=1,2,...,N
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aC;i &[T [ k) d k41 E 2
on Z {h2 (Q -0 ) (h o 7“"“) Sm{ h ” (122)

i =44,55, j=1,2,...N

The chains for the derivatives of aj, a;, a3 and a4 in equation (96), with respect to

all the Yl(j) (1=1,2,3, j=1,2,...,N) specified in equation (72) is now complete.
(k)

The derivatives of the laminate level coefficients d;™ are required to complete the
overall chain of shape function derivates, (see equations (94) and (95). The expan-

sions of di(k) that are derived in Beakou & Touratier (1993) are,
h h
(), af),dl af) = <nb55>0,0,nb44> , (123)

where k = kg is the index number of the lamina within which the mid-surface is
located and,

0 _ ko) m1)
d;” =d, —i—mz%ﬂlm (al( )—aE )>, 124)
i=1,2,3,4, k=ko+1,kg+2,...,N,

m=ko—1
d(k Z Ans ( —almH)) , (125)
i=1,234 k=ko—1,kp—2,...,1.
Given equations (123)-(125) then,
od” _od™ &, <8a§m_l) aa("”)

1 — 1 . _ 1 .
aYl(J) aYI(J) 1 " aYl(J) BYZ(’)
i=1,2,3,4,1=1,2, j=1,2,...,N,

k=ko+1,ko+2,...,N,

(126)

2d"  h 9bss adl  adl) ad Y0l h Oby

aYl(j) T aYZ(J')’ aYl(j) 3Yl(j) - aY o aYl(J')’ (127)
1=1,2, j=1,2,.,N

2d®  9d®  ga™ ! 2a!™  9a"

oy® ~ ani ~ a0 { (ahm T on >+

<a(m) _ (m+1)> 0 Ami1 } . . , (128)

m=k

l. ,. = =1,2,3,4, j=1,2,...N

k=ko—1,kg—2,....1,
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9di" ab55 L) 9 _ad

on) ohD) "I ) ony T onh — 12
04 _ 1 hab44 bas ), j=1,2,..,N -
8h(l) - _ m_‘_ a4 |5 J = L4 0V,

with the equivalent symmetric laminate terms given in Equations (A46)-(A47).

The expansions of the derivatives of bss and b44 in equations (127), (129) are given
by Equations (120) and (127). The expansions of the derivatives of ay, a, az, and
a4 in equations (125), (A46), (127) and (A47) are specified by equations (100) and
(96).

10 Finite difference verification

The geometry of the deformed laminate must be known in order to compute all the
derivatives with respect to all the random variables listed in the random vector X of
equation (16). The set of derivative evaluations required to complete the laminate
level sensitivity analysis includes the various strain tensor and displacement vector
component derivatives are specified in equations (69)-(93).

As an example, laminate level shape function derivatives (derived in section 6)

(k)

are verified with respect to the transverse shear components of stiffness (G5 and

Gg?), and with respect to the lamina thicknesses (h(¥)) for the non-symmetric lam-
inate detailed in Table 1. These are mathematical idealizations are used to test the

analytical derivatives of f; and a(lk) with respect to G 3 (see equations (94)-(95))

along with the derivatives of ags) and ags) with respect to hU) (see equation (119)).

Table 1: Assumed laminate properties.

Layer | Lamina Thickness (m) | Fibre Orientation Gg? (MPa) Gg’;) (MPa)
(Degrees)

k=1 W =6x1073 90 5000 3000

k=2 h® =4x1073 45 5000 3000

k=3 h®) =5x%x1073 0 5000 3000

k=4 W =4x1073 72 5000 3000

k=5 W =6x1073 37 5000 3000

The derivative of the shape functionf|, (Equation (88)), and a1 (Equatlon 7))

with respect to the transverse shear modulus G 3) is tested with the data from table
2. The corresponding sample results are listed in tables 2(a) and 2(b) respectively.
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Table 2a: Finite difference verification of aaGf<lf) (A) from Equation (94).
13
Thickness | Lamina | Random | Analytical Finite- Step-size
Coordinate | Index (k) | Variable | Solution Difference OX;
(1) Index (j) Comparison
(see equation (130))
-0.0095 1 1 0 0 1073
-0.0095 1 2 -4.2848e-008 -4.2848e-008 1073
-0.0095 1 5 1.6685e-007 1.6685e-007 1073
-0.0045 2 3 4.3557e-008 4.3557e-008 103
-0.0045 2 4 2.4422e-008 2.4422e-008 103
0.0 3 5 4.5324e-007 4.5324¢-007 1073
0.0095 5 2 -4.2848e-008 -4.2848e-008 10°3
0.0095 5 3 1.8991e-008 1.8991e-008 10-3

Table 2b: Finite difference verification of %ﬂ(kj)) from Equation (A27).
13
Thickness | Lamina | Random | Analytical Finite- Step-size
Coordinate | Index (k) | Variable | Solution Difference Ox;
(1) Index (j) Comparison
(see equation (130))
-0.0095 1 2 1.4627e-005 1.4627e-005 10-°
-0.0095 1 4 -3.6347e-006 -3.6347e-006 103
-0.0095 1 5 -5.6955e-005 -5.6955e-005 103
-0.0045 2 2 -0.00018513 -0.00018513 1073
0.0 3 3 -0.00053532 -0.00053532 103
0.0 3 4 -4.8003e-006 -4.8003e-006 1073
0.0 3 5 -7.5219e-005 -7.5219e-005 1073
0.0095 5 5 -0.00032519 -0.00032519 1073
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Table 2c: Finite difference verification of % from equation (118).
Thickness | Lamina | Random | Analytical Finite- Step-size
Coordinate | Index (k) | Variable Solution Difference Ox;
(L) Index (j) Comparison
(see equation (130))
-0.0095 1 1 57532.7133 57532.7133 10~/
-0.0095 1 2 4198.5576 4198.5576 1077
-0.0095 1 3 -14054.8182 -14054.8182 1077
-0.0095 1 4 -69753.2736 -69753.2736 10~7
-0.0095 1 5 -2117.2208 -2117.2208 1077
-0.0045 2 1 124194.359 124194.359 1077
-0.0045 2 5 -25508.4026 -25508.4026 1077
0.0095 5 5 -6730.1735 -6730.1735 10~/
Table 2d: Finite difference verification of ‘;Z‘g from equation (119).
Thickness | Lamina | Random | Analytical Finite- Step-size
Coordinate | Index (k) | Variable | Solution Difference Ox;
(1) Index () Comparison
(see equation (130))
-0.0095 1 5 0 0 1077
-0.0045 2 1 69619.7235 69619.7235 1077
-0.0045 2 2 -21985.1759 -21985.1759 10~/
0.0 3 1 46320.3911 46320.3911 10~/
0.0 3 2 -45284.5083 -45284.5083 1077
0.0045 4 1 37190.3884 37190.3884 1077
0.0095 5 4 -968.2288 -968.2288 1077
0.0095 5 5 33244.0432 33244.0432 1077
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Similarly, the derivatives of the laminate level constants ag];) and a‘(é), specified in

equations (106) and (107) respectively, with respect to a given lamina thickness
h) are examined with the corresponding sample results listed tables 2(c) and 2(d)
respectively. For verification of the proposed analytical sensitivities, the following
standard, second order finite difference scheme is used here,

J xi+0x;) —y(x;i — Ox;
y=y(x), Yt on) v o)

+0 ([5x,~]2> , (130)

where y (X) is some scalar function of the vector X and x; is the i component of
X. The step size is Ox;.

Referring to tables 3(a)-3(d), excellent agreement is obtained between the analyti-
cal solutions derived here and the corresponding numerical solution to a level cor-
responding to a benchmark. A comparison with experimental test data is possible
based on the constituent components or complete laminate data and the mathemat-
ical formulation presented in this paper. In assessing the validity of the analytical
sensitivities against experimental data it will be necessary to consider both aleatoric
and epistemic uncertainties. Nevertheless, the accuracy achieved even in using de-
terministic values would be expected to be good. Experimental comparisons were
not included in the scope of the work presented in this paper.

11 Conclusions

The derivation of the analytical sensitivities of a high fidelity kinematic model for
the analysis of composite laminated plates, shells, and structures subject to uncer-
tainty have been presented. Verification of the sensitivities has been demonstrated
via comparisons with finite difference approximations.

The application of these sensitivities is intended for both optimisation and relia-
bility analyses. To this end, the analytical sensitivities derived in this paper are
available via the corresponding author.
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Appendix A — Supplimentary Definitions
Top-Level Stiffness & Thickness Derivatives

50 CH
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Stiffness Derivatives
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Stiffness Derivatives
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Laminate level Derivatives
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