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Simulation of Dendritic Growth with Different Orientation
by Using the Point Automata Method

A.Z. Lorbiecka1 and B. Šarler1,2

Abstract: The aim of this paper is simulation of thermally induced liquid-solid
dendritic growth in two dimensions by a coupled deterministic continuum mechan-
ics heat transfer model and a stochastic localized phase change kinetics model
that takes into account the undercooling, curvature, kinetic and thermodynamic
anisotropy. The stochastic model receives temperature information from the deter-
ministic model and the deterministic model receives the solid fraction information
from the stochastic model. The heat transfer model is solved on a regular grid by
the standard explicit Finite Difference Method (FDM). The phase-change kinet-
ics model is solved by the classical Cellular Automata (CA) approach and a novel
Point Automata (PA) approach. The PA method was developed and introduced in
this paper to circumvent the mesh anisotropy problem, associated with the classical
CA method. Dendritic structures are in the CA approach sensitive on the relative
angle between the cell structure and the preferential crystal growth direction which
is not physical. The CA approach is established on quadratic cells and Neumann
neighborhood. The PA approach is established on randomly distributed points and
neighbourhood configuration, similar as appears in meshless methods. Both meth-
ods provide same results in case of regular PA node arrangements and neighbor-
hood configuration with five points. A comprehensive comparison between both
stochastic approaches has been made with respect to curvature calculations, den-
drites with different orientations of crystallographic angles and types of the node
arrangements randomness. It has been shown that the new method can be used for
calculation of the dendrites in any direction.

Keywords: microstructure modeling, solidification, dendritic growth, cellular au-
tomata method (CA), point automata method (PA), random node arrangement.

1 Laboratory for Multiphase Processes, University of Nova Gorica, Slovenia
2 Corresponding author (B. Šarler) E-mail: bozidar.sarler@ung.si



70 Copyright © 2010 Tech Science Press CMC, vol.18, no.1, pp.69-103, 2010

1 Introduction

Solidification microstructure is very important since it influences the properties of
the final casting. Because of that has understanding and modeling of microstruc-
tures large industrial relevance. However, the understanding of solidification pro-
cess and related microstructures is very complicated. This is because it is affected
by many interacting phenomena on different scales, such as heat and solute trans-
fer, fluid flow, thermodynamics of interfaces and so on [Rettenmayr and Buchmann
(2006)]. Experiments that allow direct visualization of microstructure formation
are difficult to perform. In the last decade, several numerical models, which can
solve complicated transport phenomena and phase transformation under different
boundary and initial conditions, were developed to calculate various microstructure
features of solidifying materials such as grain growth with details of solidification
interface morphology. Among of all numerical approaches Cellular Automata (CA)
modeling [Wolfram (2002)] and phase field modeling [Qin and Wallach (2003)]
are the most popular and widely used. We focus on the CA based approach in this
paper. A considerable progress on solidification microstructure simulation [Boet-
tinger, Coriell, Greer, Karma, Kurz, Rappaz and Trivedi (2000); Lorbiecka, Vert-
nik, Gjerkeš, Manojlović, Senčič, Cesar and Šarler (2009); Lorbiecka and Šarler
(2010); Miodownik (2002)] has been made by the CA approach.

Rappaz and Gandin [Rappaz and Gandin (1993)] were the pioneering researchers
who developed the CA model for modeling microstructure in which nucleation and
growth kinetics could be considered and grain structure with certain shapes and
size were predicted. Gandin and Rappaz [Gandin and Rappaz (1994); Gandin and
Rappaz (1997)] simulated the grain structure by coupling the CA technique for the
grain growth with the finite element method (FEM) solver for the heat flow (CA-
FEM). Later Spittle and Brown [Spittle and Brown (1995)] coupled the CA with a
finite difference solver (CA-FDM) for solute diffusion during the solidification of
casting to predict microstructure.

Unfortunately, the simple CA models for dendritic growth suffer from the strong
impact of the anisotropy of the numerical grid. Consequences are that they tend to
grow only in the grid direction [Zhan, Wei and Dong (2008)]. It does not matter
which crystallographic orientation will be chosen it will always shift the dendrite
with respect to the grid axis. During the growth processes of grains the crystallo-
graphic orientation axes of different grains have different divergence angles with
respect to the coordinate system. In these cases is the growth stage difficult to
simulate by the CA method. It is because the configuration of the CA mesh has a
direct influence on simulated structure and shape. Anderson [Anderson, Srolovitz
and Grest (1984)] and later Spittle and Brown [Spittle and Brown (1989)] used a
hexagonal, rather than the standard square 2-D lattice in order to better represent the
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grain anisotropy. But in general even now it is still difficult to properly model the
preferred crystallographic orientation. Rappaz and Gandin developed a decentered
square method [Rappaz and Gandin (1993)] to try to solve this problem, which
turns out to be very complicated.

We present a novel Point Automata (PA) method in this paper which follows the CA
concept and is able to solve the mentioned crystallographic orientation problem. A
basic feature of this method is to distribute nodes randomly in the domain instead
of using regular cells, which leads to different distances between the nodes and dif-
ferent neighborhood configurations for each of them. This new approach was first
proposed by Janssens for modeling the recrystallisation [Janssens (2000); Janssens
(2003); Janssens (2003); Janssens (2010); Raabe, Kozeschnik, Miodownik and
Nestler (2007); Janssens]. [Lorbiecka, Vertnik, Gjerkeš, Manojlović, Senčič, Cesar
and Šarler (2009)] were the first to couple the classical CA method with a meshless
method instead of the FEM or FDM. They succesfully predicted the grain structure
in continuous casting of steel. Subsequently, they replaced the CA method by the
PA method in the same physical system [Lorbiecka and Šarler (2009)] and demon-
strated the suitability of the PA method for cellular to equiaxed and equiaxed to
cellular transition simulation in steel billets. The preliminary results of the den-
dritic growth based on the PA approach have been presented in [Lorbiecka and
Šarler (2009)]. This approach is explained and evaluated in details in the present
paper where we numerically discuss a simple physical model which can simulate
the dendritic forms during the solidification of pure metals from its undercooled
melt. The developed algorithm is able to obtain the dendritic morphology by solv-
ing the heat transfer equation coupled with the solid fraction field evolution through
the calculations of crystal growth velocity, interface curvature, thermodynamic and
kinetic anisotropy, respectively.

The present paper is structured in the following way: the CA and the PA meth-
ods are defined first, followed by the description of the governing equations of the
heat transfer model and the stochastic model. The solution of temperature field
and solid fraction is explained afterwards. The differences in numerical implemen-
tation of the classical CA and the new PA solution procedure are compared and
discussed. The dendritic growth is simulated for ten different orientations with the
same random node arrangement with the PA method. Afterwards, the influence of
four different random node arrangements as well as different node randomness was
tested on two different crystallographic orientations. Finally, the numerical results
are shown for the classical CA method with and without fluctuations and compared
to the results obtained by the PA method. Conclusions with systematically listed
characteristics of the PA method and future developments of the PA method com-
plete the present paper.
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2 CA and PA definitions

Numerical models for solving the microstructure equations can briefly be divided
into two categories: deterministic and stochastic [Stefanescu (2009)]. Stochastic
modeling represents a system where the physical phenomena are described by the
random numbers. As a consequence the output data can vary from one simulation
to another. The most popular stochastic methods used to simulate the microstruc-
ture formations are: Monte Carlo methods, Random Walker and CA approach. CA
stochastic method [Wolfram (2002)] represents one of the numerical techniques,
widely applied in modeling solidification and recrystallization processes. This
algorithm was first established by Neumann [Neumann (1987)] and is nowadays
commonly used in material science. What follows are the basic elements of the CA
method

• n-D (n=1, 2, 3) space is divided into a discrete number of n-dimensional
elements which are named cells (polygons and polyhedrons).

• a state is assigned to each CA cell,

• the neighborhood configuration is defined deterministic or stochastic for each
CA cell,

• transition rules are defined which create a new state of the cell as a func-
tion of the states(s) of the cell(s) consisting of the previously defined local
neighborhood of the cell.

The above presented basic features of the CA system are commonly implemented
in the literature. In the present work an alternative formulation to a common CA
method is introduced. What follows are the basic elements of this novel PA method

• the starting point is to distribute PA nodes (not cells) randomly on the n-D
computational domain,

• a state is assigned to each PA node,

• the neighborhood configuration is defined for each node separately with re-
spect to the chosen neighborhood configuration,

• the neighborhood of the node includes all random nodes whose positions are
located in the domain of a circle in 2D or sphere in 3D. The number of the
neighbors can vary locally. The transition rules are defined and they create a
new state of the point as a function of the states(s) of the points(s) consisting
the local neighborhood configuration.
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The irregular (also named random) PA cellular transitions rules can be used in
exactly the same way as for the regular approach. In this sense the PA approach
is not much different from the conventional one, despite bringing many advantages
listed in the conclusions.

3 Governing equations

Thermally induced dendrite growth is considered in this paper. It is physically
described by the heat conduction and phase change kinetics. The temperature field
is solved by the classical deterministic method and the phase change kinetics by
the stochastic method.

3.1 Temperature field

Consider a two dimensional domain Ω with boundary Γ filled with a phase change
material which consists of at least two phases, solid and liquid, separated by an
interfacial region, which is usually very thin in pure substances. The thermal field
in such a system is governed by the following equation [Xu, Li, Liu and Liu (2008)]

∂

∂ t
(ρh) = ∇ · (λ∇T ) (1)

where ρ , h, λ , T represent material density, specific enthalpy, thermal conductivity
and temperature, respectively.

The specific enthalpy is constituted as

h = cpT + flL (2)

where cp, L, fl represent the specific heat, the latent heat and liquid fraction, re-
spectively. All material properties are assumed constant for simulation simplicity.
The solid and liquid fractions follow the rules

fs + fl = 1 (3)

fs (T ) =


1 for T ≤ Ts
Tl−T
Tl−Ts

for Ts < T < Tl

0 for T ≥ Tl

(4)

where Ts, Tl , fs represent the solidus temperature, liquidus temperature and the solid
fraction, respectively. In case of pure substance are the solidus and the liquidus
temperatures equal to the melting temperature Tm. However, for the computational
purposes a narrow melting interval is always present Tl > Tm > Ts. The melting
temperature Tm is defined as Tm = 1

2 (Ts +Tl).
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We search for the temperature at time t0 +∆t by assuming the initial conditions

T (p, t0) = T0 (p) ; p ∈Ω (5)

fs (p, t0) = fs0 (p) ; p ∈Ω (6)

(where p represents the position vector) and Neumann boundary conditions

∂T
∂n

(p, t) = F (p, t) ; p ∈ Γ, t0 < t ≤ t0 +∆t (7)

where n represents the normal on Γ and T0, fs0,F represent known function.

3.2 Phase change kinetics

3.2.1 Interface undercooling

The phase change situation can be achieved by undercooling a liquid below its
melting temperature. When a solid seed is placed in such an undercooled melt,
solidification will be initiated. Due to crystal anisotropy and perturbations in the
system, the growth of the solid from the seed will not be uniform and an equiaxed
dendritic crystal will form. Solid liquid interface is undercooled to the temperature
Tf defined as [Saito, Goldbeck-Wood and Muller-Krumbhaar (1988); Nakagawa,
Narsume and Ohsasa (2006)]

Tf = Tm−ΓK (8)

where Γ and K are the Gibbs-Thomson coefficient and the interface curvature, re-
spectively.

3.2.2 Dendrite growth kinetics

The growth process is driven by the local undercooling. The interface growth ve-
locity is given by the classical sharp model [Shin and Hong (2002)]

V ∗g (p, t) = µK (Tf −T (p, t)) ; p ∈ Γs,l (9)

where V ∗g , µK , Γs,l is the growth velocity, interface kinetics coefficient and the solid
liquid interface, respectively.

Dendrites always grow in the specific crystallographic orientations. Therefore it is
necessary to consider anisotropy in either the interfacial kinetics or surface energy
(or both). The present model accounts for the anisotropy in both kinetics.
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3.2.3 Thermodynamic anisotropy

The Gibbs-Thomson coefficient can be evaluated [Krane, Johnson and Raghavan
(2009)] by taking into account the thermodynamic anisotropy related to the crystal
orientation and type as follows

Γ = Γ
[
1−δt cos

[
S
(
θ −θde f

)]]
(10)

where S, θ , θde f ,δt , Γ represent factors which control the number of preferential
directions of the material’s anisotropy (S = 0 for the isotropic case, S = 4 for four
fold anisotropy and so on), growth angle (angle between theycoordinate and the line
that connects the center of the mass of the dendrite and point at Γs,l , see Fig. 1),
the preferential crystallographic orientation, thermodynamic anisotropy coefficient
and the average Gibbs - Thomson coefficient, respectively.

3.2.4 Kinetic anisotropy

The crystal growth velocity is calculated according to the crystal orientation by
taking into the consideration the crystal growth direction θ and the preferred ori-
entation θde f . The crystal growth velocity follows the equation [Shin and Hong
(2002)]

V = V ∗g (p, t)
[
1+δk cos

(
S
(
θ −θde f

))]
(11)

where δk represents the degree of the kinetic anisotropy, respectively.

3.3 Coupling

The movement of the solid-liquid interface is governed by the evolution of the
temperature field in the computational domain (Fig. 1). The dendritic structures
are modeled by the stochastic method to track the interface motion coupled to the
determinate heat transfer calculations. We first describe the solution of the tem-
perature field based on the FDM method and subsequently the transition rules for
the CA (PA) methods for calculation of solid fraction field. The flowchart of the
calculations is given in Fig. 18.

4 Solution of the temperature field

A square domain is considered with length l. The number of points in FDM mesh
in xandydirections is N. The total number of FDM grid points is N2- 4, since the
four corner nodes are not considered.
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Figure 1: Scheme of the dendrite growth

A uniform FDM discretization is made with mesh distance ∆x = ∆y = a = l/(N−1)as
seen in Fig. 5 (top). The solution for the temperature field is performed by the sim-
ple explicit FDM. Solution of the temperature field in the domain nodes is thus

Ti, j = T0 i, j +
∆tλ
ρcp

(
[
(T0 i−1, j−2T0 i, j +T0 i+1, j)/

(
∆x2)]

+
[
(T0 i, j−1−2T0 i, j +T0 i, j+1)/

(
∆y2)])++

L
cp

( fs i, j− f0s i, j) (12)

for i = 2,3, ...,N−1 and j = 2,3, ...,N−1

The boundary nodes are calculated (the Neumann boundary conditions are set to
F = 0W/m2) as

West

T1, j = T2, j (13)

for j = 2, ...,N−1

East

TN, j = TN−1, j (14)

for j = 2, ...,N−1

North

Ti,N = Ti,N−1 (15)
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for i = 2, ...,N−1

South

Ti,1 = Ti,2 (16)

for i = 2, ...,N−1

where ∆t, f0s i, j, T0 i, j, T0 i+1, j, T0 i−1, j,T0 i, j+1, T0 i, j−1 are the time step, initial solid
fraction, initial temperature in the FDM central, east, west, north and south nodes,
respectively.

5 Solution of the solid fraction field

We now define and discuss the elements of the classical CA and the novel PA
methods in details.

5.1 Definition of mesh and neighborhood configuration

Square cells with length δx = ∆y = a = l/n where n = N−1, represents the number
of cells in x and y directions are considering in the CA approach. In the PA approach
the square is divided in uniform or nonuniformy distributed nodes. Cells are not
defined.

5.1.1 Mesh and neighborhood in the CA method

A basic definition of neighborhood originates from the classical CA approach which
operates on the grid divided into the square cells [Neumann (1987); Nastac (2004)].
The cell structure is depicted in Fig. 2. In our calculations the Neumann configu-
ration which takes into account only the closest neighbor’s cells during the compu-
tation is applied.

The conventional square mesh structure is commonly applied in CA calculations.
It represents a square domain covered by the CA cells xCA i, j, yCA i, j located exactly
in the middle of four FDM nodes, as it is depicted in Fig. 5 (middle).

xCA i, j =
1
2

[xFDM i, j + xFDM i+1, j] (17)

yCA i, j =
1
2

[yFDM i, j + yFDM i, j+1] (18)

5.1.2 Mesh and neighborhood in the PA method

The PA node grows with respect to the heat flow and with respect to the ‘neighbour-
hood’ configuration which is now associated with the position of the neighbouring
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Figure 2: Graphical representation of the Neumann neighborhood configuration for
the conventional CA method
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Figure 3: Graphical representation of the neighborhood configuration proposed for
the new PA method

PA nodes which fall into a circle [Janssens (2000); Janssens (2003)] with radius RH

in 2-D or a sphere in 3-D. It means that each PA node can in case of the random
mesh contain different number and position of the neighbors, which give various
possibilities of neighborhood configurations for each node.

For the novel PA method the random node arrangement is in the present paper
generated from the regular CA mesh.

To construct the random node arrangements the CA cell centers are displaced to
the randomly chosen positions and become random PA nodes xPA i, j, yPA i, j on the



Simulation of Dendritic Growth 79

computational domain (see Fig.5 bottom). 
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Figure 4: Schematic representation of the relationship between FDM nodes (4 cor-
ners), CA cell (center) and the random PA node

The displacement of each CA center is assumed only in the square area appointed
by the four FDM nodes. The following procedure is applied

xPA i, j = xCA i, j + ε [2rand−1] (19)

yPA i, j = yCA i, j + ε [2rand−1] (20)

where xPAi, j , yPAi, j , ε represent coordinates of PA nodes and the scaling value 0 ≤
ε ≤ 0.49, respectively.It must be emphasized that the PA procedure is established
on the random nodes in general. The heat transfer calculations are performed on
the regular FDM nodes, which is briefly explained in Section 6.

5.2 Curvature calculations

The interface curvature is approximated by the counting cell procedure developed
by Sasikumar and Sreenivasan [Sasikumar and Sreenivasan (1994)].

5.2.1 Calculation of curvature in the CA method

The expression for curvature K is given by the formula [Krane, Johnson and Ragha-
van (2009)]

K =
1
a

(
1− 2Ns CA

Nt CA

)
(21)

where Ns CA and Nt CA are the number of solid CA cells whose centers fall inside
the circle of assumed radius Rc and the total number of CA cells whose centers fall
inside the circle, respectively (see Fig. 6).
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5.2.2 Calculation of curvature in the PA method

The expression for PA is derived from the expression at the CA method Eq.21 by
assuming the average node distance a instead of a.

K =
1
a

(
1− 2Ns PA

Nt PA

)
(22)

where Ns PA, Ns PA are the number of solid PA nodes inside the circle of assumed
radius Rc and the total number of PA nodes inside the circle, respectively (see Fig.
7).

The curvature of both methods has been calculated and compared on a circular solid
fraction arrangement with radius R = 10 µm, depicted in Fig. 8. Two different types
of Rc have been chosen (Rc = 1µm and Rc = 5µm). It can be concluded that with
the higher radius Rc the value of K becomes almost the same as in the conventional
CA approach. This was depicted in Fig. 9 and Fig. 10, respectively.

5.3 Phase change

The crystal growth velocity is calculated according to the crystal orientation. The
envelope of the grain can be expressed by the Eq.11 which is depicted in Fig.11.
Once a CA cell (or PA node) becomes solid it starts to grow with respect to the
‘neighborhood’ configuration (see Fig. 2 and Fig. 3). Each of the CA cell (or the
random node) can have two possible states: liquid or solid. The CA cell (or PA
node) becomes solid through the growth process. The change of solid fraction of
the CA cell or PA node is calculated from the crystal growth velocity.

For all neighbors of the treated solid CA cell (or solid PA node), general criterion
d is checked which is represented by the following formula

d =
l (t)
ai

(23)

l =
t∫

t0

Vi, j dt (24)

where ai represent lengths from the analyzed CA cell or PA node to the nearest one.

If neighbor is one of the four nearest east, north, west, south neighbors then in the
CA method this distance becomes ai = a. In the PA method ai(ai < RH) represents
the different distances to the neighboring PA nodes which fall into the circle with
radius RH (see Fig. 14 and Fig. 15).

When d ≥ a or d ≥ ai (Fig. 13 and Fig. 15) the growing solid touches the centre
of the neighboring CA cell or PA node and this cell/node transforms its state from
liquid to solid fsPA = 1.
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 6

[ ], 2 1PA i, j CA i jx x randε= + −  (19) 

[ ], 2 1PA i, j CA i jy y randε= + −  (20) 

where 
i, jPAx , 

i, jPAy , ε  represent coordinates of  PA nodes and 
the scaling value 0 0.49ε≤ ≤ ,  respectively.It must be em-
phasized that the PA procedure is established on the random 
nodes in general. The heat transfer calculations are performed 
on the regular FDM nodes, which is briefly explained in Sec-
tion 6.  

5.2 Curvature calculations 

The interface curvature is approximated by the counting cell 
procedure developed by Sasikumar and Sreenivasan [Sasi-
kumar and Sreenivasan (1994)].  

5.2.1 Calculation of curvature in the CA method 

The expression for curvature K  is given by the formula 
[Krane, Johnson and Raghavan (2009)] 

21 1 s CA

t CA

N
K

a N
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

 (21) 

where s CAN  and t CAN  are the number of solid CA cells 
whose centers fall inside the circle of assumed radius cR  and 
the total number of CA cells whose centers fall inside the 
circle, respectively (see Fig. 6). 

5.2.1 Calculation of curvature in the PA method 

The expression for PA is derived from the expression at the 
CA method Eq.21 by assuming the average node distance 
a instead of a . 

21 1 s PA

t PA

N
K

Na

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (22) 

where s PAN , s PAN  are the number of solid PA nodes inside 
the circle of assumed radius cR  and the total number of PA 
nodes inside the circle, respectively (see Fig. 7). 
The curvature of both methods has been calculated and com-
pared on a circular solid fraction arrangement with radius 

10R mμ= , depicted in Fig. 8. Two different types of 

cR have been chosen ( 1cR mμ=  and 5cR mμ= ). It can be 
concluded that with the higher radius cR  the value of K be-
comes almost the same as in the conventional CA approach. 
This was depicted in Fig. 9 and Fig. 10, respectively. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 5: Scheme of space discretization: (top) FDM nodes 
with 21N = , (middle), CA cells with 20n = , (bottom) PA 
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Figure 5: Scheme of space discretization: (top) FDM nodes with N = 21, (middle),
CA cells with n = 20, (bottom) PA nodes with n = 20
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Figure 6: Scheme showing a circle sam-
ple with Rc = 2a for calculating the cur-
vature of the conventional CA method
(example: Ns CA = 8 and Nt CA = 12)

 

Figure 7: Scheme showing a circle sam-
ple with Rc = 2a for calculating the cur-
vature for the random PA nodes (exam-
ple: Ns PA = 7 and Nt PA = 11) 

cross section

R

Figure 8: Scheme of the area used to compare the curvature calculations by the CA
and PA methods. R = 10µm. Filled area represents solid

6 FDM-PA-FDM transfer of temperature and solid fraction

6.1 FDM-PA transfer of temperature

The obtained values of temperature on regular FDM grid (see Section 4) are in each
time step transferred to random PA grid according to the described scheme (Fig. 18).
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The cross section of the curvature for Rc=1
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Figure 9: Calculated curvature K with the CA and PA method (ε = 0.49) for Rc =
1µm and a = a = 1µm with respect to the data depicted in Fig. 8

 

The cross section of the curvature for Rc=5
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Figure 10: Calculated curvature K with the CA and PA-(A) method for Rc = 5µm
and a = a = 1µm with respect to the data depicted in Fig. 8

The following simple interpolation formula [Xu and Liu (2001)] is used in the
present paper

TPA i, j = (Ti, j+1l1 +Ti+1, j+1l2 +Ti+1, jl3 +Ti, jl4)/
4

∑
i=1

li (25)

In case of FDM-CA the Eq.25 reduces to

TCA i, j = (Ti, j+1 +Ti+1, j+1 +Ti+1, j +Ti, j)/4 (26)
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Figure 11: Schematic representation of the shape function (parameters see Tab.1)
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Figure 12: Growth front will not
reach the closest neighbor d < ai.
The CA cell will not be converted
to solid (example for the Neumann
neighborhood configuration)

 

d

ia

Figure 13: Growth front will reach
the closest neighbord ≥ ai. The CA
cell will be converted to solid (exam-
ple for the Neumann neighborhood
configuration)

where TPA i, j, Ti, j, TCA i, j and li represent the temperature of the PA node, the tem-
peratures of the four closest FDM nodes, the temperature for the center CA cell
and the distances to the nearest four FDM nodes, respectively. The calculation is
repeated in each time step (see Fig. 16).
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Figure 14: Growth front will not
reach the closest neighbor d < ai.
The PA node will not be converted
to solid
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Figure 15: Growth front will reach
the closest neighbor d ≥ ai. The
PA node will be converted to solid
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Figure 16: Relationship between
four FDM nodes and PA node
for the calculation of the temper-
ature values
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Figure 17: Relationship between the
FDM node and four neighboring PA
nodes for the transfer of solid fraction

6.2 PA-FDM transfer of solid fraction

The temperature field at time t0 +∆t can be calculated from the Eq.12 for all FDM
nodes. Then these values are recalculated to all PA nodes according to the Eq.25.
Afterwards the PA procedure takes place (see Section 3). The output information
from this level of calculation is the value of solid fraction for all random PA nodes
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fs PAi, j which have to be transferred to the FDM nodes to be able to calculate the
new values of temperature (Fig. 17). The following equation is applied

fs i, j = ( fs PAi, j+1 l1 + fs PAi+1, j+1 l2 + fs PAi+1, j l3 + fs PAi, j l4)/
4

∑
i=1

li (27)

In case of FDM-CA the Eq.27 reduces to

fs i, j = ( fs CAi, j+1 + fs CAi+1, j+1 + fs CAi+1, j + fs CAi, j)/4 (28)

where fs i, j and fs PA represent the solid fraction for the FDM nodes and for the PA
nodes, respectively.

7 Numerical example

7.1 Numerical implementation

The model was coded in Fortran. For the dendritic growth in Fig.20 the CPU time
varies from 10 to 15 minutes depending on the input data. The solid PA node or
CA cell are depicted by colored pixel which can be observed on the screen during
the simulation.

7.2 Problem definition and discretization

Initial conditions. Simplified material properties presented in Tab. 1 for pure alu-
minum [Kammer (1999)] are used in all prepared numerical examples. The process
starts from the predetermined solid seed position in one single PA or CA node in
the middle of the computational domain with the following initial conditions of
temperature 933.45K−1.5K and solid fraction fs = 1.

All other PA nodes are assumed to be liquid fs = 0 and FDM nodes with the tem-
perature 770.23K. This data is constant with the problem defined in the article. The
numerical examples in the present paper are solved by the FDM based temperature
calculations and CA or PA based solid fraction calculations. The computational
domain of the square with l = 350 µm in uniform discretization N = 701.

Mesh generation. FDM and CA methods are always constructed on a regular node
arrangement in the present paper. In the PA approach the random node arrangement
needs to be constructed. The PA approach was tested first with the predetermined
node arrangement PA-(A), see Fig. 20 and then with different types of random node
arrangements: PA-(B), PA-(C), PA-(D), see Figs. 21-23, respectively (Tab.2).

Time step. The time step used in FDM calculation of the temperature field is
limited by the formula [Zhu and Hong (2001)]

∆tFDM =
a2

4.5D
; D =

λ

ρcp
(29)
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Figure 18: Flowchart of the thermal field and solid fraction 

calculations 
 
All other PA nodes are assumed to be liquid 0sf =  and FDM 
nodes with the temperature 770.23 K . This data is constant 
with the problem defined in the article. The numerical exam-
ples in the present paper are solved by the FDM based tem-
perature calculations and CA or PA based solid fraction cal-
culations. The computational domain of the square with 

350l mμ=  in uniform discretization 701N = . 

Mesh generation. FDM and CA methods are always con-
structed on a regular node arrangement in the present paper.  
In the PA approach the random node arrangement needs to be 
constructed. The PA approach was tested first with the prede-
termined node arrangement PA-(A), see Fig. 20 and then 
with different types of random node arrangements: PA-(B), 
PA-(C), PA-(D), see Figs. 21-23, respectively (Tab.2).  

Time step. The time step used in FDM calculation of the 
temperature field is limited by the formula [Zhu and Hong 
(2001)] 

2

;
4.5FDM

p

at D
D c

λ
ρ

Δ = =  (29) 

where D represents the thermal diffusivity. For the calcula-
tions of the solid fraction field by the CA and PA method the 
following relation is used [Daming, Ruo and Zhang (2004)] 
for assuming stability 

2

max

min ,CA
a at

DV
η ∗

⎛ ⎞
Δ = ⎜ ⎟

⎝ ⎠
 (30) 

where η  and maxV ∗  represent the positive constant less then 1 
and the maximum growth velocity of all interface cells, re-
spectively. 
For the stability of the coupled FDM-CA-PA procedure a 
minimum of CAtΔ and FDMtΔ should be used. All depicted 
results of simulations are shown  for the different crystallo-
graphic angles after 1500 time steps of the length 

106.82 10FDMt x −Δ = s. 

Thermal fluctuations. In order to avoid the symmetric shape 
of the dendrite in the conventional CA approach some fluc-
tuations need to be introduced into the calculations. The fol-
lowing equation is commonly applied 1P randλ∗= + . 
Thermal noises are usually presented by putting the random 
fluctuations F into the calculations of latent heat, undercool-
ing temperature or velocity [Voller (2008)]. It this paper we 
use then in the velocity calculations V V= x P . 
Neighborhood configuration. In the CA approach only the 
closest neighborhood configuration has been analyzed. Lar-
ger the value of HR  is chosen in the PA method more den-
dritic and irregular structures can be observed. A more ex-
tended area of neighbors needs to be taken into the considera-
tion in the PA method. The radius of neighborhood should be 
kept at a minimum of 1.5 μm in case of 0.5a = μm. For 
smaller values the dendritic shapes become distorted and the 
preferred orientation is lost as well.  

7.3 Simulated results 

The dendritic morphologies were calculated by the classical 
FDM-CA and the novel FDM-PA approaches. The following 
numerical examples were prepared 
•   From CASE 1 to CASE 10 the dendritic growth process is 
simulated by the PA method with the same random node ar-
rangement denoted (PA-(A)) for the following ten crystallo-
graphic orientations 
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Figure 18: Flowchart of the thermal field and solid fraction calculations

where D represents the thermal diffusivity. For the calculations of the solid fraction
field by the CA and PA method the following relation is used [Daming, Ruo and
Zhang (2004)] for assuming stability

∆tCA = η min
(

a
V ∗max

,
a2

D

)
(30)

where η and V ∗max represent the positive constant less then 1 and the maximum
growth velocity of all interface cells, respectively.
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Figure 19: The lengths of dendrite branches in x and y directions for ten different
crystallographic orientations, random node arrangement PA-(A), (see Fig.20)

For the stability of the coupled FDM-CA-PA procedure a minimum of ∆tCA and
∆tFDM should be used. All depicted results of simulations are shown for the dif-
ferent crystallographic angles after 1500 time steps of the length ∆tFDM = 6.82×
10−10s.
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Table 3: The lengths of dendrite branches in x  and y  direc-
tions and related quantities with respect to the random node 

arrangement 
 

/x y   

average 
length 
ratio 
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standard
devia-
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method 

x  
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y  
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dendrite 

arms 
/x y  

[-] 
average 
length 

of 
x and y  

[μm] 

σ   

standard
devia-
tion of 
lenght 
[μm] 

5o  PA-(A) 148.0 154.0 0.961 

5o  PA-(B) 160.0 150.0 1.066 
 

0.982 
 

0.057 

5o  PA-(C) 145.0 155.0 0.935 

5o  PA-(D) 155.0 160.0 0.968 

153.37 5.39 

15o PA-(A) 154.0 160.0 0.962 

15o PA-(B) 160.0 150.0 1.066 
 

1.032 
 

0.049 

15o PA-(C) 155.0 145.0 1.068 

15o PA-(D) 165.0 160.0 1.031 

156.12 6.44 

30o PA-(A) 160.0 157.0 1.019 

30o PA-(B) 151.0 145.0 1.041 
 

1.033 
 

0.010 

30o PA-(C) 155.0 150.0 1.033 

30o PA-(D) 151.0 145.0 1.041 

151.75 5.36 

0o  PA-(A) 160.0 154.0 1.038 

5o  PA-(A) 148.0 154.0 0.961 

10o PA-(A) 142.0 148.0 0.959 

15o PA-(A) 154.0 160.0 0.962 

20o PA-(A) 160.0 148.0 1.081 

 
 
 
 
 

0.980 

 
 
 
 
 

0.041 

25o PA-(A) 154.0 148.0 1.040 

30o PA-(A) 160.0 157.0 1.019 

35o PA-(A) 154.0 148.0 1.040 

40o PA-(A) 157.0 151.0 1.039 

45o PA-(A) 151.0 148.0 1.020 

152.8 5.18 

 
Fig. 20 and Tab.3 show that the novel PA concept can be 
used to depict the dendritic growth process in any preferential 
orientation during the solidification process. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CASE 1 

0defθ = o  
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CASE 5 

20defθ = o  

l

l  

CASE 6 

25defθ = o  

l

l  

CASE 7 

30defθ = o  

l

l  

CASE 2 

5defθ = o  

l  
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CASE 3 

10defθ = o  

l  

l

CASE 4 

15defθ = o  

l  

l
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Figure 20: Simulated dendritic growth for a single dendrite 
for different orientations by the PA method for the same PA-

(A) random node arrangement 0 , 5 , ... , 40 , 45defθ = ° ° ° °  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 21: Simulated dendritic growth for a single dendrite 
with 5defθ = °  for different random node arrangement struc-

tures: PA-(B), PA-(C), PA-(D), respectively 
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CASE 8 
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CASE 9 
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5defθ = o  
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l  

CASE 12 

5defθ = o  

l

l  

CASE 13 

5defθ = o  

l

l  

Figure 20: Simulated dendritic growth for a single dendrite for different orienta-
tions by the PA method for the same PA-(A) random node arrangement θde f =
0◦, 5◦, ... ,40◦,45◦
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Thermal fluctuations. In order to avoid the symmetric shape of the dendrite in the
conventional CA approach some fluctuations need to be introduced into the calcu-
lations. The following equation is commonly applied P = 1 + λ ∗rand. Thermal
noises are usually presented by putting the random fluctuations F into the calcu-
lations of latent heat, undercooling temperature or velocity [Voller (2008)]. It this
paper we use then in the velocity calculations V = V ×P.

Neighborhood configuration. In the CA approach only the closest neighborhood
configuration has been analyzed. Larger the value of RH is chosen in the PA method
more dendritic and irregular structures can be observed. A more extended area of
neighbors needs to be taken into the consideration in the PA method. The radius of
neighborhood should be kept at a minimum of 1.5 µm in case of a = 0.5µm. For
smaller values the dendritic shapes become distorted and the preferred orientation
is lost as well.

7.3 Simulated results

The dendritic morphologies were calculated by the classical FDM-CA and the
novel FDM-PA approaches. The following numerical examples were prepared

• From CASE 1 to CASE 10 the dendritic growth process is simulated by the
PA method with the same random node arrangement denoted (PA-(A)) for
the following ten crystallographic orientations

θde f = 0◦, θde f = 5◦, θde f = 10◦, θde f = 15◦, θde f = 20◦,

θde f = 25◦, θde f = 30◦, θde f = 35◦, θde f = 40◦, θde f = 45◦.

• From CASE 11 to CASE 19 the dendritic growth process is simulated by
the PA method with different random node arrangements (PA-(B), PA-(C),
PA-(D)) for the following crystallographic orientations

θde f = 5◦, θde f = 15◦, θde f = 30◦.

• From CASE 20 to CASE 25 the dendritic growth process is simulated by
the PA method with different randomness of the node arrangement ε = 0.10,
ε = 0.25 and ε = 0.49, for the following θde f = 5◦ and θde f = 30◦ crystallo-
graphic orientations.

• From CASE 25 to CASE 28 the dendritic growth process is simulated by the
conventional CA method without and with random fluctuations.
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• From CASE 29 to CASE 31 the dendritic growth process is simulated by the
PA method including the factor responsible for the correction in the lengths
of the x and y branches for different random node arrangements (PA-(B)-F,
PA-(C)-F, PA-(D)-F).

The results have been arranged and represented in the following way. The FDM-
PA calculations with different orientations of the crystallographic axis are depicted
in Fig. 20 based on the same node arrangements. The lengths of the dendritic
axes of these calculations are depicted in Fig. 19. Then Figs. 21,..,23 show the
FDM-PA results with the varied random mesh structure for a single dendrite with
θde f = 5◦, θde f = 15◦ and θde f = 30◦, respectively. The length of the dendritie
axes of theses calculations are depicted in Fig. 24. Fig. 25. Fig. 26 represents
dendritic growth for a single dendrite with θde f = 5◦ and θde f = 30◦ for a different
node arrangement randomness. The simulations are shown for the conventional CA
approach with and without random fluctuations in Fig. 27. Finally in Fig. 28 the
results for the PA method, where the randomness correction factor is applied, are
represented (see discussion in the next paragraph).

7.3.1 Discussion of the results

The orientations of crystallographic axes of different dendrites have different ori-
entations in general. It is commonly recognized that this process is difficult to
simulate by the classical CA method since the dendrite will always switch to 0◦

or 45◦ direction during the growth. Our testing is thus primarily focused on the
growth of the dendrite at different orientations by the novel PA method. Simulated
examples are for the random node arrangements PA-(A),. . . , PA-(F) presented in
Fig. 20, and Figs. 21-23, respectively. They show that when employing the PA
method any of the crystallographic orientations can easily be achieved. Results
show that the proper growth direction is always observed with increasingly random
(ε → 0.49) node arrangement.

Finally, for the same input parameters the dendritic growth process was simulated
by the CA and PA method for the θde f = 0◦ preferential crystallographic orientation
(see CASE 1 and CASE 27, respectively). The lengths of x and y branches were
different in both methods. This is due to the influence of the random node arrange-
ment and subsequent variable distances between the nodes. In the CA method the
same value of a is taken while for the PA method this distances are different and
might vary between maximum ∆x = ∆y = 2εa and minimum ∆x = ∆y = 2(1− ε)a.
It can be concluded that the differences in the length between x and y directions with
respect to the random node arrangement are almost constant and kept below ≈ 5%.
The standard deviation was calculated for the x and y lengths of the dendritic arms
and for the ratio between them (see Fig. 19 and Fig. 24). The following features
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can be summarized from Tab.3. The average length of the dendrite at ten different
orientations and some random node arrangement with ε = 0.49 is 152.8 ± 5.18
µm. The average length of the dendrite calculated with four different random node
arrangement for the fixed angles 5◦, 15◦ and 30◦ is 153.37 ± 5.39 µm, 156.12 ±
6.44 µm and 151.75 ± 5.36 µm, respectively. From this one can conclude that
the errors caused by the rotation of the dendrite are at the same order as the errors
cussed by different random node arrangements. Fig.25 and Fig.26 demonstrate
that when reducing ε from 0.49 to 0.1 the PA starts to behave like the CA and the
proper simulation of the dendrite is not possible. We are too close to the classical
node structure in such case and CA limitations appear.

To achieve the same dendrite length in PA method as in the CA method, an empiri-
cal factor, which multiplies the calculated velocity in the PA method, was added in
the code. It can be shown that putting factor 1.25, (for the random node arrange-
ment ε= 0.49) in the PA calculations, the branches will have the same length in
both methods (see Fig. 28).

In the present study it is not necessary to put any thermal fluctuations in the PA
method. The random node arrangements in the PA method replace the thermal
fluctuations of the CA method.

Fig. 20 and Tab.3 show that the novel PA concept can be used to depict the dendritic
growth process in any preferential orientation during the solidification process.

8 Conclusions

In this paper a novel PA method is developed and applied to modeling the dendritic
growth process. Advantages of the developed PA method are

• No need for mesh generation or polygonisation. Only the node arrangement
has to be generated, but without any geometrical connection between nodes.

• In the new PA method the governing equations are solved with respect to the
location of points (not polygons) on the computational domain.

• The random grid PA method allows to rotate dendrites in any direction since
it has a limited anisotropy of the node arrangements.

• PA method offers a simple and powerful approach of CA type simulations.
It was shown that both methods are able to qualitatively and quantitatively
model a diverse range of solidification phenomena in almost the same calcu-
lation time.
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Figure 21: Simulated dendritic
growth for a single dendrite
with θde f = 5◦ for different ran-
dom node arrangement struc-
tures: PA-(B), PA-(C), PA-(D),
respectively
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Figure 22: Simulated dendritic
growth for a single dendrite with
θde f = 15◦ for different ran-
dom node arrangement struc-
tures: PA-(B), PA-(C), PA-(D),
respectively
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CASE 19 

30defθ = o
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Figure 23: Simulated dendritic
growth for a single dendrite with
θde f = 30◦ for different ran-
dom node arrangement struc-
tures: PA-(B), PA-(C), PA-(D),
respectively
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Figure 24: The lengths of the dendrite
branches in x and y directions for the θde f =
5◦,θde f = 15◦ and θde f = 30◦ (from top to
bottom) different orientations, for the random
node arrangement (see Fig. 21, Fig. 22 and
Fig. 23)
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Figure 24: The lengths of the dendrite branches in x  and y  
directions for the 5defθ = o , 15defθ = o  and 30defθ = o  (from 
top to bottom) different orientations, for the random node 

arrangement (see Fig. 21, Fig. 22 and Fig. 23) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25: Simulated dendritic growth for a single dendrite 
with 5defθ = °  for different node arrangement randomness 
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Figure 25: Simulated dendritic
growth for a single dendrite with
θde f = 5◦ for different node
arrangement randomness ε =
0.1(PA-(E)), ε = 0.25(PA-(F)),
ε = 0.49PA-(A) from the top to
bottom
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Figure 26: Simulated dendritic
growth for a single dendrite with
θde f = 30◦ for different node
arrangement randomness ε =
0.1(PA-(E)), ε = 0.25(PA-(F)),
ε = 0.49PA-(A) from the top to
bottom
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CASE 26 
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Figure 27: Simulated dendritic
growth for a single dendrite for
θde f = 0◦ by the CA method
without λ = 0 (CASE 26)
and with random fluctuations
λ = 0.05 (CASE 27) and
λ = 0.3(CASE 28), respectively
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Figure 28: Simulated dendritic
growth for a single dendrite for
θde f = 0◦ by the PA method with
factor 1.25 for the PA-(B)-F, PA-
(C)-F, PA-(D)-F random node ar-
rangement, respectively
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Table 1: Nominal parameters used in the calculations

Symbol Value Unit
ρ 2700 kg/m3

Tm 933.45 K
Ts 933.45-1.5 K
Tl 933.45+1.5 K
λ 210 W/mK
cp 955.56 J/kgK
L 259259.26 J/kg
η 0.222 1
Γ 1.6 x 10−7 Km
δt 0.3 1
δk 0.75 1
S 4 1
Rc 1.5 µm
RH 2 µm
µK 2 m/sK
l 350 µm
n 700 PA nodes/ CA cells
N 701 FDM nodes

• The dimension of the neighborhood radius and generation of the random
node arrangement has to be chosen carefully in order to be able to rotate the
dendrite.

• Straightforward node refinement possibility.

• Straightforward extension to 3-D.

The use of FDM-PA method instead of FDM-CA method implies transfer of the
results from the regular FDM mesh to the irregular PA node arrangements and vice
versa. This is not the case in the classical FDM-CA method. A replacement of the
FDM method with a meshless [Atluri (2004); Liu and Gu (2005); Šarler, Vertnik
and Perko (2005); Šarler and Vertnik (2006)] method that is able to directly cope
with irregular node arrangement is underway.

Acknowledgement: The first author would like to thank the European Marie
Curie Research Training Network INSPIRE for position to study and research at
the University of Nova Gorica, Slovenia. The second author would like to thank
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Table 2: Parameters used in the calculations
CASE θde f λ ∗ ε node arangement

1 0◦ 0 0.49 PA-(A)
2 5◦ 0 0.49 PA-(A)
3 10◦ 0 0.49 PA-(A)
4 15◦ 0 0.49 PA-(A)
5 20◦ 0 0.49 PA-(A)
6 25◦ 0 0.49 PA-(A)
7 30◦ 0 0.49 PA-(A)
8 35◦ 0 0.49 PA-(A)
9 40◦ 0 0.49 PA-(A)
10 45◦ 0 0.49 PA-(A)
11 5◦ 0 0.49 PA-(B)
12 5◦ 0 0.49 PA-(C)
13 5◦ 0 0.49 PA-(D)
14 15◦ 0 0.49 PA-(B)
15 15◦ 0 0.49 PA-(C)
16 15◦ 0 0.49 PA-(D)
17 30◦ 0 0.49 PA-(B)
18 30◦ 0 0.49 PA-(C)
19 30◦ 0 0.49 PA-(D)
20 5◦ 0 0.10 PA-(E)
21 5◦ 0 0.25 PA-(F)
22 5◦ 0 0.49 PA-(A)
23 30◦ 0 0.10 PA-(E)
24 30◦ 0 0.25 PA-(F)
25 30◦ 0 0.49 PA-(A)
26 0◦ 0 0 CA
27 0◦ 0.05 0 CA
28 0◦ 0.3 0 CA
29 0◦ 0 0.49 PA-(B)-F
30 0◦ 0 0.49 PA-(C)-F
31 0◦ 0 0.49 PA-(D)-F
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Table 3: The lengths of dendrite branches in x and y directions and related quantities
with respect to the random node arrangement

results method x
branch
length
[µm]

y
branch
length
[µm]

ratio of
primary
dendrite
arms
x/y [-]

x/y
average
length
ratio [-]

σ stan-
dard
devia-
tion of
x/y [-]

average
length
of xandy
[µm]

σ stan-
dard
devia-
tion of
lenght
[µm]

5◦ PA-(A) 148.0 154.0 0.961
0.982 0.0575◦ PA-(B) 160.0 150.0 1.066

5◦ PA-(C) 145.0 155.0 0.935
153.37 5.395◦ PA-(D) 155.0 160.0 0.968

15◦ PA-(A) 154.0 160.0 0.962
1.032 0.04915◦ PA-(B) 160.0 150.0 1.066

15◦ PA-(C) 155.0 145.0 1.068
156.12 6.4415◦ PA-(D) 165.0 160.0 1.031

30◦ PA-(A) 160.0 157.0 1.019
1.033 0.01030◦ PA-(B) 151.0 145.0 1.041

30◦ PA-(C) 155.0 150.0 1.033
151.75 5.3630◦ PA-(D) 151.0 145.0 1.041

0◦ PA-(A) 160.0 154.0 1.038

0.980 0.041
5◦ PA-(A) 148.0 154.0 0.961
10◦ PA-(A) 142.0 148.0 0.959
15◦ PA-(A) 154.0 160.0 0.962
20◦ PA-(A) 160.0 148.0 1.081
25◦ PA-(A) 154.0 148.0 1.040

152.8 5.18
30◦ PA-(A) 160.0 157.0 1.019
35◦ PA-(A) 154.0 148.0 1.040
40◦ PA-(A) 157.0 151.0 1.039
45◦ PA-(A) 151.0 148.0 1.020
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the Slovenian Research Agency for funding in the framework of the project J2-0099
Multiscale modelling of liquid-solid systems.

Reference

Atluri, S.N. (2004): The Meshless Method (MLPG) for Domain and BIE Dis-
cretization, Tech Science Press, Forsyth.

Anderson, M.P.; Srolovitz, D.J.; Grest, S.G. (1984): Computer simulation of
grain growth. I. Kinetics. Acta Metall, vol.32, pp. 783-791.

Boettinger, W.J.; Coriell, S.R.; Greer, A.L.; Karma, A.; Kurz, A.; Rappaz,
M.; Trivedi, R. (2000): Solidification microstructure recent developments, future
directions. Acta Metall., vol. 48, pp. 43-70.

Daming, L.; Ruo, L.; Zhang, P. (2004): A new coupled model for alloy solidifi-
cation. Science in China Ser. A. Mathermatics., vol. 47, pp. 41-52.

Gandin, Ch.A.; Rappaz, M. (1994): A coupled finite element-cellular automaton
model for the prediction of dendritic grain structures in solidification processes.
Acta Metall., vol.42, no. 7, pp. 2133-2246.

Gandin, Ch.A.; Rappaz, M. (1997): A 3D cellular automaton algorithm for the
prediction of dendritic grain growth. Acta Metall., vol. 45, pp. 2187-2195.

Janssens, K.G.F. (2000): Irregular cellular automata modeling of grain growth.
Continuum Scale Simulation of Engineering Materials, Germany.

Janssens, K.G.F. (2003): Random Grid, Three Dimensional, Space-Time Coupled
Cellular Automata for the Simulation of Recrystallization and Grain Growth. Mod.
Sim. Mater. Sc., vol. 1, no. 2, pp.157-171.

Janssens, K.G.F.; Raabe, D.; Kozeschnik, E.; Miodownik, M.A.; Nestler, B.
(2007): Computational Materials Engineering, Elsevier Academic Press, Great
Britain.

Janssens, K.G.F. (2010): An introductory review of cellular automata modeling of
moving grain boundaries in polycrystalline materials. Mathematics and Computers
in Simulations, vol. 80, no. 7, pp. 1361-1381.

Krane, M.J.M.; Johnson, D.R.; Raghavan, S. (2009): The development of a cel-
lular automaton - finite volume model for dendritic growth. Applied Mathematical
Modelling, vol. 33, no. 5, pp. 2234-2247.

Kammer, K. (1999): Aluminium Handbook1. Aluminium-Verlag Marketing &
Kommunikation GmbH.

Liu, G.R.; Gu, Y.T. (2005): An Introduction to Meshfree Methods and Their Pro-
gramming, Springer, Dordrecht.



102 Copyright © 2010 Tech Science Press CMC, vol.18, no.1, pp.69-103, 2010

Lorbiecka, A.Z.; Vertnik, R., Gjerkeš, H.; Manojlović, G.; Senčič, B.; Cesar,
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