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Buckling and Postbuckling Behavior of Functionally
Graded Nanotube-Reinforced Composite Plates in

Thermal Environments
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Abstract: This paper investigates the buckling and postbuckling of simply sup-
ported, nanocomposite plates with functionally graded nanotube reinforcements
subjected to uniaxial compression in thermal environments. The nanocomposite
plates are assumed to be functionally graded in the thickness direction using single-
walled carbon nanotubes (SWCNTs) serving as reinforcements and the plates’ ef-
fective material properties are estimated through a micromechanical model. The
higher order shear deformation plate theory with a von Kármán-type of kinematic
nonlinearity is used to model the composite plates and a two-step perturbation tech-
nique is performed to determine the buckling loads and postbuckling equilibrium
paths. Numerical results for perfect and imperfect, geometrically mid-plane sym-
metric functionally graded carbon nanotube reinforced composite (FG-CNTRC)
plates are obtained under different sets of thermal environmental conditions. The
results for uniformly distributed CNTRC plate, which is a special case in the present
study, are compared with those of the FG-CNTRC plate. The results show that the
buckling loads as well as postbuckling strength of the plate can be significantly
increased as a result of a functionally graded nanotube reinforcement. The results
reveal that the carbon nanotube volume fraction has a significant effect on the buck-
ling load and postbuckling behavior of CNTRC plates.
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1 Introduction

Achieving maximum buckling and postbuckling strength is one of the critical issues
in the design of thin-walled and lightweight structures. Carbon nanotubes (CNTs)
are regarded as one of the most promising reinforcement materials for the next gen-
eration of high-performance structural and multifunctional composites [Endo et al.
(2004)]. These nanoscale tubes have outstanding mechanical and thermal proper-
ties. Their unique properties combined with their high aspect ratio (i.e., in the thou-
sands) and low density, have brought about extensive researches concerned with
reinforcing the advanced composites using CNTs [Seidel and Lagoudas (2006);
Esawi and Farag (2007); Li et al. (2007); McClory et al. (2009); Thostenson et
al. (2010)]. The carbon nanotube-reinforced composites (CNTRCs) offer signifi-
cant potential of increased strength and stiffness by homogeneous dispersion of a
small percentage of CTNs (2∼5% by weight) into a matrix [Griebel and Hamaek-
ers (2004); Fidelus et al. (2005); McClory et al. (2009); Song and Youn (2006);
Han and Elliott (2007); Zhu et al. (2007); Tsai et al. (2010)]. For instance, Wuite
and Adali (2005) found that the stiffness of CNTRC beams can be improved sig-
nificantly by the homogeneous dispersion of a small percentage of CNTs. Voden-
itcharova and Zhang (2006) studied the pure bending and bending-induced local
buckling of CNTRC beams. Unfortunately, the reinforcement by the homogeneous
dispersion of CNTs can achieve a moderate improvement of the mechanical prop-
erties of CNTRC only [Schadler et al. (1998); Qian et al. (2000)]. Formica et
al. (2010) further pointed out that the improvement achieves a maximum when the
CNTs are uniformly aligned with the loading direction when investigating the vi-
bration behavior of CNTRC plates by an equivalent continuum model that is based
on the Mori–Tanaka approach.

Functionally graded materials (FGMs) are a new generation of composite materials
in which the microstructural details are spatially varied through nonuniform distri-
bution of the reinforcement phase. Two kinds of FGMs are designed to improve
mechanical behavior of plate/shell structures. One is functionally graded unidirec-
tional fibers reinforced composites [Birman (1995); Feldman and Aboudi (1997);
Yas and Aragh (2010)]. Another one, like functionally graded ceramic-metal ma-
terials, is functionally graded particles reinforced composites [Yang et al. (2006);
Woo et al. (2005); Shen (2005)]. The concept of FGM can be utilized for the CN-
TRC by non-homogeneous distribution of CNTs into the composite plates with a
specific gradient so that the buckling behavior of CNTRC plates can be improved.
Shen (2009b) suggested that the nonlinear bending behavior can be considerably
improved through the use of a functionally graded distribution of CNTs in the ma-
trix. The effect of CNT volume fraction on the thermal postbuckling behavior of
functionally graded CNTRC plates was reported by Shen and Zhang (2010). They
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found that in some cases the CNTRC plate with intermediate CNT volume fraction
does not have intermediate buckling temperature and initial thermal postbuckling
strength. Moreover, Ke et al. (2010) investigated the nonlinear free vibration of
functionally graded CNTRC Timoshenko beams. They found that both linear and
nonlinear frequencies of functionally graded CNTRC beam with symmetrical dis-
tribution of CNTs are higher than those of beams with uniform or unsymmetrical
distribution of CNTs.

The present work focuses attention on the postbuckling analysis of CNTRC plates
subject to uniaxial compression in thermal environments. Unlike the carbon fiber
reinforced composites, the CNTRCs usually have a lower volume fraction of CNTs
due to the fact their mechanical properties will deteriorate if the volume fraction
increases certain limit [Meguid and Sun (2004)]. One of the problems is how to
increase the buckling load and postbuckling strength of CNTRC plates under such
a low nanotube volume fraction. It has been address in the current paper by a novel
functionally graded reinforcing scheme in the thickness direction. It is assumed that
the properties of SWCNTs are size and temperature dependent and can be derived
via molecular dynamics (MD) simulations. The descriptions of properties and the
reinforcing functional gradients of SWCNTs provide the basis for the development
of equivalent material properties of functionally graded CNTRCs (FG-CNTRC)
through a micromechanical model, in which the CNT efficiency parameter is esti-
mated by matching the elastic modulus of CNTRCs predicted by MD simulations
with the extended rule of mixture. These underlying properties are subsequently
used in analysis to enhance postbuckling performance of CNTRCs plates. In the
current approach, the FG-CNTRCs plate is modeled by a higher order shear defor-
mation plate theory with a von Kármán-type of kinematic nonlinearity and includ-
ing thermal effect. The effect of initial geometric imperfection of the plate is also
considered in the current model.

2 Multi-scale model for functionally graded CNTRC plates

It has been reported that there is no bifurcation buckling for simply supported func-
tionally graded plates subjected to uniaxial or biaxial compression, except the plate
is mid-plane symmetric [Shen (2005); Navazi and Haddadpour (2008)]. For this
reason, we consider a rectangular CNTRC plate which consists of two layers made
of functionally graded materials and is mid-plane symmetric, as shown in Fig. 1. It
is worth noting that for fully clamped FG-CNTRC plates the buckling loads do exist
and the assumption of mid-plane symmetric structure is unnecessary. The length,
width and total thickness of the CNTRC plate are a, b and t. As usual, the coordi-
nate system has its origin at the corner of the plate on the middle plane. The X-axis
is defined along the plate’s longitudinal edge while the Z-axis being perpendicular
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to the mid-plane. Let Ū , V̄ and W̄ be the displacement components of the mid-plane
in X , Y , and Z axes and Ψ̄x and Ψ̄y be the rotations of the mid-plane normal about
Y and X axes, respectively. The plate is assumed to be geometrically imperfect ini-
tially, and is subjected to a compressive edge load in the X direction. Denoting the
initial geometric imperfection by W̄ ∗(X ,Y ) and let F̄(X ,Y ) be the stress function
for the stress resultants defined by N̄x = F̄ ,YY , N̄y = F̄ ,XX and N̄xy =−F̄ ,XY , where
the comma is partial differentiation with respect to the corresponding coordinates.

 

t0

t1

t2

Figure 1: Configuration of a functionally graded carbon nanotube-reinforced com-
posite plate.

For functionally graded fibers reinforced composite plates, layerwise approaches
are usually proposed to trace the local variations in each layer more accurately.
Zigzag theories have the benefits of less computational times of the layerwise theo-
ries. Carrera (2003) has reviewed the history of the zigzag theories of the multilay-
ered plates and shells, and three independent ways of introducing zigzag theories
were singled out. These theories describe a piecewise continuous displacement
field in the thickness direction of the plate and incorporate the interlaminar conti-
nuity of the transverse stresses at each layer interface. On the other hand, Reddy
(1984a) developed a simple higher order shear deformation plate theory. This the-
ory assumes that the transverse shear strains are parabolically distributed across the
plate thickness. As has been shown [Reddy (2004b)] this theory can accurately
predict the global structural responses (deflection, buckling and vibration) of the
laminated plates. The advantages of this theory over the first order shear deforma-
tion theory are that the number of independent unknowns (Ū , V̄ , W̄ , Ψ̄x and Ψ̄y) is
the same as in the first order shear deformation theory without the need for shear
correction factors. Based on Reddy’s higher order shear deformation theory with a
von Kármán-type of kinematic nonlinearity and including thermal effect, the gov-
erning differential equations for an FG-CNTRC plate can be derived in terms of a
stress functionF̄ , two rotations Ψ̄x and Ψ̄y, and a transverse displacement W̄ , along
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with the initial geometric imperfection W̄ ∗, such that

L̃11(W̄ )− L̃12(Ψ̄x)− L̃13(Ψ̄y)+ L̃14(F̄)− L̃15(N̄T )− L̃16(M̄T ) = L̃(W̄ +W̄ ∗, F̄) (1)

L̃21(F̄)+ L̃22(Ψ̄x)+ L̃23(Ψ̄y)− L̃24(W̄ )− L̃25(N̄T ) =−1
2

L̃(W̄ +2W̄ ∗,W̄ ) (2)

L̃31(W̄ )+ L̃32(Ψ̄x)− L̃33(Ψ̄y)+ L̃34(F̄)− L̃35(N̄T )− L̃36(S̄T ) = 0 (3)

L̃41(W̄ )− L̃42(Ψ̄x)+ L̃43(Ψ̄y)+ L̃44(F̄)− L̃45(N̄T )− L̃46(S̄T ) = 0 (4)

where L̃( ) is the nonlinear operator concerning the geometric nonlinearity in the
von Kármán sense and L̃i j( ) are the linear operators. The details of these operators
are given in Shen (2009a).

In the above equations, N̄T , M̄T , S̄T and P̄T are the forces, moments and higher
order moments caused by elevated temperature, and are defined byN̄T
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where ∆T = T−T0 is temperature rise from some reference temperature T0 at which
there are no thermal strains, andAx

Ay

Axy

=−

Q̄11 Q̄12 Q̄16
Q̄12 Q̄22 Q̄26
Q̄16 Q̄26 Q̄66

 1 0
0 1
0 0

 [α11
α22

]
(6)

where α11 and α22 are the thermal expansion coefficients measured in the X and Y
directions for thekth ply, and Q̄i j are the transformed elastic constants with details
being given in Reddy (1984a; 1984b). Note that for an FG-CNTRC layer, Q̄i j = Qi j

in which

Q11 =
E11

1−ν12ν21
, Q22 =

E22

1−ν12ν21
, Q12 =

ν21E11

1−ν12ν21
,

Q16 = Q26 = 0, Q66 = G12

(7)

where E11, E22, G12, ν12 and ν21 are the effective Young’s and shear moduli and
Poisson’s ratio of the FG-CNTRC layer, respectively.
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The effective material properties of the FG-CNTRCs plates are derived from the
corresponding properties of the CNTs and the matrix by the use of a micromechan-
ical model as follows [Shen (2009b)]

E11 = η1VCNECN
11 +VmEm (8a)

η2

E22
=

VCN

ECN
22

+
Vm

Em (8b)

η3

G12
=

VCN

GCN
12

+
Vm

Gm (8c)

where ECN
11 , ECN

22 and GCN
12 are the Young’s and shear moduli of the CNTs, Em and

Gm are the corresponding properties for the matrix, and the η j( j=1,2,3) are the
CNT efficiency parameters, respectively. In addition,VCN and Vm are the volume
fractions of the CNT and the matrix, which satisfy the relationship of VCN +Vm =
1.

The CNT efficiency parameters η j in Eq. (8) is introduced to account for the size
dependent material properties of CNTs resulting from the fact that the load transfer
between the nanotube and polymeric phases is less than perfect, for instance, the
surface effect, strain gradient effect, intermolecular coupled stress effect. The val-
ues of η j will be determined later by matching the elastic moduli of FG-CNTRCs
predicted by the MD simulations with the prediction of the extended rule of mixture
in Eq. (8).

To avoid abrupt changes of the material properties, we assume only linear distribu-
tion that can readily be achieved in practice, such as,

VCN = 2
(

t1−Z
t1− t0

)
V ∗CN (for the top layer) (9a)

VCN = 2
(

Z− t1
t2− t1

)
V ∗CN (for the bottom layer) (9b)

in which

V ∗CN =
wCN

wCN +(ρCN/ρm)− (ρCN/ρm)wCN
(9c)

where wCN is the mass fraction of nanotube, and ρCN and ρm are the densities of
the carbon nanotube and the matrix, respectively. It is evident that when Z= t0(top
surface) and Z= t2(bottom surface) VCN = 2V ∗CN , and when Z= t1 (middle surface)
VCN=0. In such a way, the two cases of uniformly distributed (UD), i.e. VCN = V ∗CN ,
and functionally graded (FG) CNTRCs will have the same value of mass fraction
of nanotube.
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In Eq. (6), the thermal expansion coefficients in the longitudinal and transverse
directions can be expressed as

α11 = VCNα
CN
11 +Vmα

m (10a)

α22 = (1+ν
CN
12 )VCNα

f
22 +(1+ν

m)Vmα
m−ν12α11 (10b)

where αCN
11 , αCN

22 and αm are the thermal expansion coefficients, and νCN
12 and νm

are the Poisson’s ratios of the carbon nanotube and the matrix, respectively. Note
that α11 and α22 are also graded linearly in the Z direction.

Furthermore, we assume that the material properties of the CNTs and the matrix
are temperature dependant. Thus, the effective material properties of FG-CNTRCs,
such as Young’s modulus, shear modulus and thermal expansion coefficients, are
functions of temperature and position. Accordingly, the effective Poisson’s ratio
depends weakly on temperature change and position [Morimoto et al. (2003)] and
is expressed as

ν12 = V ∗CNν
CN
12 +Vmν

m (11)

We assume all edges of the FG-CNTRC plate are simply supported. Depending
upon the in-plane behavior at the edges, two cases, Case 1 (referred to herein as
movable edges) and Case 2 (referred to herein as immovable edges), will be con-
sidered, such that

Case 1: The edges are simply supported and freely movable in the in-plane direc-
tions. In addition the plate is subjected to uniaxial compressive edge loads.

Case 2: All four edges are simply supported. Uniaxial edge loads are applied in
the X-direction. The edges at X= 0 and a are considered freely movable (in the
in-plane direction) while the remaining two edges being unloaded and immovable
(i.e. prevented from moving in the Y -direction).

For both cases, the associated boundary conditions can be expressed as

X = 0, a:

W̄ = Ψ̄y = 0 (12a)

N̄xy = 0, M̄x = P̄x = 0 (12b)
b∫

0

N̄x dY +P = 0 (12c)

Y = 0, b:

W̄ = Ψ̄x = 0 (12d)



162 Copyright © 2010 Tech Science Press CMC, vol.18, no.2, pp.155-182, 2010

N̄xy = 0, M̄y = P̄y = 0 (12e)

a∫
0

N̄y dX = 0 (movable edges) (12f)

V̄ = 0 (immovable edges) (12g)

where P is a compressive edge load in the X-direction, M̄x and M̄y are the bending
moments and P̄x and P̄y are the higher order moments as defined in Reddy (1984a;
1984b).

The condition of the immovable condition, V̄ = 0 at Y = 0 and b is satisfied on the
average sense as

a∫
0

b∫
0

∂V̄
∂Y

dY dX = 0 (13)

This condition in conjunction with Eq. (14b) below leads to compressive stresses
acting on the edges at Y = 0 and b. The accuracy and effectiveness of Eq. (13)
for the buckling analysis of plates have been shown in Shen and Zhang (1988) and
Librescu et al. (1995).

Finally, we need to establish the postbuckling load-shortening relationships of the
plate for the postbuckling analysis. The averaged end-shortening relationships are
defined as

∆x

a
=− 1

ab

b∫
0

a∫
0

∂Ū
∂X

dXdY

=− 1
ab

b∫
0

a∫
0

{[
A∗11

∂ 2F̄
∂Y 2 +A∗12

∂ 2F̄
∂X2 +

(
B∗11−

4
3t2 E∗11

)
∂ Ψ̄x

∂X
+
(

B∗12−
4

3t2 E∗12

)
∂ Ψ̄y

∂Y

− 4
3t2

(
E∗11

∂ 2W̄
∂X2 +E∗12

∂ 2W̄
∂Y 2

)]
−1

2

(
∂W̄
∂X

)2

− ∂W̄
∂X

∂W̄ ∗

∂X
− (A∗11N̄T

x +A∗12N̄T
y )

}
dXdY (14a)
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∆y

b
=− 1

ab

a∫
0

b∫
0

∂V̄
∂Y

dY dY

=− 1
ab

a∫
0

b∫
0

{[
A∗22

∂ 2F̄
∂X2 +A∗12

∂ 2F̄
∂Y 2 +

(
B∗21−

4
3t2 E∗21

)
∂ Ψ̄x

∂X
+
(

B∗22−
4

3t2 E∗22

)
∂ Ψ̄y

∂Y

− 4
3t2

(
E∗21

∂ 2W̄
∂X2 +E∗22

∂ 2W̄
∂Y 2

)]
−1

2

(
∂W̄
∂Y

)2

− ∂W̄
∂Y

∂W̄ ∗

∂Y
− (A∗12N̄T

x +A∗22N̄T
y )

}
dY dX (14b)

where ∆x and ∆y are the averaged end-shortening displacements of the plate in the
X and Y directions, and for the case of immovable unloaded edges ∆y must be
zero-valued.

In the above equations, the reduced stiffness matrices [A∗i j], [B∗i j], [D∗i j], [E∗i j], [F∗i j]
and [H∗i j] are functions of temperature T and spatial position Z in the thickness
direction, determined through relationships [Shen (2009a)]

A∗ = A−1, B∗ =−A−1B, D∗ = D−BA−1B, E∗ =−A−1E,

F∗ = F−EA−1B, H∗ = H−EA−1E
(15)

where Ai j, Bi j etc., are the plate stiffnesses, defined by

(Ai j,Bi j,Di j,Ei j,Fi j,Hi j) = ∑
k=1

tk∫
tk−1

(Qi j)k(1,Z,Z2,Z3,Z4,Z6)dZ (i, j = 1,2,6)

(16a)

(Ai j,Di j,Fi j) = ∑
k=1

tk∫
tk−1

(Qi j)k(1,Z2,Z4)dZ (i, j = 4,5) (16b)

3 Solution methodology

A two-step perturbation technique is employed to determine the buckling loads and
postbuckling equilibrium paths of CNTRC plates in this section. Before carrying
out the solution process, it is convenient first to define the following dimensionless
quantities

x = π
X
a

, y = π
Y
b

, β =
a
b
,
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(W,W ∗) =
(W̄ ,W̄ ∗)

[D∗11D∗22A∗11A∗22]1/4 , F =
F̄

[D∗11D∗22]1/2 ,

(Ψx,Ψy) =
a
π

(Ψ̄x,Ψ̄y)
[D∗11D∗22A∗11A∗22]1/4 , γ14 =

[
D∗22
D∗11

]1/2

,

γ24 =
[

A∗11
A∗22

]1/2

, γ5 =−A∗12
A∗22

, (γT 1,γT 2) =
a2

π2

(AT
x ,AT

y )
[D∗11D∗22]1/2 ,

(Mx, Px) =
a2

π2
1

D∗11[D
∗
11D∗22A∗11A∗22]1/4

(
M̄x,

4
3t2 P̄x

)
,

(δx,δy) =
(

∆x

a
,
∆y

b

)
b2

4π2[D∗11D∗22A∗11A∗22]1/2 , λx =
Pb

4π2 [D∗11D∗22]1/2 (17)

in which AT
x and AT

y are defined by

[
AT

x
AT

y

]
∆T =−∑

k=1

tk∫
tk−1

[
Ax

Ay

]
k
∆T dZ (18)

and the details of which can be found in Appendix A of Shen and Zhang (2010).

Substituting Eq. (17) into the nonlinear Eqs. (1)-(4) leads to a simple form as

L11(W )−L12(Ψx)−L13(Ψy) = γ14β
2L(W +W ∗,F) (19)

L21(F) =−1
2

γ24β
2L(W +2W ∗,W ) (20)

L31(W )+L32(Ψx)−L33(Ψy) = 0 (21)

L41(W )−L42(Ψx)+L43(Ψy) = 0 (22)

where all dimensionless linear operators Li j( ) and nonlinear operatorL( ) are de-
fined as in Shen (2009a).

The boundary conditions expressed by Eq. (12) can also expressed in dimension-
less forms as

x = 0, π:

W = Ψy = 0 (23a)

F,xy = Mx = Px = 0 (23b)

1
π

π∫
0

β
2 ∂ 2F

∂y2 dy+4λxβ
2 = 0 (23c)
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y = 0, π:

W = Ψx = 0 (23d)

F,xy = My = Py = 0 (23e)
π∫

0

∂ 2F
∂x2 dx = 0 (movable edges) (23f)

δy = 0 (immovable edges) (23g)

and the dimensionless end-shortening relationships become

δx =− 1
4π2β 2γ24

π∫
0

π∫
0

{[
γ

2
24β

2 ∂ 2F
∂y2 − γ5

∂ 2F
∂x2

]
− 1

2
γ24

(
∂W
∂x

)2

− γ24
∂W
∂x

∂W ∗

∂x

+(γ2
24γT 1− γ5γT 2 )∆T}dxdy (24a)

δy =− 1
4π2β 2γ24

π∫
0

π∫
0

{[
∂ 2F
∂x2 − γ5β

2 ∂ 2F
∂y2

]
− 1

2
γ24β

2
(

∂W
∂y

)2

−γ24β
2 ∂W

∂y
∂W ∗

∂y

+(γT 2− γ5γT 1)∆T}dydx (24b)

It should be noted that the thermal coupling in Eqs. (1)-(4) vanishes because the
temperature rise ∆T is assumed to be uniform, but the term ∆T intervenes in Eq.
(24).

Now one is in a position to solve Eqs. (19)-(22) with boundary conditions (23). We
assume that

W (x,y,ε) = ∑
j=1

ε
jw j(x,y), F(x,y,ε) = ∑

j=0
ε

j f j(x,y),

Ψx(x,y,ε) = ∑
j=1

ε
j
ψx j(x,y), Ψy(x,y,ε) = ∑

j=1
ε

j
ψy j(x,y) (25)

where ε is a small perturbation parameter, for which we do not give a real physical
meaning at the first step.

Substituting Eq. (25) into Eqs. (19)-(22) and comparing the power of ε , we derive
a set of perturbation equations, such that,

O(ε1) : L11(w1)−L12(ψx1)−L13(ψy1) = γ14β
2L(w1 +W ∗, f0) (26a)

L21( f1) = 0 (26b)
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L31(w1)+L32(ψx1)−L33(ψy1) = 0 (26c)

L41(w1)−L42(ψx1)+L43(ψy1) = 0 (26d)

O(ε2) : L11(w2)−L12(ψx2)−L13(ψy2) = γ14β
2[L(w2, f0)+L(w1 +W ∗, f1)]

(27a)

L21( f2) =−1
2

γ24β
2L(w1 +2W ∗,w1) (27b)

L31(w2)+L32(ψx2)−L33(ψy2) = 0 (27c)

L41(w2)−L42(ψx2)+L43(ψy2) = 0 (27d)

Assume the first term of w j (x,y) has the form of classical buckling mode of plate,
such as,

w1(x,y) = A(1)
11 sinmxsinny (28)

and the initial geometric imperfection has a similar form

W ∗(x,y,ε) = ε a∗11 sinmxsinny = ε µA(1)
11 sinmxsinny (29)

where µ = a∗11/A(1)
11 is the imperfection parameter.

By using Eqs. (28) and (29) to solve these perturbation equations of each order,
the amplitudes of the terms w j(x,y), f j(x,y), ψx j(x,y) and ψy j(x,y) are determined
step by step. Substituting these solved functions back into Eq. (25), we obtain the
asymptotic solutions of the deflection, stress function and rotations of the plate up
to the 4th order, such that

W = ε[A(1)
11 sinmxsinny]+ ε

3[A(3)
13 sinmxsin3ny+A(3)

31 sin3mxsinny]+O(ε5) (30)

F =−B(0)
00

y2

2
−b(0)

00
x2

2
+ ε

2[−B(2)
00

y2

2
−b(2)

00
x2

2
+B(2)

20 cos2mx+B(2)
02 cos2ny]

+ε
4[−B(4)

00
y2

2
−b(4)

00
x2

2
+B(4)

20 cos2mx+B(4)
02 cos2ny+B(4)

22 cos2mxcos2ny

+B(4)
40 cos4mx+B(4)

04 cos4ny+B(4)
24 cos2mxcos4ny+B(4)

42 cos4mxcos2ny]

+O(ε5) (31)

Ψx = ε[C(1)
11 cosmxsinny]+ ε

3[C(3)
13 cosmxsin3ny+C(3)

31 cos3mxsinny]+O(ε5)
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(32)

Ψy = ε[D(1)
11 sinmxcosny]+ ε

3[D(3)
13 sinmxcos3ny+D(3)

31 sin3mxcosny]+O(ε5)
(33)

Note that all coefficients in Eqs. (30)-(33) are related and can be expressed in terms
of A(1)

11 . The detailed expressions of the coefficients are not shown here for the sake
of brevity.

After solving the displacement, stress, and rotation, we can solve the postbuckling
equilibrium path. Substituting Eqs. (30)-(33) into the boundary conditions (23c)
and (24a), the postbuckling equilibrium path can be written as

λx = λ
(0) +λ

(2)(A(1)
11 ε)2 +λ

(4)(A(1)
11 ε)4 + · · · (34)

and

δx = δ
(0) +δ

(2)(A(1)
11 ε)2 +δ

(4)(A(1)
11 ε)4 + · · · (35)

In Eqs. (34) and (35), (A(1)
11 ε) is taken as the second perturbation parameter relating

to the dimensionless maximum deflection Wm. From Eq. (30), taking (x,y) =
(π/2m,π/2n) yields

A(1)
11 ε = Wm +Θ1W 2

m + · · · (36)

Eqs. (34) and (35) may then be re-written as

λx = λ
(0)
x +λ

(2)
x W 2

m +λ
(4)
x W 4

m + ... (37)

and

δx = δ
(0)
x +δ

(2)
x W 2

m +δ
(4)
x W 4

m + ... (38)

It is noted that λ
(i)
x and δ

(i)
x (i= 0,2,4,. . . ) are related to the material properties and

are all functions of temperature T and position Z, and the details of which may be
found in Shen (2009a).

The perturbation scheme described presented here is quite different from the tra-
ditional one by Chia (1980), where the small perturbation parameter is defined by
normalizing the maximum central deflection of the plate W̄m by the plate thickness
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t, such as, ε = W̄m/t. Generally, we need ε < 1 in the regular perturbation tech-
nique. It is worth noting that ε is no longer a small perturbation parameter in the
deep postbuckling region when the plate deflection is sufficiently large, i.e. W̄m/t
> 1, and in such a case the solution may be invalid. Contrast to the tradition per-
turbation scheme, the present work avoids the paradox by a two step perturbation
scheme where ε is definitely a small perturbation parameter in the first step and
(A(1)

11 ε) in the second step may be large in the large deflection region.

Eqs. (37) and (38) can be employed to obtain numerical results for the postbuckling
load-deflection and load-end-shortening curves of simply supported FG-CNTRC
plates subjected to uniaxial compression in thermal environments. The buckling
load of a perfect plate can readily be obtained by settingµ= 0 (or W̄ ∗/t = 0), while
taking Wm = 0 (or W̄/t= 0). In the present case, the minimum load (called buckling
load) and corresponding buckling mode (m,n) can be determined by comparing the
axial loads [obtained from Eq. (37)] under various values of (m,n) that determine
the number of half-waves in the X and Y directions.

4 Numerical results and discussions

Numerical results are presented in this section for perfect and imperfect, geometri-
cally mid-plane symmetric FG-CNTRC plates subjected to uniaxial compression.
Firstly, we need to determine the effective material properties of CNTRCs. The ma-
trix is assumed to be made of Poly (methyl methacrylate), referred to as PMMA,
and its material properties are assumed to be νm=0.34, αm = 45(1+0.0005∆T )×
10−6/K and Em= (3.52-0.0034T ) GPa, in which T = T0 +∆T andT0 = 300K (room
temperature). In such a way, αm= 45.0×10−6/K and Em=2.5 GPa at T =300 K.
The (10,10) SWCNTs are selected as reinforcements. Han and Elliott (2007) chose
ECN

11 =600 GPa, ECN
22 =10 GPa, GCN

12 =17.2 GPa and νCN
12 =0.19 for (10,10) SWCNTs.

Such a low value of Young’s modulus is due to the fact that the effective thickness
of CNTs is assumed to be 0.34 nm or more. However, as reported recently the ef-
fective thickness of SWCNTs should be smaller than 0.142 nm [Wang and Zhang
(2008)]. Therefore, all material properties and effective thickness of SWCNTs used
for analysis will be re-examined and properly chosen in the present paper by MD
simulations.

The MD simulations were carried out to solve the Newtonian equations of motion
governed by interatomic interactions numerically to determine the trajectories of a
large number of atoms. A Velocity-Verlet algorithm was used to integrate the equa-
tions of motion with a basic time step of 0.5 fs to guarantee a good conservation of
energy. The interaction between carbon atoms was modeled by the many-body re-
active empirical bond order potential developed by Brenner et al. (2002) while the
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long-range van der Waals interaction between CNTs was described by the Lennard-
Jones 12-6 potentials [Girifalco and Lad (1956)]. System temperature conversion
was carried out by the Nose-Hoover feedback thermostat [Hoover (1985)]. To be-
gin the MD simulation, the CNT was initially optimized and freely relaxed to reach
the minimum energy configuration. The deformation of the CNT was carried out
in a quasi-static way by gradually increasing the applied load in a small increment
and allowing the tube to relax fully until the next equilibrium configuration was
reached. The perfect CNTs subjected to axial compression and torsion were simu-
lated under temperature varying from 300 K to 1000 K. Fixed boundary condition
was assumed to be at one end of the tube, and axial compressive force P or torque
Ms was applied on the other end with the appropriate constraints. From MD sim-
ulations, the material properties and effective wall thickness for armchair (10, 10)
SWCNT were determined uniquely and typical results are listed in Tab. 1 [Shen and
Zhang (2010)]. These results confirm that the material properties of CNTs are size-
dependent [Elliott et al. (2004); Jin and Yuan (2003); Chang et al. (2005); Wang et
al. (2005)] and temperature-dependent [Zhang and Shen (2006a); Zhang and Shen
(2006b)]. It is noted that the effective wall thickness obtained for (10,10)-tube is
h=0.067 nm, which satisfies the Vodenitcharova-Zhang criterion [Wang and Zhang
(2008)], and the wide used value of 0.34 nm for tube wall thickness is thoroughly
inappropriate for SWCNTs.

Table 1: Temperature-dependent material properties for (10,10) SWCNT (L=9.26
nm, R =0.68 nm, h=0.067 nm, νCN

12 =0.175) [from Shen and Zhang (2010)]

Temperature
(K)

ECN
11

(TPa)
ECN

22
(TPa)

GCN
12

(TPa)
αCN

11
(×10−6/K)

αCN
22

(×10−6/K)
300
500
700

5.6466
5.5308
5.4744

7.0800
6.9348
6.8641

1.9445
1.9643
1.9644

3.4584
4.5361
4.6677

5.1682
5.0189
4.8943

The key issue for successful application of the extended rule of mixture to CNTRCs
is to determine the CNT efficiency parameter η j ( j=1, 2, 3). For short fiber com-
posites η1 is usually taken to be 0.2 [Fukuda and Kawata (1974)]. However, there
are no experiments conducted to determine the value of η j for CNTRCs. For the
current analysis, the CNT efficiency parameters η1, η2 and η3 are determined by
matching the Young’s moduli E11 and E22 and shear modulusG12 of CNTRCs pre-
dicted from the extended rule of mixture to those from the MD simulations given
by Han and Elliott (2007) and Griebel and Hamaekers (2004). Typical results are
listed in Tab. 2 and will be used in all the following examples, in which taking
η3:η2= 0.7: 1 and G13 = G12 andG23=1.2G12 [Song and Youn (2006)].
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Table 2: Comparisons of elastic moduli for Polymer/CNT composites reinforced
by (10,10)-tube under T =300K [from Shen and Zhang (2010)].

V ∗CN
MD [Griebel
and Hamaekers
(2004)]a

Rule of mixture

E11
(GPa)

E22
(GPa)

G12
(GPa)

E11
(GPa)

η1 E22
(GPa)

η2 G12
(GPa)

η3

0.028 1.74 0.81 0.19 1.74 0.0058 0.81 0.931 0.19 0.642
MD [Han and El-
liott (2007)]b

Rule of mixture

0.12
0.17
0.28

94.6
138.9
224.2

2.9
4.9
5.5

–
–
–

94.78
138.68
224.50

0.137
0.142
0.141

2.9
4.9
5.5

1.022
1.626
1.585

–
–
–

–
–
–

aEm=0.85 GPa, νm=0.44; bEm=2.5 GPa, νm=0.34

The accuracy and effectiveness of the present method for buckling and postbuckling
analyses of isotropic and orthotropic plates subjected to uniaxial and/or biaxial
compression, excluding temperature effects, were examined by many comparison
studies given in Shen (2000a; 2000b; 2005). For instance, the postbuckling load–
deflection curves for perfect and imperfect, isotropic thin square plates (ν= 0.326)
subjected to uniaxial compression were compared with the analytical solutions of
Dym (1974) and the experimental results of Yamaki (1961); and the postbuckling
load–deflection curves of a transversely isotropic square thick plate (b/t =10) with
its longitudinal edges immovable subjected to uniaxial compression were compared
with the higher order shear deformation theory (HSDPT) solutions of Librescu and
Stein (1991); and the postbuckling load–deflection curves of single-ply orthotropic
square thick plate (b/t =10) subjected to equal biaxial compression were compared
with HSDPT results given by Bhimaraddi (1992). These comparisons show that
the solutions from present method are in good agreement with existing results.

Once the material properties of SWCNTs are properly determined, a parametric
study are carried out and their results are shown in Tabs. 3 and 4, and Figs. 2-
6. For these examples, the width-to-thickness ratios of the plate are chosen as
b/t= 20 and 100, and the thickness of each FGM layer is taken to be 1.0 mm. A
double-thickness uniformly distributed (UD) CNTRC plate is also considered as a
comparator. The total thickness of these two types of CNTRC plates is the same,
i.e. t= 2.0 mm. It should be noted that in all figures W̄ ∗/t denotes the dimensionless
maximum initial geometric imperfection of the plate.

Table 3 presents the buckling loads Pcr(in kN) for perfect, shear deformable (b/t=20),
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Figure 2: Effect of nanotube volume fraction on the postbuckling behavior of CN-
TRC plates: (a) load-deflection; (b) load-shortening.
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Figure 3: Effect of temperature changes on the postbuckling behavior of CNTRC
plates: (a) load-deflection; (b) load-shortening.
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Figure 4: Effect of plate thickness ratio b/t on the postbuckling behavior of CN-
TRC plates: (a) load-deflection; (b) load-shortening.
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Figure 5: Effect of plate aspect ratio on the postbuckling behavior of CNTRC
plates: (a) load-deflection; (b) load-shortening.
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Figure 6: Comparisons of postbuckling behavior of a CNTRC plate under two cases
of in-plane boundary conditions: (a) load-deflection; (b) load-shortening.
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Table 3: Comparisons of buckling loads Pcr (in kN) for perfect, moderately thick,
CNTRC plates under thermal environments (a/b=1.0, b/t= 20, t=2 mm).

thermal V ∗CN = 0.12 V ∗CN = 0.17 V ∗CN = 0.28
environments UD FG UD FG UD FG

unloaded edges movable
300 K
500 K
700 K

13.04
11.54
9.54

17.18(+32%)a

14.93(+29%)
11.92(+25%)

19.91
17.74
14.84

26.42(+33%)
23.10(+30%)
18.63(+26%)

28.69
25.22
20.51

36.78(+28%)
31.45(+25%)
24.39(+19%)

unloaded edges immovable
300 K
500 K
700 K

12.91
9.95
4.95b

17.01(+32%)
13.31(+34%)
7.52b(+52%)

19.70
15.16
7.75b

26.13(+33%)
20.47(+35%)
12.12b(+56%)

28.48
22.63
13.95b

36.51(+28%)
28.80(+27%)
19.25b(+38%)

a Difference=100%[Pcr(FG)-Pcr(UD)]/Pcr(UD);
b buckling mode (m, n)=(1, 2), otherwise (m, n)=(1, 1).

Table 4: Comparisons of buckling loads Pcr (in kN) for perfect, thin, CNTRC plates
under thermal environments [b/t= 100, t=2 mm, (m, n)=(1, 1)].

thermal V ∗CN = 0.12 V ∗CN = 0.17 V ∗CN = 0.28
environment UD FG UD FG UD FG

Square plate (a/b=1.0)
300 K
500 K
700 K

3.34
3.18
3.03

4.87(+46%)a

4.64(+46%)
4.44(+47%)

4.96
4.71
4.49

7.23(+46%)
6.90(+46%)
6.59(+47%)

7.76
7.43
7.12

11.41(+47%)
10.92(+47%)
10.44(+47%)

Rectangular plate (a/b=2.0)
300 K
500 K
700 K

1.32
1.15
0.99

1.77(+34%)
1.57(+36%)
1.38(+39%)

2.06
1.78
1.51

2.76(+34%)
2.43(+36%)
2.11(+40%)

2.86
2.54
2.23

4.06(+42%)
3.64(+43%)
3.23(+45%)

a Difference=100%[Pcr(FG)-Pcr(UD)]/Pcr(UD);

CNTRC plates with three different values of the CNT volume fraction V ∗CN (=0.12,
0.17 and 0.28) subjected to uniaxial compression under three thermal environmen-
tal conditions (T = 300, 500 and 700K). Correspondingly, the CNT mass fractions
are wCN= 0.142, 0.2 and 0.321, respectively, by taking the density of carbon nan-
otube ρCN=1.4 g/cm3 and the density of matrix ρm=1.15 g/cm3 in Eq. (9c). Two
types of the in-plane boundary conditions are considered. For most cases, the buck-
ling mode is found to be (m,n)=(1, 1) and (m,n)=(1, 2) for the plate with immov-
able unloaded edges under T =700K. Here, UD represents uniformly distributed
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CNTRC plates and FG represents functionally graded CNTRC plates. It can be
found that the buckling load of CNTRC plates, both UD and FG, is lower in case
of immovable unloaded edges than movable edges. It can also be found that the
buckling load of FG-CNTRC plate is higher than that of the UD-CNTRC plate.
The percentage of increase is about 19% to 35% for the plate with (m,n)=(1, 1)
and is about 38% to 56% for the plate with (m,n)=(1, 2), as shown in the brackets.
Furthermore, the buckling loads increase as CNT volume fraction V ∗CN increases,
but decrease as temperature increases. The percentage of decrease is about 29% for
the FG-CNTRC plate with movable edges and about 54% for the same plate with
immovable unloaded edges when the temperature changes from T =300 K to T =
700 K under the same CNT volume fraction V ∗CN=0.17.

Table 4 gives the buckling loads Pcr(in kN) for perfect, thin (b/t=100) CNTRC
plates with three different values of the CNT volume fraction V ∗CN under the same
loading conditions as mentioned before. Now two cases of the plate aspect ratio
β = a/b=1.0 and 2.0 are considered. It is found that both square and rectangular
plates have the same buckling mode (m,n)=(1, 1), and the buckling loads of rect-
angular plates are much lower than those of the square plates under the same CNT
volume fraction and thermal environmental condition.

In the following, the postbuckling load-deflection and load-shortening curves for
imperfect FG- and UD-CNTRC plates have been shown, along with the perfect
plate results, in Figs. 2-6. It is worth noting that the mode of postbuckling de-
formation is unchanged, i.e. (m, n) = (1, 1), although mode changes are possible
in the deep postbuckling range, i.e. secondary buckling phenomena in reality and
the whole postbuckling equilibrium path can easily be obtained by increasing the
number of half-waves in the X direction [Shen and Zhang (1988)]. Such buckling
mode changes are, however, not considered in the present study.

Fig. 2 shows the effect of the CNT volume fraction V ∗CN (=0.12, 0.17 and 0.28)
on the postbuckling behavior of FG- and UD-CNTRC plates subjected to uniaxial
compression at T = 300 K. It can be seen that the increase of the CNT volume frac-
tion V ∗CN yields an increase of the buckling load and postbuckling strength as well
as the stiffness of the plate. The buckling load as well as postbuckling strength of
FG-CNTRC plate is much greater than that of UD-CNTRC plate. The postbuckling
equilibrium paths for both FG- and UD-CNTRC plates are stable, and both plates
are insensitive to initial geometric imperfection.

Fig. 3 shows the effect of the temperature changes on the postbuckling behav-
ior of FG- and UD-CNTRC plates with V ∗CN=0.17 subjected to uniaxial compres-
sion. Since the material properties for both matrix and SWCNTs are assumed to be
temperature-dependent, the increase in temperature reduces the elastic moduli and
degrades the strength of the CNTRC plates. It can be seen that both buckling load
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and postbuckling strength are decreased with the temperature increase, and both
FG- and UD-CNTRC plates become softer when T = 700 K.

Fig. 4 shows the effect of plate width-to-thickness ratio b/t(= 20 and 100) on the
postbuckling behavior of FG- and UD-CNTRC plates with V ∗CN=0.17 subjected to
uniaxial compression atT = 300 K. It can be seen that the buckling load and post-
buckling strength of a shear deformable plate (b/t =20) are considerably greater
than those of the thin plate (b/t =100). The difference between two postbuckling
curves of FG- and UD-CNTRC plates is more pronounced in case of b/t =20 than
b/t=100.

Fig. 5 shows the effect of plate aspect ratio β (=1.0 and 2.0) on the postbuckling
behavior of FG- and UD-CNTRC plates with V ∗CN=0.17 subjected to uniaxial com-
pression atT = 300 K. As expected, the buckling load and postbuckling strength
decreases as the plate aspect ratioβ increases.

Fig. 6 shows the effect of in-plane boundary conditions on the postbuckling be-
havior of FG- and UD-CNTRC plates with V ∗CN=0.17 subjected to uniaxial com-
pression atT = 300 K. The load-deflection and load-shortening curves of FG- and
UD-CNTRC square plates under ’movable’ and ’immovable’ in-plane boundary
conditions are displayed. The results show that the plate with movable edges has a
higher buckling load but lower postbuckling strength when W̄/t>0.5.

Finally, Figs. 2-6 show that the deflections of an imperfect plate deviate greatly
from those of a perfect plate, and therefore, the bifurcation buckling do not exist
even though the configuration of the plate is mid-plane symmetric.

5 Concluding remarks

Postbuckling behavior of nanocomposite plates with functionally graded nanotube
reinforcements subjected to uniaxial compression in thermal environments has been
presented. Micromechanical model and multi-scale approach are used to derive the
effective material properties of the CNTRC plates. The scale effect of CNT re-
inforcements is considered by introducing the CNT efficiency parameter that is
estimated by matching the elastic modulus of CNTRCs predicted by the MD simu-
lations with the prediction of the extended rule of mixture. A parametric study for
geometrically mid-plane symmetric FG- and UD- CNTRC plates with low CNT
volume fractions has been carried out. The results obtained demonstrate that the
linear functionally graded nano-reinforcement has a quantitative effect on the buck-
ling load as well as postbuckling strength of the plates. In addition, the postbuckling
behaviors of CNTRC plates are also significantly influenced by temperature rise,
the transverse shear deformation, the plate aspect ratio as well as the CNT volume
fraction. However, the effect of in-plane boundary conditions on the postbucking
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strength of the CNTRC plates is relative small.
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