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Flexural - Torsional Nonlinear Analysis of Timoshenko
Beam-Column of Arbitrary Cross Section by BEM
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Abstract: In this paper a boundary element method is developed for the nonlinear
flexural – torsional analysis of Timoshenko beam-columns of arbitrary simply or
multiply connected constant cross section, undergoing moderate large deflections
under general boundary conditions. The beam-column is subjected to the combined
action of an arbitrarily distributed or concentrated axial and transverse loading as
well as to bending and twisting moments. To account for shear deformations, the
concept of shear deformation coefficients is used. Seven boundary value problems
are formulated with respect to the transverse displacements, to the axial displace-
ment, to the angle of twist (which is assumed to be small), to the primary warping
function and to two stress functions and solved using the Analog Equation Method,
a BEM based method. Application of the boundary element technique yields a sys-
tem of nonlinear equations from which the transverse and axial displacements as
well as the angle of twist are computed by an iterative process. The evaluation of
the shear deformation coefficients is accomplished from the aforementioned stress
functions using only boundary integration. Numerical examples with great practi-
cal interest are worked out to illustrate the efficiency, the accuracy and the range of
applications of the developed method. The influence of both the shear deformation
effect and the variableness of the axial loading are remarkable.

Keywords: Flexural-Torsional Analysis; Timoshenko beam-column; Shear cen-
ter; Shear deformation coefficients; Nonlinear analysis; Boundary element method

1 Introduction

In recent years, a need has been raised in the analysis of the components of plane
and space frames or grid systems to take into account the influence of the action
of axial, lateral forces and end moments on their deformed shape. Lateral loads
and end moments generate deflection that is further amplified by axial compression
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loading. The aforementioned analysis becomes much more accurate and complex
taking into account that the axial force is nonlinearly coupled with the transverse
deflections. This non-linearity results from retaining the square of the slope in the
strain–displacement relations (intermediate non-linear theory), avoiding in this way
the inaccuracies arising from a linearized second – order analysis. Moreover, unless
the beam is very “thin” the error incurred from the ignorance of the effect of shear
deformation may be substantial, particularly in the case of heavy lateral loading.

Over the past thirty years, many researchers have developed and validated var-
ious methods of performing a nonlinear analysis on structures with pioneer the
work of Gobarah and Tso who developed a theoretical model based on shell theory,
leading to highly coupled nonlinear equations for thin-walled elements [Gobarah
and Tso (1971)] and Black who used non-linear torque-rotation relations in his
analysis [Black (1967)]. Consequently, all of the research efforts employed the fi-
nite element method for the nonlinear beam analysis. More specifically, Mondkar
and Powell applying the Principle of Virtual Displacements [Mondkar and Powell
(1977)] developed a general formulation of the incremental equations of motion
for structures undergoing large displacement, finite strain deformation, Argyris et
al. introduced the notion of semitangential rotation to avoid the difficulty arising
from the noncommutative nature of rotations about fixed axes with different di-
rections [Argyris, Dunne, Malejannakis and Scharpf (1978a, 1978b, 1979)], Bathe
and Bolourchi presented an updated Lagrangian and a total Lagrangian formula-
tion of a three-dimensional beam element for large displacement and large rotation
analysis [Bathe and Bolourchi (1979)], Attard in [Attard (1986)] and Attard and
Somervaille in [Attard and Somervaille (1987)] have developed a set of displace-
ment relationships for a straight prismatic thin-walled open beam applicable to sit-
uations where displacements are finite, the cross section does not distort, strains are
small and flexural displacements are small to moderate while cross-sectional twist
can be large, presenting examples of either mono-symmetric or doubly-symmetric
cross sections, Yang and McGuire performed a nonlinear analysis using an up-
dated Lagrangian finite element derivation for doubly-symmetric sections [Yang
and McGuire (1986)], starting from the principle of virtual displacements, Ronagh
et. al. developed a theory for thin-walled elements with variable cross sections
based on a nonlinear formulation for the Green-Lagrange axial strain [Ronagh,
Bradford and Attard (2000a, 2000b)], Conci formulated a stiffness matrix using the
updated Lagrangian procedure for space frames with generic thin-walled cross sec-
tions [Conci (1992)], Mohri et. al. developed a large torsion finite element model
for thin-walled Bernoulli beams [Mohri, Azrar and Potier-Ferry (2008)] while re-
cently Cai et al. presented a simple finite element method, based on a von Karman
type nonlinear theory of deformation, for geometrically nonlinear large rotation
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analyses of space frames consisting of members of arbitrary cross-section [Cai,
Paik and Atluri (2009)]. Nevertheless, in all of the aforementioned research efforts
the analysis is not general since either the axial loading of the structural components
is assumed to be constant, or the analysis is restricted to the thin-walled theory as-
sumptions or to mono-symmetric or doubly-symmetric cross sections, while shear
deformation effect has been ignored.

Shear deformation has been extensively examined in either static or dynamic linear
analysis of beams [Nadolski and Pielorz (1992); Marchionna and Panizzi (1997);
Raffa and Vatta (2001); Ozdemir Ozgumus and Kaya (2010)]. Concerning non-
linear analysis, Reissner studied the one dimensional equilibrium problem (plane
problem) and the lateral buckling of beams including shear deformation [Reiss-
ner (1972, 1979)], while in the work of Omar and Shabana [Omar and Shabana
(2001)], Dufva et. al [Dufva, Sopanen and Mikkola (2005)] and Aristizabal-Ochoa
[Aristizabal-Ochoa (2008)] the aforementioned effect is taken into account in their
analysis which is however restricted to symmetrical cross sections (no torsion is
considered).

Finally, the boundary element method has also been employed for the nonlinear
analysis of beams. A BEM-based method has been presented by Katsikadelis and
Tsiatas [Katsikadelis and Tsiatas (2003); Katsikadelis and Tsiatas (2004)] for the
nonlinear static and dynamic flexural analysis of beams of symmetrical cross sec-
tion with variable stiffness ignoring shear deformation effect and by Sapountza-
kis and Mokos [Sapountzakis and Mokos (2008)], Sapountzakis and Panagos [Sa-
pountzakis and Panagos (2008)] for the nonlinear flexural analysis of Timoshenko
beams of doubly-symmetric constant or variable cross section (in all of these re-
search efforts no torsion is considered). The boundary element method has not
yet been used for the nonlinear flexural – torsional analysis of beams taking into
account shear deformation effect.

In this paper, which is an extension of the aforementioned work of the first author
[Sapountzakis and Mokos (2008); Sapountzakis and Panagos (2008)], a boundary
element method is developed for the nonlinear flexural – torsional analysis of Tim-
oshenko beam-columns of arbitrary simply or multiply connected constant cross
section, undergoing moderate large deflections under general boundary conditions.
The beam-column is subjected to the combined action of an arbitrarily distributed
or concentrated axial and transverse loading as well as to bending and twisting
moments. To account for shear deformations, the concept of shear deformation co-
efficients is used. Seven boundary value problems are formulated with respect to
the transverse displacements, to the axial displacement, to the angle of twist (which
is assumed to be small), to the primary warping function and to two stress functions
and solved using the Analog Equation Method [Katsikadelis (2002)], a BEM based
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method. Application of the boundary element technique yields a system of non-
linear equations from which the transverse and axial displacements as well as the
angle of twist are computed by an iterative process. The evaluation of the shear
deformation coefficients is accomplished from the aforementioned stress functions
using only boundary integration. It should be mentioned that due to the assumption
of small angles of twist, out of plane instabilities cannot be examined by the pro-
posed method. The essential features and novel aspects of the present formulation
compared with previous ones are summarized as follows.

• The beam-column is subjected to an arbitrarily distributed or concentrated
axial and transverse loading as well as to bending and twisting moments.

• The beam-column is supported by the most general boundary conditions in-
cluding elastic support or restraint, while its cross section is an arbitrary one.

• The proposed formulation is applicable to arbitrarily shaped thin or thick-
walled cross sections occupying simple or multiple connected domains, tak-
ing into account shear deformation effect. The employed method is based on
the Timoshenko approach, which is presented as compared with the Engesser
or Haringx methods in [Atanackovic and Spasic (1994)].

• The present formulation does not stand on the assumption of a thin-walled
structure and therefore the cross section’s torsional rigidity is evaluated ex-
actly without using the so-called Saint –Venant’s torsional constant.

• The shear deformation coefficients are evaluated using an energy approach,
instead of Timoshenko’s [Timoshenko (1921)] and Cowper’s definitions [Cow-
per (1966)], for which several authors [Schramm, Kitis, Kang and Pilkey
(1994); Schramm, Rubenchik and Pilkey (1997)] have pointed out that one
obtains unsatisfactory results or definitions given by other researchers [Stephen
(1980); Hutchinson (2001)], for which these factors take negative values.

• The effect of the material’s Poisson ratio ν is taken into account.

The proposed method employs a pure BEM approach (requiring only boundary
discretization) resulting in line or parabolic elements instead of area elements of the
FEM solutions (requiring the whole cross section to be discretized into triangular
or quadrilateral area elements), while a small number of line elements are required
to achieve high accuracy.

Numerical examples are worked out to illustrate the efficiency, the accuracy and
the range of applications of the developed method. The influence of the shear
deformation effect is observed. The obtained numerical results are compared with
those obtained from a 3-D FEM solution using solid elements.
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2 Statement of the problem

Let us consider a prismatic beam-column of length l (Fig.1), of constant arbitrary
cross-section of area A. The homogeneous isotropic and linearly elastic material
of the beam cross-section, with modulus of elasticityE, shear modulus G and Pois-
son’s ratio v occupies the two dimensional multiply connected region Ω of the y, z
plane and is bounded by the Γ j ( j = 1,2, ...,K) boundary curves, which are piece-
wise smooth, i.e. they may have a finite number of corners. In Fig. 1a CY Z is
the principal shear system of axes through the cross section’s centroid C, while yC,
zC are its coordinates with respect to the Syz system through the cross section’s
shear center S, with axes parallel to those of CY Z. The beam-column is subjected
to the combined action of the arbitrarily distributed or concentrated axial loading
pX = pX(X), transverse loading pY = pY (X), pZ = pZ (X) acting in the Y and Z
directions, respectively, bending moments mY = mY (X), mZ = mZ (X) along Y and
Z axes, respectively and twisting moment mx = mx (x) (Fig. 1b).

X

y

z
Z

Y

l

S

C

xZp Yp

xm

Ym

Zm

Xp

       (a)

α

ω Γ Κ

r q P= −

q

P
S

K
jj 0Γ Γ= ∪ =

,y v

t

n

s

C

,z wZ

1ΓY

0Γ

Cz

Cy

                      (b)

 Figure 1: Prismatic beam-column in axial - flexural – torsional loading (a) with an
arbitrary cross-section occupying the two dimensional region Ω (b).
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Under the action of the aforementioned loading, the displacement field of the beam-
column, assuming small angle of twist θx, that is cosθx≈ 1, sinθx≈ θx and ignoring
the resulting nonlinear terms of the small angle of twist, is given as [Sapountzakis
and Dourakopoulos (2009)]

ū(x,y,z) = u(x)+θY (x)Z−θZ (x)Y +θ
′
x (x)φ

P
S (y,z)+φ

S
S (x,y,z) (1a)

v̄(x,z) = v(x)− zθx (x) (1b)

w̄(x,y) = w(x)+ yθx (x) (1c)

where ū, v̄, w̄ are the axial and transverse beam displacement components with re-
spect to the Syz shear system of axes; v = v(x), w = w(x) are the corresponding
components of the shear center S; u = u(x) denotes the average longitudinal dis-
placement of the cross section [Attard (1986)]; θY , θZ are the angles of rotation
due to bending of the cross-section; θ ′x (x) denotes the rate of change of the an-
gle of twist θx regarded as the torsional curvature and φ P

S , ϕS
S are the primary and

secondary warping functions with respect to the shear center S [Sapountzakis and
Mokos (2003)].

Employing the strain-displacement relations of the three - dimensional elasticity
for moderate displacements [Ramm and Hofmann (1995), Rothert and Gensichen
(1987)], the following strain components can be easily obtained

εxx =
∂ ū
∂x

+
1
2

[(
∂ v̄
∂x

)2

+
(

∂ w̄
∂x

)2
]

(2a)

γxz =
∂ w̄
∂x

+
∂ ū
∂ z

(2b)

γxy =
∂ v̄
∂x

+
∂ ū
∂y

(2c)

εyy = εzz = γyz = 0 (2d)

Following the procedure presented in [Sapountzakis and Dourakopoulos (2008)]
the three coupled differential equations of equilibrium of the beam-column under
consideration, subjected to the combined action of axial, bending and torsional
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loading are obtained as

EIZZ
d4v
dx4 +EIY Z

d4w
dx4 − pY + pX

(
dv
dx
− zC

dθx

dx

)
−N

(
d2v
dx2 − zC

d2θx

dx2

)
+

dmZ

dx
+

+
EIZZ

GAY

[
d2 pY

dx2 −
d2 pX

dx2

(
dv
dx
− zC

dθx

dx

)
−3

d pX

dx

(
d2v
dx2 − zC

d2θx

dx2

)
−

−3pX

(
d3v
dx3 − zC

d3θx

dx3

)
+N

(
d4v
dx4 − zC

d4θx

dx4

)]
+

+
EIY Z

GAZ

[
d2 pZ

dx2 −
d2 pX

dx2

(
dw
dx

+ yC
dθx

dx

)
−3

d pX

dx

(
d2w
dx2 + yC

d2θx

dx2

)
−

−3pX

(
d3w
dx3 + yC

d3θx

dx3

)
+N

(
d4w
dx4 + yC

d4θx

dx4

)]
= 0 (3a)

EIYY
d4w
dx4 +EIY Z

d4v
dx4 − pZ + pX

(
dw
dx

+ yC
dθx

dx

)
−N

(
d2w
dx2 + yC

d2θx

dx2

)
− dmY

dx
+

+
EIYY

GAZ

[
d2 pZ

dx2 −
d2 pX

dx2

(
dw
dx

+ yC
dθx

dx

)
−3

d pX

dx

(
d2w
dx2 + yC

d2θx

dx2

)
−

−3pX

(
d3w
dx3 + yC

d3θx

dx3

)
+N

(
d4w
dx4 + yC

d4θx

dx4

)]
+

+
EIY Z

GAY

[
d2 pY

dx2 −
d2 pX

dx2

(
dv
dx
− zC

dθx

dx

)
−3

d pX

dx

(
d2v
dx2 − zC

d2θx

dx2

)
−

−3pX

(
d3v
dx3 − zC

d3θx

dx3

)
+N

(
d4v
dx4 − zC

d4θx

dx4

)]
= 0 (3b)

ECS
d4θx

dx4 −GIt
d2θx

dx2 −N
(

yC
d2w
dx2 − zC

d2v
dx2 +

IS

A
d2θx

dx2

)
=

mx + pZyC− pY zC− pX

(
yC

dw
dx
− zC

dv
dx

)
− pX

IS

A
dθx

dx
(3c)

where

AZ = κZA =
1
aZ

A AY = κY A =
1

aY
A (4)

are the shear areas with respect to Y , Z axes, respectively with κY , κz the shear
correction factors, aY , aZ the shear deformation coefficients and A the cross sec-
tion area. Moreover, IS is the polar moment of inertia with respect to the shear



128 Copyright © 2010 Tech Science Press CMC, vol.18, no.2, pp.121-153, 2010

center S, ECS and GIt are the cross section’s warping and torsional rigidities, re-
spectively, with CS, It being its warping and torsion constants, respectively, given
as [Sapountzakis and Mokos (2003)]

CS =
∫

Ω

(
ϕ

P
S
)2

dΩ (5)

It =
∫

Ω

(
y2 + z2 + y

∂ϕP
S

∂ z
− z

∂ϕP
S

∂y

)
dΩ (6)

It is worth here noting that the primary warping function ϕP
S (y,z) can be established

by solving independently the Neumann problem [Sapountzakis and Mokos (2003)]

∇
2
ϕ

P
S = 0 in Ω (7)

∂ϕP
S

∂n
=

1
2

∂
(
r2

S

)
∂ s

on Γ j ( j = 1,2, ...,K) (8)

where ∇2 = ∂ 2/∂y2 +∂ 2/∂ z2 is the Laplace operator; rS =
√

y2 + z2 is the distance
of a point on the boundary Γ j from the shear center S; ∂/∂n denotes the directional
derivative normal to the boundary Γ j and ∂/∂ s denotes differentiation with respect
to its arc length s.

The aforementioned governing differential equations are also subjected to the per-
tinent boundary conditions of the problem, which are given as

α1v(x)+α2Vy (x) = α3 ᾱ1θZ (x)+ ᾱ2MZ (x) = ᾱ3 (9)

β1w(x)+β2Vz (x) = β3 β̄1θY (x)+ β̄2MY (x) = β̄3 (10)

γ1θx (x)+ γ2Mt (x) = γ3 γ̄1
dθx (x)

dx
+ γ̄2Mw (x) = γ̄3 (11)

at the beam ends x = 0, l, where Vy, Vz and MZ , MY are the reactions and bending
moments with respect to y, z and Y, Z axes, respectively, given as

Vy =−EIZZ
d3v
dx3 −

EIZZ

GAY
N
(

d3v
dx3 − zC

d3θx

dx3

)
−EIY Z

d3w
dx3 −

EIY Z

GAZ
N
(

d3w
dx3 + yC

d3θx

dx3

)
+N

(
dv
dx
− zC

dθx

dx

) (12)

Vz =−EIYY
d3w
dx3 −

EIYY

GAZ
N
(

d3w
dx3 + yC

d3θx

dx3

)
−EIY Z

d3v
dx3−

EIY Z

GAY
N
(

d3v
dx3 − zC

d3θx

dx3

)
+N

(
dw
dx

+ yC
dθx

dx

) (13)
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MY =−EIYY
d2w
dx2 −

EIYY

GAZ
N
(

d2w
dx2 + yC

d2θx

dx2

)
−EIY Z

d2v
dx2 −

EIY Z

GAY
N
(

d2v
dx2 − zC

d2θx

dx2

) (14)

MZ =EIZZ
d2v
dx2 +

EIZZ

GAY
N
(

d2v
dx2 − zC

d2θx

dx2

)
+EIY Z

d2w
dx2 +

EIY Z

GAZ
N
(

d2w
dx2 + yC

d2θx

dx2

) (15)

θY ,θZ are the angles of rotation due to bending given as

θY =− dw
dx
− EIYY

GAZ

d3w
dx3 −

EIYY

G2A2
Z

N
(

d3w
dx3 + yC

d3θx

dx3

)
− EIY Z

GAZ

d3v
dx3−

− EIY Z

G2AY AZ
N
(

d3v
dx3 − zC

d3θx

dx3

) (16)

θZ =
dv
dx

+
EIZZ

GAY

d3v
dx3 +

EIZZ

G2A2
Y

N
(

d3v
dx3 − zC

d3θx

dx3

)
+

EIY Z

GAY

d3w
dx3 +

+
EIY Z

G2AY AZ
N
(

d3w
dx3 + yC

d3θx

dx3

) (17)

while in eqns. (11) Mt and Mw are the torsional and warping moments at the bound-
ary of the bar, respectively, given as

Mt =−ECS
d3θx

dx3 +GIt
dθx

dx
+N

(
yC

dw
dx
− zC

dv
dx

+
IS

A
dθx

dx

)
(18)

Mw =−ECS
d2θx

dx2 (19)

Finally, αk, ᾱk,βk, β̄k,γk, γ̄k (k = 1,2,3) are functions specified at the beam ends x =
0, l. Eqs. (9)-(11) describe the most general boundary conditions associated with
the problem at hand and can include elastic support or restraint. It is apparent that
all types of the conventional boundary conditions (clamped, simply supported, free
or guided edge) can be derived from these equations by specifying appropriately
these functions (e.g. for a clamped edge it is α1 = β1 = γ1 = 1, α1 = β 1 = γ1 = 1,
α2 = α3 = β2 = β3 = γ2 = γ3 = α2 = α3 = β 2 = β 3 = γ2 = γ3 = 0).

In the aforementioned boundary value problem the axial force N inside the beam
or at its boundary, neglecting normal deformation due to torsion, is given from the
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following relation

N = EA

[
du
dx

+
1
2

(
dw
dx

)2

+
1
2

(
dv
dx

)2
]

(20)

where u = u(x) is the bar axial displacement, which can be evaluated from the
solution of the following boundary value problem

EA
[

d2u
dx2 +

d2w
dx2

dw
dx

+
d2v
dx2

dv
dx

]
=−px inside the beam (21)

c1u(x)+ c2N(x) = c3 at the beam ends x = 0,1 (22)

where ci (i = 1,2,3) are given constants.

The solution of the boundary value problem given from eqns (3), (21) subjected to
the boundary conditions (9)-(11), (22) which represents the nonlinear flexural – tor-
sional analysis of beam-columns, presumes the evaluation of the shear deformation
coefficients aY , aZ , corresponding to the principal shear axes coordinate system.
These coefficients are established equating the approximate formula of the shear
strain energy per unit length [Schramm, Rubenchik and Pilkey (1997)]

Uappr. =
aY Q2

y

2AG
+

aZQ2
z

2AG
(23)

with the exact one given from

Uexact =
∫

Ω

(τxz)
2 +(τxy)

2

2G
dΩ (24)

and are obtained as [Sapountzakis and Mokos (2005)]

aY =
1

κY
=

A
∆2

∫
Ω

[(∇Θ)− e] · [(∇Θ)− e]dΩ (25a)

aZ =
1

κZ
=

A
∆2

∫
Ω

[(∇Φ)−d] · [(∇Φ)−d]dΩ (25b)

where (τxz) j,(τxy) j are the transverse (direct) shear stress components, (∇) ≡
iY (∂/∂Y ) + iZ(∂/∂Z) is a symbolic vector with iY , iZ the unit vectors along Y
and Z axes, respectively, ∆ is given from

∆ = 2(1+ν)
(
IYY IZZ− I2

Y Z
)

(26)
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ν is the Poisson ratio of the cross section material, e and d are vectors defined as

e =
[

ν

(
IYY

Y 2−Z2

2
− IY ZY Z

)]
iY +

[
ν

(
IYYY Z + IY Z

Y 2−Z2

2

)]
iZ (27)

d =
[

ν

(
IZZY Z− IY Z

Y 2−Z2

2

)]
iY +

[
−ν

(
IZZ

Y 2−Z2

2
+ IY ZY Z

)]
iZ (28)

and Θ(Y,Z), Φ(Y,Z) are stress functions, which are evaluated from the solution of
the following Neumann type boundary value problems [Sapountzakis and Mokos
(2005)]

∇
2
Θ = 2(IY ZZ− IYYY ) in Ω (29a)

∂Θ

∂n
= n · e on Γ =

K+1⋃
j=1

Γ j (29b)

∇
2
Φ = 2(IY ZY − IZZZ) in Ω (30a)

∂Φ

∂n
= n ·d on Γ =

K+1⋃
j=1

Γ j (30b)

where n is the outward normal vector to the boundary Γ. In the case of negligible
shear deformations aZ = aY = 0. It is also worth here noting that the boundary con-
ditions (8), (29b), (30b) have been derived from the physical consideration that the
traction vector in the direction of the normal vector n vanishes on the free surface
of the beam.

3 Integral Representations - Numerical Solution

According to the precedent analysis, the nonlinear flexural – torsional analysis of
Timoshenko beam-columns of arbitrary cross section, undergoing moderate large
deflections reduces in establishing the displacement components v(x), w(x) and
θx (x) having continuous derivatives up to the fourth order with respect to x and the
axial displacement u = u(x) having continuous derivatives up to the second order
with respect to x satisfying the coupled governing equations (3), (21) inside the
beam and the boundary conditions (9)-(11), (22) at the beam ends x = 0, l.

3.1 For the transverse displacements w, v and the angle of twist θθθ x

Eqns (3), (21) are solved using the Analog Equation Method [Katsikadelis (2002)].
This method has been developed for the beam equation including axial forces by
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Katsikadelis and Tsiatas [Katsikadelis and Tsiatas (2004)]. However, the formula-
tion presented in Sapountzakis and Mokos [Sapountzakis and Mokos (2008)] and
in Sapountzakis and Panagos [Sapountzakis and Panagos (2008)] is followed in this
investigation.

Let v(x), w(x) and θx (x) be the sought solution of the aforementioned boundary
value problem. Setting as u2 (x) = v(x), u3 (x) = w(x), u4 (x) = θx (x) and differ-
entiating these functions four times with respect to x yields

d4ui

dx4 = qi (x) (i = 2, 3,4) (31)

Eqns. (31) indicate that the solution of eqns. (3) can be established by solving
eqns. (31) under the same boundary conditions (9)-(11), provided that the fictitious
load distributions qi (x) (i = 2, 3, 4) are first established. These distributions can be
determined using BEM.

Following the procedure presented in [Sapountzakis and Mokos (2008), Sapountza-
kis and Panagos (2008)] and employing the constant element assumption for the
load distributions qi along the L internal beam elements (as the numerical imple-
mentation becomes very simple and the obtained results are of high accuracy), the
integral representations of the displacement components ui (i = 2, 3,4) and their
first derivatives with respect to x when applied for the beam ends (0, l), together
with the boundary conditions (9-11) are employed to express the unknown coupled
boundary quantities ui (ζ ), ui,x (ζ ), ui,xx (ζ ) and ui,xxx (ζ ) (ζ = 0, l) in terms of qi

as



D11 D12 0 D14 0 0 0 D18 0 D1 10 0 D1 12
0 D22 D23 D24 0 0 D27 D28 0 0 D2 11 D2 12

E31 E32 E33 E34 0 0 0 0 0 0 0 0
0 E42 E43 E44 0 0 0 0 0 0 0 0
0 0 0 D54 D55 D56 0 D58 0 D5 10 0 D5 12
0 0 D63 D64 0 D66 D67 D68 0 0 D6 11 D6 12
0 0 0 0 E31 E32 E33 E34 0 0 0 0
0 0 0 0 0 E42 E43 E44 0 0 0 0
0 D92 0 0 0 D96 0 0 D99 D9 10 0 D912
0 0 0 0 0 0 0 0 0 D10 10 D10 11 0
0 0 0 0 0 0 0 0 E31 E32 E33 E34
0 0 0 0 0 0 0 0 0 E42 E43 E44
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û2
û2,x
û2,xx

û2,xxx

û3
û3,x
û3,xx

û3,xxx

û4
û4,x
û4,xx

û4,xxx



=



ααα3
ᾱαα3
0
0

βββ 3

β̄ββ 3
0
0
γγγ3
γ̄γγ3
0
0



+



0
0

F3
F4
0
0
0
0
0
0
0
0



q2 +



0
0
0
0
0
0

F3
F4
0
0
0
0



q3 +



0
0
0
0
0
0
0
0
0
0

F3
F4



q4 (32)

where D11, D12, D14, D18,D1 10, D1 12, D22, D23, D24, D27, D28, D2 11, D2 12, D54,
D55, D56, D58, D5 10,D5 12, D63, D64, D66, D67, D68, D6 11, D6 12, D92, D96, D99,
D9 10, D9 12, D10 10, D10 11 are 2× 2 known square matrices including the values
of the functions a j, ā j, β j, β̄ j, γ j, γ̄ j ( j = 1,2) of eqns (9)-(11); ααα3, ᾱαα3, βββ 3, β̄ββ 3,
γγγ3, γ̄γγ3 are 2×1 known column matrices including the boundary values of the func-
tions a3, ā3,β3, β̄3,γ3, γ̄3 of eqns (9)-(11); E jk, ( j = 3,4, k = 1,2,3,4) are square
2× 2 known coefficient matrices resulting from the values of the kernels Λ j(r)
( j = 1,2,3,4) at the beam ends and F j ( j = 3,4) are 2× L rectangular known
matrices originating from the integration of the kernels on the axis of the beam.
Moreover,

ûi = {ui (0) ui (l)}T ûi,x =
{

dui (0)
dx

dui (l)
dx

}T

ûi,xx =
{

d2ui (0)
dx2

d2ui (l)
dx2

}T

ûi,xxx =
{

d3ui (0)
dx3

d3ui (l)
dx3

}T (33)

are vectors including the two unknown boundary values of the respective bound-
ary quantities and qi =

{
qi

1 qi
2 ... qi

L
}T (i = 2, 3,4) is the vector including the L

unknown nodal values of the fictitious load.

Discretization of the integral representations of the displacement components ui

(i = 2, 3,4) and their derivatives with respect to x [Sapountzakis and Dourakopou-
los (2008)], after elimination of the boundary quantities employing eqns. (32), gives

ui = Tiqi +Ti jq j +Tikqk + ti i, j,k = 2,3,4 i 6= j 6= k (34a)

ui,x = Tixqi +Ti jxq j +Tikxqk + tix i, j,k = 2,3,4 i 6= j 6= k (34b)

ui,xx = Tixxqi +Ti jxxq j +Tikxxqk + tixx i, j,k = 2,3,4 i 6= j 6= k (34c)
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ui,xxx = Tixxxqi +Ti jxxxq j +Tikxxxqk + tixxx i, j,k = 2,3,4 i 6= j 6= k (34d)

ui,xxxx = qi i = 2,3,4 (34e)

where ui, ui,x, ui,xx, ui,xxx, ui,xxxx are vectors including the values of ui (x), Ti, Tix,
Tixx, Tixxx,Ti j, Ti jx, Ti jxx, Ti jxxx,Tik, Tikx, Tikxx, Tikxxx are known L×L matrices
and ti, tix, tixx, tixxx are known L×1 matrices.

In the conventional BEM, the load vectors qi are known and eqns (34) are used to
evaluate ui (x) and their derivatives at the L nodal points. This, however, can not
be done here since qi are unknown. For this purpose, 3L additional equations are
derived, which permit the establishment of qi. These equations result by applying
eqns (3) to the L collocation points, leading to the formulation of the following set
of 3L simultaneous equations

(A−NB+C)


q2
q3
q4

= f (35)

where the 3L×3L matrices A, B, N, C are given as

A =

 EIZZ EIY Z 0
EIY Z EIYY 0

−GItT42xx −GItT43xx ECS−GItT4xx

 (36a)

B =

B11 B12 B13
B21 B22 B23
B31 B32 B33

 (36b)

C =

C11 C12 C13
C21 C22 C23
C31 C32 C33

 (36c)

the Bi j, Ci j L×L matrices are evaluated from the expressions

B11 =− αY

GA
EIZ +T2xx− zCT42xx (37a)

B12 =− αZ

GA
EIY Z +T23xx− zCT43xx (37b)

B13 =
αY zC

GA
EIZ−

αZyC

GA
EIY Z− zCT4xx +T24xx (37c)

B21 =− αY

GA
EIY Z +T32xx + yCT42xx (37d)
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B22 =− αZ

GA
EIY +T3xx + yCT43xx (37e)

B23 =
αY zC

GA
EIY Z−

αZyC

GA
EIY + yCT4xx +T34xx (37f)

B31 = yCT32xx− zCT2xx +
IS

A
T42xx (37g)

B32 = yCT3xx− zCT23xx +
IS

A
T43xx (37h)

B33 =
IS

A
T4xx + yCT34xx− zCT24xx (37i)

C11 =
[
pX T2x−

aY

GA
EIZ (pX ,xxT2x +3pX ,xT2xx +3pX T2xxx)−

− aZ

GA
EIY Z (pX ,xxT32x +3pX ,xT32xx +3pX T32xxx)−

− zCpX T42x +
aY

GA
EIZ (zCpX ,xxT42x +3zCpX ,xT42xx +3zCpX T42xxx)−

− aZ

GA
EIY Z (yCpX ,xxT42x +3yCpX ,xT42xx +3yCpX T42xxx)

]
(38a)

C12 =
[
pX T23x−

aY

GA
EIZ (pX ,xxT23x +3pX ,xT23xx +3pX T23xxx)−

− aZ

GA
EIY Z (pX ,xxT3x +3pX ,xT3xx +3pX T3xxx)−

− zCpX T43x +
aY

GA
EIZ (zCpX ,xxT43x +3zCpX ,xT43xx +3zCpX T43xxx)−

− aZ

GA
EIY Z (yCpX ,xxT43x +3yCpX ,xT43xx +3yCpX T43xxx)

]
(38b)

C13 =
[
pX T24x−

aY

GA
EIZ (pX ,xxT24x +3pX ,xT24xx +3pX T24xxx)−

− aZ

GA
EIY Z (pX ,xxT34x +3pX ,xT34xx +3pX T34xxx)−

− zCpX T4x +
aY

GA
EIZ (zCpX ,xxT4x +3zCpX ,xT4xx +3zCpX T4xxx)−

− aZ

GA
EIY Z (yCpX ,xxT4x +3yCpX ,xT4xx +3yCpX T4xxx)

]
(38c)

C21 =
[
yCpX T42x−

aZ

GA
EIY (yCpX ,xxT42x +3yCpX ,xT42xx +3yCpX T42xxx) +

+
aY

GA
EIY Z (zCpX ,xxT42x +3zCpX ,xT42xx +3zCpX T42xxx)+

+pX T32x−
aZ

GA
EIY (pX ,xxT32x +3pX ,xT32xx +3pX T32xxx)−

− aY

GA
EIY Z (pX ,xxT2x +3pX ,xT2xx +3pX T2xxx)

]
(38d)
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C22 =
[
yCpX T43x−

aZ

GA
EIY (yCpX ,xxT43x +3yCpX ,xT43xx +3yCpX T43xxx) +

+
aY

GA
EIY Z (zCpX ,xxT43x +3zCpX ,xT43xx +3zCpX T43xxx)+

+pX T3x−
aZ

GA
EIY (pX ,xxT3x +3pX ,xT3xx +3pX T3xxx)−

− aY

GA
EIY Z (pX ,xxT23x +3pX ,xT23xx +3pX T23xxx)

]
(38e)

C23 =
[
yCpX T4x−

aZ

GA
EIY (yCpX ,xxT4x +3yCpX ,xT4xx +3yCpX T4xxx) +

+
aY

GA
EIY Z (zCpX ,xxT4x +3zCpX ,xT4xx +3zCpX T4xxx)+

+pX T34x−
aZ

GA
EIY (pX ,xxT34x +3pX ,xT34xx +3pX T34xxx)−

− aY

GA
EIY Z (pX ,xxT24x +3pX ,xT24xx +3pX T24xxx)

]
(38f)

C31 =
[

yCpX T32x− zCpX T2x +
IS

A
pX T42x

]
(38g)

C32 =
[

yCpX T3x− zCpX T23x
IS

A
pX T43x

]
(38h)

C33 =
[

IS

A
pX T4x + yCpX T34x− zCpX T24x

]
(38i)

N =



N1 0 0 0 0 0 0 0 0 0 0 0
0 N2 0 0 0 0 0 0 0 0 0 0
0 0 ... 0 0 0 0 0 0 0 0 0
0 0 0 NL 0 0 0 0 0 0 0 0
0 0 0 0 N1 0 0 0 0 0 0 0
0 0 0 0 0 N2 0 0 0 0 0 0
0 0 0 0 0 0 ... 0 0 0 0 0
0 0 0 0 0 0 0 NL 0 0 0 0
0 0 0 0 0 0 0 0 N1 0 0 0
0 0 0 0 0 0 0 0 0 N2 0 0
0 0 0 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 0 0 0 0 NL



(39)

and the 3L×1 column matrix f is given as

f =


f1
f2
f3

+


0
0

GItt4xx

+N


t2xx− zCt4xx

t3xx + yCt4xx

yCt3xx− zCt2xx + IS
A t4xx

 (40)
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with

f1 =pY −pX (t2x− zCt4x)−
aY

GA
EIZZ (pY,xx−pX ,xx (t2x− zCt4x)−

−3pX ,x (t2xx− zCt4xx)−3pX (t2xxx− zCt4xxx))−
aZ

GA
EIYZ (pZ,xx−

−pX ,xx (t3x + yCt4x)−3pX ,x (t3xx + yCt4xx)−3pX (t3xxx + yCt4xxx))−mZ,x

(41a)

f2 =pZ−pX (t3x + yCt4x)−
aZ

GA
EIYY (pZ,xx−pX ,xx (t3x + yCt4x)−

−3pX ,x (t3xx + yCt4xx)−3pX (t3xxx + yCt4xxx))−
aY

GA
EIYZ (pY,xx −

−pX ,xx (t2x− zCt4x)−3pX ,x (t2xx− zCt4xx)−3pX (t2xxx− zCt4xxx))+mY,x

(41b)

f3 = mx +pZyC−pY zC + zCpX t2x− yCpX t3x−
IS

A
pX t4x (41c)

In the above set of equations the matrices EIYY , EIZZ , EIY Z , ECS, GIt are L×L
diagonal matrices including the values of the corresponding quantities, respectively,
at the L nodal points. Moreover, pX , pX ,x, pX ,xx are diagonal matrices and pY , pY,xx,
pZ , pZ,xx,mY,xmZ,x and mxare vectors containing the values of the external loading
and their derivatives at these points.

Solving the nonlinear system of eqns (35) for the fictitious load distributions q2, q3,
q4 the displacements and their derivatives in the interior of the beam are computed
using eqns (34).

3.2 For the axial displacement u

Let u1 = u be the sought solution of the boundary value problem described by eqns
(21) and (22). Differentiating this function two times yields

d2u1

dx2 = q1 (x) (42)

Eqn (42) indicates that the solution of the original problem can be obtained as the
axial displacement of a beam-column with unit axial rigidity subjected to an axial
fictitious load q1 (x) under the same boundary conditions. The fictitious load is
unknown.

Following the same procedure as in 3.1, the integral representation of the displace-
ment components u1 and its derivatives with respect to x when applied to all nodal
points in the interior of the beam-column yields

u1 = T1q1 + t1 u1,x = T1xq1 + t1x u1,xx = q1 (43)
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where T1, T1x are known matrices with dimensions LxL, similar with those men-
tioned before for the displacements u2, u3, u4 and the following system of equations
with respect to q1, q2, q3 and q4 is obtained

EAq1+
+EA [(T2xxq2 +T23xxq3 +T24xxq4 + t2xx)]dg (T2xq2 +T23xq3 +T24xq4 + t2x)+

+EA [(T3xxq3 +T32xxq2 +T34xxq4 + t3xx)]dg (T3xq3 +T32xq2 +T34xq4 + t3x) =

=−px

(44)

In the above set of equations the matrix EA is an L×L diagonal matrix including
the values of the corresponding quantities, respectively, at the L nodal points, while
the axial force following eqn.(20) can be expressed as

N =
1
2

EA(T1xq1 + t1x)

+
1
2

EA [(T2xq2 +T23xq3 +T24xq4 + t2x)]dg (T2xq2 +T23xq3 +T24xq4 + t2x)

+
1
2

EA [(T3xq3 +T32xq2 +T34xq4 + t3x)]dg (T3xq3 +T32xq2 +T34xq4 + t3x)

(45)

Eqns. (35), (44) and (45) constitute a nonlinear coupled system of equations with
respect to q1, q2, q3, q4 and N quantities. The solution of this system is accom-
plished iteratively by employing the two term acceleration method [Isaacson and
Keller (1966), Sapountzakis and Katsikadelis (1992)].

3.3 For the primary warping function ϕP
S

The numerical solution for the evaluation of the displacement and rotation com-
ponents assume that the warping CS and torsion It constants given from eqns (5),
(6) are already established. Eqns (5), (6) indicate that the evaluation of the afore-
mentioned constants presumes that the primary warping function ϕP

S at any interior
point of the domain Ω of the cross section of the beam is known. Once ϕP

S is es-
tablished, CS and It constants are evaluated by converting the domain integrals into
line integrals along the boundary as this is presented in Sapountzakis [Sapountzakis
(2000), Sapountzakis (2001)] and in Sapountzakis and Mokos [Sapountzakis and
Mokos (2003)].

3.4. For the stress functions Θ(Y,Z) and Φ(Y,Z)
The evaluation of the stress functions Θ(Y,Z) and Φ(Y,Z) is accomplished using
BEM as this is presented in Sapountzakis and Mokos [Sapountzakis and Mokos
(2005)].
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4 Numerical examples

On the basis of the analytical and numerical procedures presented in the previous
sections, a computer program has been written and representative examples have
been studied to demonstrate the efficiency, the accuracy and the range of applica-
tions of the developed method. In all the examples treated, the results have been
obtained using L = 51 nodal points along the beam.

230mm 

20mm 

20mm 
250mm 

300mm 

y 
Y 

z, Z 

S 
C 

20mm 

 

 
Figure 2: I-shaped cross section of the clamped beam of Example 1.
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 Figure 3: Displacement w of the beam of example 1 for pY = pZ = 2000kN/m.
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 Figure 4: Displacement v of the beam of example 1 for pY = pZ = 2000kN/m.

Table 1: Displacement w at the midspan of the clamped beam of example 1 for
various values of the transverse loading pY = pZ.

pY , pZ

Displacement w (cm)
Linear Analysis Nonlinear Analysis

Ignoring Shear
Deformation
(aZ = 0.0)

With Shear De-
formation
(aZ = 3.932)

Ignoring Shear
Deformation
(aZ = 0.0)

With Shear De-
formation
(aZ = 3.932)

500 1.921 2.338 1.901 2.305
1000 3.843 4.675 3.697 4.446
1500 5.764 7.013 5.345 6.368
2000 7.686 9.351 6.844 8.083
2500 9.607 11.688 8.213 9.625
3000 11.528 14.026 9.470 11.024
3500 13.450 16.364 10.632 12.304

4.1 Example 1

A clamped beam of length l = 4.50m (E = 2.1×108kN/m2, v = 0.3) of the mono-
symmetric I-shaped cross section of Fig.2 (A = 1.48× 10−2m2, IYY = 1.323×
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 Figure 5: 3-D view (a), cross section (b) and 3-D FEM model (c) of the L-shaped
cantilever beam of Example 2.
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Table 2: Displacement v at the midspan of the clamped beam of example 1 for
various values of the transverse loading pY = pZ.

pY , pZ

Displacement v (cm)
Linear Analysis Nonlinear Analysis

Ignoring Shear
Deformation
(aY = 0.0)

With Shear De-
formation
(aY = 1.629)

Ignoring Shear
Deformation
(aY = 0.0)

With Shear De-
formation
(aY = 1.629)

500 3.573 3.745 3.500 3.655
1000 7.145 7.490 6.647 6.884
1500 10.718 11.235 9.325 9.579
2000 14.290 14.980 11.584 11.822
2500 17.863 18.725 13.513 13.721
3000 21.436 22.470 15.186 15.362
3500 25.008 26.215 16.660 16.806

Table 3: Displacement w at the midspan of the clamped beam of example 1 for
various numbers of the beam collocation points.

pY , pZ

Displacement w (cm)
Number of internal beam elements

11 elements 31 elements 51 elements 71 elements
500 2.306 2.305 2.305 2.305
1000 4.454 4.447 4.446 4.446
1500 6.388 6.369 6.368 6.367
2000 8.118 8.085 8.083 8.082
2500 9.675 9.628 9.625 9.624
3000 11.090 11.028 11.024 11.022
3500 12.386 12.310 12.304 12.303
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Table 4: Displacement v at the midspan of the clamped beam of example 1 for
various numbers of the beam collocation points.

pY , pZ

Displacement v (cm)
Number of internal beam elements

11 elements 31 elements 51 elements 71 elements
500 3.660 3.656 3.655 3.655
1000 6.909 6.886 6.884 6.883
1500 9.638 9.583 9.579 9.577
2000 11.918 11.829 11.822 11.820
2500 13.854 13.731 13.721 13.719
3000 15.528 15.375 15.362 15.359
3500 17.003 16.820 16.806 16.802

Table 5: Geometric, inertia constants and shear deformation coefficients of the
cross section of example 2.

Coordinate system CỸ Z̃ Coordinate system CY Z
IỸỸ = 8.470×10−6m4 IYY = 8.639×10−6m4

IZ̃Z̃ = 4.825×10−6m4 IZZ = 4.655×10−6m4

IỸ Z̃ =−3.752×10−6m4 IY Z =−3.665×10−6m4

αỸ = 2.626 αY = 2.627
αZ̃ = 2.018 αZ = 2.017
αỸ Z̃ = 0.014 αY Z = 0.0
ỹC = 2.46×10−2m yC = 2.54×10−2m
z̃C = 3.87×10−2m zC = 3.81×10−2m
θ S = 0.023rad -



144 Copyright © 2010 Tech Science Press CMC, vol.18, no.2, pp.121-153, 2010

Table 6: Displacement w at the free end of the cantilever beam of example 2 for
various values of the loading factor µ.

Scale
factor

Displacement w (cm)

µ Linear Analysis Nonlinear Analysis
Ignoring
Shear De-
formation
(aZ = 0)

With Shear
Deforma-
tion
(aZ =
2.017)

Ignoring
Shear De-
formation
(aZ = 0)

With Shear
Deforma-
tion
(aZ =
2.017)

FEM
[MSC
NASTRAN
for Win-
dows]

1 -0.16 -0.16 -0.16 -0.16 -0.16
2 -0.31 -0.31 -0.34 -0.34 -0.35
3 -0.47 -0.47 -0.53 -0.53 -0.54
4 -0.62 -0.62 -0.75 -0.75 -0.77
5 -0.78 -0.78 -0.99 -0.99 -1.01
6 -0.93 -0.93 -1.26 -1.26 -1.29
7 -1.09 -1.09 -1.58 -1.58 -1.62
8 -1.24 -1.24 -1.94 -1.95 -2.00
9 -1.40 -1.40 -2.38 -2.39 -2.45
10 -1.56 -1.56 -2.92 -2.93 -3.00
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Table 7: Displacement v at the free end of the cantilever beam of example 2 for
various values of the loading factor µ.

Scale
factor

Displacement v (cm)

µ Linear Analysis Nonlinear Analysis
Ignoring
Shear De-
formation
(aY = 0)

With Shear
Deforma-
tion
(aY =
2.627)

Ignoring
Shear De-
formation
(aY = 0)

With Shear
Deforma-
tion
(aY =
2.627)

FEM
[MSC
NASTRAN
for Win-
dows]

1 -0.13 -0.13 -0.14 -0.14 -0.14
2 -0.25 -0.25 -0.29 -0.29 -0.30
3 -0.38 -0.38 -0.48 -0.48 -0.48
4 -0.51 -0.51 -0.69 -0.69 -0.70
5 -0.63 -0.63 -0.94 -0.94 -0.96
6 -0.76 -0.76 -1.25 -1.25 -1.27
7 -0.89 -0.89 -1.61 -1.61 -1.65
8 -1.01 -1.01 -2.06 -2.07 -2.12
9 -1.14 -1.14 -2.63 -2.64 -2.72
10 -1.27 -1.27 -3.36 -3.37 -3.47

Table 8: Geometric, inertia constants and shear deformation coefficients of the
cross section of example 3.

Coordinate system CỸ Z̃ Coordinate system CY Z
IỸỸ = 1.606×10−4m4 IYY = 1.545×10−4m4

IZ̃Z̃ = 5.665×10−5m4 IZZ = 6.278×10−5m4

IỸ Z̃ = 6.384×10−5m4 IY Z = 6.837×10−5m4

αỸ = 1.741 αY = 1.736
αZ̃ = 3.902 αZ = 3.907
αỸ Z̃ =−0.10 αY Z = 0.0
ỹC =−3.84×10−2m yC =−4.01×10−2m
z̃C =−3.79×10−2m zC =−3.61×10−2m
θ S = 0.046rad -
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Table 9: Displacement w at the free end of the cantilever beam of example 3 for
various values of the loading factor µ.

Scale
factor

Displacement w (cm)

µ Linear Analysis Nonlinear Analysis
Ignoring Shear
Deformation

With Shear De-
formation
(aZ = 3.907)

Ignoring Shear
Deformation

With Shear De-
formation
(aZ = 3.907)

1 -1.10 -1.20 -1.15 -1.26
2 -2.20 -2.41 -2.42 -2.63
3 -3.31 -3.61 -3.83 -4.16
4 -4.41 -4.82 -5.41 -5.87
5 -5.51 -6.02 -7.21 -7.81
6 -6.61 -7.22 -9.29 -10.05
7 -7.72 -8.43 -11.75 -12.69
8 -8.82 -9.63 -14.72 -15.88
9 -9.92 -10.84 -18.42 -19.86
10 -11.02 -12.04 -23.23 -25.04

Scale
factor

Displacement v (cm)

µ Linear Analysis Nonlinear Analysis
Ignoring Shear
Deformation

With Shear De-
formation
(aY = 1.736)

Ignoring Shear
Deformation

With Shear De-
formation
(aY = 1.736)

1 1.13 1.13 1.22 1.22
2 2.26 2.26 2.63 2.64
3 3.40 3.40 4.30 4.32
4 4.53 4.53 6.26 6.31
5 5.66 5.66 8.62 8.71
6 6.79 6.79 11.49 11.64
7 7.92 7.92 15.05 15.29
8 9.05 9.05 19.54 19.93
9 10.19 10.18 25.38 26.00
10 11.32 11.31 33.26 34.26
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 Figure 6: 3-D view (a) and cross section (b) of the non-symmetric beam of Example
3.

10−4m4, IZZ = 7.117× 10−5m4, Cs = 7.225× 10−7m6, It = 2.00× 10−6m4, aY =
1.629, aZ = 3.932, zC = 2.07× 10−2m) subjected to the transverse uniformly dis-
tributed loading pY =pZ acting at the centre of gravity in the Y and Z directions,
has been studied. The displacements w, v in Tables 1, 2 at the midspan of the
beam for various values of the transverse loading and in Figs. 3, 4 along the beam
shear center axis for pY = pZ = 2000kN/m are presented as compared with those
obtained from a linear analysis taking into account or ignoring shear deformation
effect. From these tables and figures the significant influence of the nonlinear anal-
ysis effect is easily verified especially in the case of intense loading. Moreover,
the influence of the shear deformation effect to the displacement v is not significant
(low value of the shear deformation coefficient aY ) and could be ignored, which
does not hold for the displacement w(higher value of the shear deformation coeffi-
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cient aZ and bending stiffness EIYY ), where their remarkable increment due to the
aforementioned effect necessitates its inclusion in the beam analysis. Finally, in
Tables 3, 4 the displacement components w,v obtained from the nonlinear analysis
of Timoshenko beams are presented for various values of the transverse loading
and for various discretization schemes, demonstrating the fast convergence of the
proposed method for a small number of collocation points.

4.2 Example 2

In the second example, in order to demonstrate the effectiveness of the proposed
method, a cantilever beam of length l = 5.0m (Fig.5a), of the non-symmetric L-
shaped cross section of unequal legs (A = 3.825× 10−3m2, E = 2.1× 108kN/m2,
ν = 0.3, Cs = 3.946×10−10m6, It = 2.797×10−7m4) of Fig. 5b has been studied.
Since the proposed analysis has been developed with respect to the principal shear
system of axes, the geometric, the inertia constants and the shear deformation coef-
ficients of the examined cross section with respect to an original coordinate system
CỸ Z̃ (Fig. 5b) are presented in the first column of Table 5, while in the second
column of this table the same constants are evaluated with respect to axes parallel
to the principal shear coordinate system CY Z, resulting from the rotation of the
CỸ Z̃ system by the angle θ S [Sapountzakis and Mokos (2005)]. In Tables 6, 7 the
displacements w, v at the free end of the cantilever beam, subjected to a gradu-
ally increasing concentrated transverse µPZ̃ and axial µPX̃ load (PZ̃ = −0.045kN,
PX̃ = −3.00kN) at the same point are presented taking into account or ignoring
shear deformation effect for various values of the loading factor µ as compared
with those obtained from a FEM solution [MSC/NASTRAN for Windows] using
5600 solid elements (Fig.5c). From the obtained results, it is observed that the in-
fluence of the shear deformation effect is not so intense and could be ignored (as
it was expected for a thin-walled beam), the significant influence of the nonlinear
analysis effect is once more easily verified especially in the case of intense load-
ing, while the convergence of the obtained results employing the proposed method,
compared with those obtained from a 3-D FEM solution using solid elements is
remarkable.

4.3 Example 3

To demonstrate the range of applications of the proposed method, a cantilever beam
of length l = 2.50m (Fig.6a), of the non-symmetric cross section (A = 0.01186m2,
E = 2.1× 108kN/m2, ν = 0.3, Cs = 5.232× 10−7m6, It = 1.910× 10−6m4) of
Fig. 6b has been studied. Since the proposed analysis has been developed with
respect to the principal shear system of axes, the geometric, the inertia constants
and the shear deformation coefficients of the examined cross section with respect
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to an original coordinate system CỸ Z̃ (Fig. 6b) are presented in the first column of
Table 8, while in the second column of this table the same constants are evaluated
with respect to axes parallel to the principal shear coordinate system CY Z, resulting
from the rotation of the CỸ Z̃ system by the angle θ S [Sapountzakis and Mokos
(2005)]. In Tables 9, 10 the displacements w, v at the free end of the cantilever
beam, subjected to a gradually increasing concentrated at the same point axial µPX̃
(PX̃ = −120kN) and uniformly distributed axial µ pX̃ and transverse µ pZ̃ (pX̃ =
−20kN/m, pZ̃ = −40kN/m) load are presented taking into account or ignoring
shear deformation effect, for various values of the loading factor µ . The significant
influence of the nonlinear analysis effect is once more verified especially in the case
of intense loading, while the discrepancy of the results due to the influence of the
shear deformation effect necessitates its inclusion in the analysis, especially for the
calculation of the displacement w.

5 Concluding remarks

In this paper a boundary element method is developed for the nonlinear flexural
– torsional analysis of Timoshenko beam-columns of arbitrary simply or multi-
ply connected constant cross section, undergoing moderate large deflections un-
der general boundary conditions. Seven boundary value problems are formulated
with respect to the transverse displacements, to the axial displacement, to the angle
of twist (which is assumed to be small), to the primary warping function and to
two stress functions and solved using the Analog Equation Method, a BEM based
method. The evaluation of the shear deformation coefficients is accomplished from
the aforementioned stress functions using only boundary integration. The main
conclusions that can be drawn from this investigation are

• The numerical technique presented in this investigation is well suited for
computer aided analysis for beam-columns of arbitrary simply or multiply
connected cross section.

• The convergence of the obtained results employing the proposed method,
compared with those obtained from a 3-D FEM solution using solid elements
is remarkable. Having in mind both the disadvantages of this solution (diffi-
culties in support modelling, in discretizing a complex structure, in discretiz-
ing a structure including thin walled members (shear-locking, membrane-
locking), in the increased number of degrees of freedom leading to severe
or unrealistic computational time, in the reduced oversight of the 3-D FEM
solution compared with that of the beam-like structures employing stress re-
sultants) and the fact that the use of shell elements cannot give accurate re-
sults since the warping of the walls of a cross section cannot be taken into
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account (midline model), the importance of the proposed method becomes
more evident.

• The significant influence of geometrical nonlinear analysis in beam elements
subjected in intense transverse loading is verified.

• The discrepancy between the results of the linear and the nonlinear analysis
demonstrates the significant influence of the axial loading.

• In some cases the remarkable increment of all the deflections due to the in-
fluence of the shear deformation effect demonstrates its significant influence
in nonlinear analysis.

• The developed procedure retains the advantages of a BEM solution over a
pure domain discretization method since it requires only boundary discretiza-
tion.
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