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An Efficient Reliability-based Optimization Method for
Uncertain Structures Based on Non-probability Interval

Model

C. Jiang1, Y.C. Bai1, X. Han1,2 and H.M. Ning1

Abstract: In this paper, an efficient interval optimization method based on a
reliability-based possibility degree of interval (RPDI) is suggested for the design
of uncertain structures. A general nonlinear interval optimization problem is stud-
ied in which the objective function and constraints are both nonlinear and uncertain.
Through an interval order relation and a reliability-based possibility degree of in-
terval, the uncertain optimization problem is transformed into a deterministic one.
A sequence of approximate optimization problems are constructed based on the
linear approximation technique. Each approximate optimization problem can be
changed to a traditional linear programming problem, which can be easily solved
by the simplex method. An iterative framework is also created, in which the de-
sign space is updated adaptively and a fine optimum can be well reached. Two
numerical examples are investigated to demonstrate the effectiveness of the present
method. Finally, it is employed to perform the optimization design of a practical
automobile frame.

Keywords: Structural optimization; Uncertainty; Interval; Reliability; Possibil-
ity of degree

1 Introduction

In traditional structural optimization, the evaluations of the objective function and
constraints are always based on analytical models with deterministic parameters.
However, uncertainties concerned with geometric dimensions, material properties,
loads, boundary conditions and etc widely exist in practical engineering problems.
For such class of problems, uncertain optimization methods need to be developed
for reliable or robust designs.
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One way to deal with uncertainties is to use probabilistic methods Elishakoff (1983);
Gurav et al (2005); Liu et al (2003); Kall et al (1982) ; Doltsinis et al (2004,2005) ,
in which the uncertain parameters are treated as random variables with certain prob-
ability distributions. Probabilistic methods require an abundance of experimental
data to construct precise probability distributions for the uncertain parameters, how-
ever, it is often expensive or even impossible to get sufficient information on the
uncertainty. Furthermore, there is research indicating that even a small deviation of
the probability distribution is likely to cause a large error of the reliability analysis
Ben-Haim et al (1990). Fortunately, in combination with engineering experience, it
is always possible to identify the bounds of the uncertain parameters through only
a small amount of samples. Consequently, the interval method is developed to deal
with this kind of problems without enough uncertainty information.

In the past two decades, the interval method has been attracting more and more
attentions as a result of making the uncertainty analysis more convenient and eco-
nomical. Tanaka et al (1984); Ishibuchi and Tanaka (1990); Rommelfanger (1989)
discussed the linear programming problem with interval coefficients in the objec-
tive function. Liu and Da (1999) proposed a fuzzy satisfactory degree of inter-
val number to deal with the uncertain constraints. Zhang et al (1999) assumed
the interval numbers as random variables with uniform distributions and proposed
a possibility degree to solve the multi-criteria decision problem. The described
works above are all emphasized on the linear interval number programming. In
recent years, many researchers intend to develop some new methods to deal with
the nonlinear interval number optimization problems. Levin (1999) seems the first
to investigate the nonlinear optimization under interval uncertainty from the math-
ematical point of view, and an interval Lagrangian function was introduced to solve
the interval nonlinear optimization problems. Ma (2002) presented a new approach
to solve this kind of problems in which only the uncertain objective function was
considered and the uncertain optimization was transformed into a deterministic
three-objective optimization. Jiang et al (2008a,2008b) suggested a nonlinear inter-
val number programming (NINP) method based on an interval order relation and a
modified possibility degree. This method is suited to solve NINP problems with un-
certain coefficients both in the objective function and constraints. Han et al (2009)
suggested an efficient NINP method based on the linear sequential programming.
Though several NINP models have been developed to transform the uncertain prob-
lems to deterministic ones and also some effective techniques have been proposed
to improve the optimization efficiency, there still exist severe limitations making
NINP method unable to play a bigger role in dealing with the practical problems.
Firstly, in the NINP, the possibility degree is generally used to compare intervals
and whereby deal with interval constraints. For the current possibility degree, the
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range of their values is limited within the scope of [0,1], in which 0 and 1 represent
that one interval is absolutely larger or smaller than another one. Once the value 0
or 1 is reached, their comparing function will be weakened, and whereby it can’t
reflect the relative positions of two parameter intervals quantitatively. However,
for practical problems different relative positions of two parameter intervals indi-
cate different reliability, whereas the possibility degree can not grasp this important
characteristic. As a matter of fact, lacking the ability of reliability analysis limits
a wider engineering application of the above NINP methodologies. Secondly, in
all the aforementioned NINP methods, the transformed deterministic optimization
problems are still nested, which leads to extremely low computational efficiency
for practical problems with time-consuming simulation models.

On the basis of the authors’ previous work, we propose an efficient interval op-
timization method using a reliability-based possibility degree of interval, which
aims to deal with reliability-based design optimization problems with high opti-
mization efficiency. The following text consists of four major parts. The first part
is the formulation of the problem, in which a general interval optimization prob-
lem is investigated. In the second part, an NINP method using a reliability-based
possibility degree of interval (RPDI) is suggested to transform the uncertain opti-
mization problem into a deterministic optimization problem. In the third part, the
linear approximation technique is combined with the proposed NINP method, and
hence a sequential nonlinear interval optimization algorithm is developed. A series
of approximate optimization problems are constructed. At each iterative step, the
approximate interval problem can be changed to a deterministic optimization prob-
lem using an order relation and RPDI, which can be easily solved by the simplex
method. In the fourth part, the proposed method is applied to two numerical exam-
ples to demonstrate its effectiveness, and it is employed to perform the optimization
design of a practical automobile frame.

2 Formulation of interval optimization

A general interval optimization problem can be formulated as follows:

min
X

f (X,p)

subject to

g j (X,p)≤ bI
j =
[
bL

j ,b
R
j
]
, j = 1,2, ...l

Xl ≤ X≤ Xr

p ∈ pI = [pL,pR], pi ∈ pI
i = [pL

i , pR
i ], i = 1,2, ...q (1)
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where f and g j are the objective function and the jth constraint, respectively. X
denotes an n-dimensional design vector. In practical engineering, f and g j are com-
monly nonlinear functions with respect to X and p. p is an q-dimensional uncertain
vector, and its uncertainty is modeled by an interval vector pI . The superscripts I,L,
and R denote interval, lower and upper bounds, respectively. The midpoint vector
pc and radius vector pw of pI are defined as follows:

pc =
pR +pL

2
, pc

i =
pR

i + pL
i

2
, i = 1,2, ...,q

pw =
pR−pL

2
, pw

i =
pR

i − pL
i

2
, i = 1,2, ...,q (2)

3 Transformation to a deterministic optimization problem

A nonlinear interval optimization problem in which uncertainties exist in not only
the objective function but also constraints is investigated in this paper. A general
means is to construct a mathematical model to change it into a deterministic opti-
mization problem. In our formulation given below, an interval order relation and
a RPDI will be employed to deal with the uncertain objective function and con-
straints, respectively.

As a result of the variation of the uncertain parameters, the possible values of the
objective function will form an interval for each X. Thus interval comparison is es-
sential for implementing the interval optimization problems. Ishibuchi and Tanaka
(1990) proposed an interval order relation ≤cw to compare intervals, and it has the
following form for a minimization problem:

AI ≤cw BI if Ac ≥ Bc and Aw ≥ Bw

AI <cw BI if AI ≤cw BI and AI 6= BI

Ac =
AR +AL

2
, Bc =

BR +BL

2

Aw =
AR−AL

2
, Bw =

BR−BL

2
(3)

where AI and BI are two interval numbers. This order relation represents a pref-
erence to the midpoint value c and the radius w of the interval number, and based
on it, we can transform the interval objective function in Eq. (1) to a deterministic
two-objective optimization:

min[ f c(X), f w(X)]
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f c(X) =
1
2
( f L(X)+ f R(X))

f w(X) =
1
2
( f R(X)− f L(X)) (4)

where f L(X) and f R(X) are lower and upper bounds of f (X,p) at each specific X,
respectively. They can be obtained through two optimization processes:

f L(X) = min
p∈Γ

f (X,p), f R(X) = max
p∈Γ

f (X,p)

p ∈ Γ ∈ pI = [pL,pR] (5)

In the authors’ previous work Jiang et al (2010), we suggested a new kind of possi-
bility degree for intervals named RPDI:

pr(AI ≤ BI) =
BR−AL

2(Aw +Bw)

Aw =
AR−AL

2
, Bw =

BR−BL

2
(6)

where pr ∈ [−∞,+∞] is used to represent a certain extent that interval AI is less
than BI . The RPDI can work not only for overlapped intervals but also completely
separated intervals, and furthermore its variation trend is in accordance with the
variation of the reliability very well. Thus it can exhibit fine properties in the as-
pects of reliability analysis.

In this study, we adopt the RPDI to deal with the interval constraints in Eq.(1):

pr
(
gI

j (X)≤ bI
j
)

=
bR

j −gL
j (X)

2gw
j (X)+2bw

j
≥ λ j, j = 1,2, ..., l

gw
j (X) =

gR
j (X)−gL

j (X)
2

, bw
j =

bR
j −bL

j

2
(7)

where λ j ∈ [−∞,∞] is a predetermined RPDI level for the jth constraint, and it
can be adjusted according to the reliability requirement. A large RPDI level indi-
cates a high reliability of the constraint, and whereby a small feasible field for the
constraints Eq. (7). gI

j (X) denotes the interval of the jth constraint at a specific
X caused by the uncertain parameters, and it can be obtained by performing two
optimization processes:

gL
j (X) = min

p∈Γ
g j(X,p), gR

j (X) = max
p∈Γ

g j(X,p)
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p ∈ Γ ∈ pI = [pL,pR] (8)

Based on the above treatments, a deterministic optimization problem can be finally
formulated as follows:

min[ f c(X), f w(X)]

subject to

pr
(
gI

j (X)≤ bI
j
)

=
bR

j −gL
j (X)

2gw
j (X)+2bw

j
≥ λ j, j = 1,2, ..., l

Xl ≤ X≤ Xr

where

f c(X) =
1
2
( f L(X)+ f R(X)) =

1
2

(
min
p∈Γ

f (X,p)+max
p∈Γ

f (X,p)
)

f w(X) =
1
2
( f R(X)− f L(X)) =

1
2

(
max
p∈Γ

f (X,p)−min
p∈Γ

f (X,p)
)

gI
j (X) =

[
gL

j (X) ,gR
j (X)

]
=
[

min
p∈Γ

g j(X,p),max
p∈Γ

g j(X,p)
]

(9)

Using the linear combination method to deal with the multi-objective problem, a
single-objective optimization problem can be further obtained:

min
X

fd = β ( f c(X,p))+(1−β )( f w(X,p))

subject to

pr
(
gI

j (X)≤ bI
j
)

=
bR

j −gL
j (X)

2gw
j (X)+2bw

j
≥ λ j, j = 1,2, ..., l

Xl ≤ X≤ Xr (10)

where 0.0≤ β ≤ 1.0 is a weighting factor.

Generally, Eq. (10) is a nesting optimization problem. The outer optimization
layer is used to optimize the design vector, and the inner optimization layer is used
to compute the bounds of the objective function and constraints cause by the uncer-
tainties. A direct solve to Eq. (10) will lead to extremely low efficiency inevitably.
Thus, in the following section, we will propose an efficient algorithm for this prob-
lem.
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4 A sequential interval optimization algorithm

In the algorithm, a sequence of approximate sub-optimization problems are gen-
erated, and an optimal design vector can be achieved through an iterative process.
Based on the first-order Taylor expansion, an approximate optimization problem at
the sth iterative step is created as follows:

min
X

f̃ (X,p)≈ f (X(s),pc)+
n

∑
i=1

∂ f (X(s),pc)
∂Xi

(Xi−X (s)
i )+

q

∑
i=1

∂ f (X(s),pc)
∂ pi

(pi− p(s)
i )

subject to

g̃ j (X,p)≈ g j(X(s),pc)+
n

∑
i=1

∂g j(X(s),pc)
∂Xi

(Xi−X (s)
i )+

q

∑
i=1

∂g j(X(s),pc)
∂ pi

(pi− p(s)
i )

≤ bI
j =
[
bL

j ,b
R
j
]
, j = 1, ..., l

max
[
Xl,X(s)−δ

(s)
]
≤ X≤min

[
Xr,X(s) +δ

(s)
]

(11)

It is obvious that the approximate objective function f̃ and the jth constraint g̃i are
both linear functions with respect to X and p. δ (s) is a move limit vector which
forms the current design space with the design vector X(s) to ensure the approxi-
mation accuracy.

4.1 Solution of the approximate optimization problem

Based on the method developed in section 3, Eq. (11) can be transformed to a
following deterministic optimization problem:

min
X

f̃d = β
(

f̃ c(X,p)
)
+(1−β )

(
f̃ w(X,p)

)
f̃ c(X) =

1
2
( f̃ L(X)+ f̃ R(X))

f̃ w(X) =
1
2
( f̃ R(X)− f̃ L(X))

subject to

pr
(
g̃I

j (X)≤ bI
j
)

=
bR

j − g̃L
j (X)

2g̃w
j (X)+2bw

j
≥ λ j, j = 1,2, ..., l

g̃w
j (X) =

g̃R
j (X)− g̃L

j (X)
2

,bw
j =

bR
j −bL

j

2
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max
[
Xl,X(s)−δ

(s)
]
≤ X≤min

[
Xr,X(s) +δ

(s)
]

(12)

where f̃ I(X) =
[

f̃ L(X), f̃ R(X)
]

and g̃I
j(X) =

[
g̃L

j (X), g̃R
j (X)

]
denote the intervals of

the approximate objective function and jth constraint, and here they can be obtained
explicitly using the natural interval extension Moore (1979); Qiu (2005) :

f̃ L(X) = f (X(s),pc)+
n

∑
i=1

∂ f (X(s),pc)
∂Xi

(
Xi−X (s)

i

)
−

q

∑
i=1

∣∣∣∣∣∂ f (X(s),pc)
∂ pi

∣∣∣∣∣pw
i

f̃ R(X) = f (X(s),pc)+
n

∑
i=1

∂ f (X(s),pc)
∂Xi

(
Xi−X (s)

i

)
+

q

∑
i=1

∣∣∣∣∣∂ f (X(s),pc)
∂ pi

∣∣∣∣∣pw
i

g̃L
j (X) = g j(X(s),pc)+

n

∑
i=1

∂g j(X(s),pc)
∂Xi

(
Xi−X (s)

i

)
−

q

∑
i=1

∣∣∣∣∣∂g j(X(s),pc)
∂ pi

∣∣∣∣∣pw
i

g̃R
j (X) = g j(X(s),pc)+

n

∑
i=1

∂g j(X(s),pc)
∂Xi

(
Xi−X (s)

i

)
+

q

∑
i=1

∣∣∣∣∣∂g j(X(s),pc)
∂ pi

∣∣∣∣∣pw
i (13)

Substituting Eq. (13) into Eq. (12), we can obtain:

min
X

f̃d =
n

∑
i=1

∂ f (X(s),pc)
∂Xi

βXi +β

(
f (X(s),pc)

)
−

n

∑
i=1

∂ f (X(s),pc)
∂Xi

X (s)
i

+
q

∑
i=1

∣∣∣∣∣∂ f (X(s),pc)
∂ pi

∣∣∣∣∣(1−β ) pw
i

subject to

n

∑
i=1

∂g j(X(s),pc)
∂Xi

Xi ≤
q

∑
i=1

∣∣∣∣∣∂g j(X(s),pc)
∂ pi

∣∣∣∣∣(1−2λ j) pw
i +

n

∑
i=1

∂g j(X(s),pc)
∂Xi

X (s)
i

+(1−λ j)bR
j +λ jbL

j max
[
Xl,X(s)−δ

(s)
]
≤ X≤min

[
Xr,X(s) +δ

(s)
]

(14)

Obviously, Eq. (14) is a traditional linear programming problem, and it can be
easily solved by simplex method Nocedal et al (1999).

4.2 Computational procedure

The computational procedure of the proposed algorithm can be described as fol-
lows:
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1. Select the initial design vector X(1) and the move limit vector δ (1). Give the
scaling factor α ∈ (0,1) and the allowable errors ε1 > 0,ε2 > 0,ε3 > 0. Set
the predetermined RPDI level for each constraint, and make the iterative step
s=1.

2. Construct the approximate optimization problem Eq. (11) and solve its trans-
formed optimization problem Eq. (14) using the simplex method to obtain
an optimal vector X̄.

3. Calculate the bounds of the actual objective function and constraints at the
intermediate optimum X̄, based on which the desirability function fd

(
X̄
)

and

the actual RPDI pr

(
g̃I

j
(
X̄
)
≤ bI

j

)
, j = 1,2, ..., l can be computed.

4. Judge whether X̄ is a feasible and descending solution through the criterion
min

{(
pr

(
gI

j
(
X̄
)
≤ bI

j

)
−λ j

)
, j = 1,2, ..., l

}
>−ε1 and fd

(
X̄
)
< fd

(
X(s)

)
.

And

(a) If it can be satisfied, making X(s+1) = X̄ and go to step (6);

(b) Otherwise, making reducing the move limit vector δ (s) := αδ (s) by a
scaling factor α .

5. Introduce the move limit vector criteria min
{

δ
(s)
i , i = 1,2, ...,n

}
< ε2.

(a) If it can be satisfied, X(s) is obtained as an optimal design vector and
the optimization stops;

(b) Otherwise, go back to step (2).

6. Repeat steps 2 to 5 until the distance between the last two iteration design
vectors is smaller than ε3.

A direct approach to calculate the bounds of the objective function and constraints
at the intermediate optimum X̄ in step (3) is to perform several optimization pro-
cesses. However, it will still influence the optimization efficiency, especially for
the complex engineering problems. Here, we can also use the interval analysis
technique Qiu (2005) to further improve the optimization efficiency.

Because the intervals of the uncertain parameters are assumed to be relatively small
in our study, the objective function f in Eq.(1) can be approximated as a linear
function at X̄ within the uncertainty space through the first-order Taylor expansion:

f (X̄)≈ f (X̄,pc)+
q

∑
i=1

∂ f (X̄,pc)
∂ pi

(pi− pc
i ) (15)
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where

(p−pc) ∈ [−1,1]pw,(pi− pc
i ) ∈ [−1,1] pw

i , i = 1,2, ...,q (16)

Thus, the bounds of the uncertain objective function at X̄ can be obtained explicitly:

f L(X̄) = f (X̄,pc)−
q

∑
i=1

∣∣∣∣∂ f (X̄,pc)
∂ pi

∣∣∣∣pw
i

f R(X̄) = f (X̄,pc)+
q

∑
i=1

∣∣∣∣∂ f (X̄,pc)
∂ pi

∣∣∣∣pw
i (17)

Similarly, the bounds of the uncertain constraints at X̄ can also be obtained explic-
itly:

gL
j (X̄) = g j(X̄,pc)−

q

∑
i=1

∣∣∣∣∂g j(X̄,pc)
∂ pi

∣∣∣∣pw
i

gR
j (X̄) = g j(X̄,pc)+

q

∑
i=1

∣∣∣∣∂g j(X̄,pc)
∂ pi

∣∣∣∣pw
i (18)

Obviously, only a small amount of evaluations of the uncertain objective function
or each constraint at X̄ need to be calculated.

5 Numerical examples and discussion

5.1 Numerical example 1

Consider the simple plane ten-bar truss structure as shown in Fig. 1, which has
been investigated in various optimization contexts Liu et al (1999); Elishakoff et al
(1994) . The cross-sectional area A j of the bars are optimized to obtain a minimum
weight design subject to the stress and displacement constraints. The truss is made
of aluminum with a weight density of 0.1lb/in3 and a Young’s modulus E of 104ksi.
The length L of the horizontal and vertical bars is 360in. A constraint of 5in on the
vertical displacement of joint 2 is applied. The maximum allowable stress of bar 9
in tension or compression is 75ksi, and the other bars have a same allowable stress
in tension or compression which is 25ksi. Joint 4 is subjected to vertical load P4y,
and joint 2 is subjected to vertical load P2y and horizontal load P2x. In this numerical
example, the load are uncertain, and their nominal values are 100kips,100kips, and
400kips, respectively. The uncertainty level is 10% off from the nominal values of
the loads.
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Figure 1: Ten-bar plane truss

The unknown axial force in the bars are denoted by Ni, i = 1,2, ...,10, and they
satisfy the following equilibrium and compatibility equations:

N1 = P2y−
√

2
2

N8, N2 =−
√

2
2

N10, N3 =−P4y−2P2y +P2x−
√

2
2

N8 (19)

N4 =−2P2y +P2x−
√

2
2

N10, N5 =−2P2y−
√

2
2

N8−
√

2
2

N10, N6 =
√

2
2

N10 (20)

N7 =
√

2(P4y +P2y)+N8, N8 =
a22b1−a21b2

a11a22−a12a21

N9 =
√

2P2y +N10, N10 =
a11b2−a21b1

a11a22−a12a21
(21)

a11 =

(
1

A1
+

1
A3

+
1

A5
+

2
√

2
A7

+
2
√

2
A8

)
L

2E
, a12 = a21 =

L
2A5E

a22 =

(
1

A2
+

1
A4

+
1

A6
+

2
√

2
A9

+
2
√

2
A10

)
L

2E
,

(22)

b1 =

(
P2y

A1
−

P4y +2P2y−P2x

A3
−

P2y

A5
−

2
√

2(P4y +P2y)
A7

)√
2L

2E
(23)

b2 =

(√
2(P2x−P2y)

A4
−
√

2P2y

A5
−

4P2y

A7

)
L

2E
(24)
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The vertical displacement of joint 2 can be obtained from the following expression:

δ2 =

[
6

∑
i=1

N0
i Ni

Ai
+
√

2
10

∑
i=7

N0
i Ni

Ai

]
L
E

(25)

where N0
i can be obtained from Eqs. (19)-(21) with a substitution P4y = P2x = 0

and P2y = 1.

An optimization problem for minimal weight can be formulated as follows:

min
A

W (A) =
10

∑
i=1

(ρLiAi) = ρL

(
6

∑
i=1

Ai +
√

2
10

∑
i=7

Ai

)

subject to

σ
I
i (A) =

|Ni|
Ai
≤ σi,allow, i = 1,2, ...,10

δ
I
2(A)≤ 5in

0.1in2 ≤ Ai ≤ 20in2, i = 1,2, ...,10 (26)

In the optimization process, the weighting factor β is specified as 0.5, and the
scaling factor is set to 0.5. ε1, ε2, and ε3 are all taken equal to 0.01. The initial
cross-sectional areas for the bar are all given 20in2, and the initial move limit for
each bar is specified 2.0in2. The same predefined RPDI level is used for each
constraint. The optimization results under different RPDI levels are listed in Tables
1-4, it can be found that the predefined RPDI levels are all satisfied at the optima.
The minimum weight of the truss decreases with the decreasing of the RPDI level.
The relation between the minimum weight and the predefined RPDI level is given
in Fig. 2. We can observe that they exhibit an approximate linear relation. For
the predefined RPDI level 1.2, the weight of the optimal truss is 2556.14 lb. For
the predefined RPDI level 0.8, it reaches a minimum value 2256.24 lb. It can be
found that a larger predefined RPDI level is required when a more reliable structural
design is needed, however, the manufacturing cost will increase. Thus engineers
always face a tradeoff between the design objective and the risk of violating the
constraints through adjusting the predefined RPDI levels of the constraints. As
a mater of fact, engineers can predefine different RPDI level for each constraint
according to the practical problem.
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Figure 2: Relation of the predefined RPDI level and the minimum weight of the
truss

Table 1: Optimization results under the RPDI level 1.2

Bar’s number Cross-sectional Area(in2) Stress Interval(ksi) RPDI Level
1 17.80 [6.12,8.04] 9.82
2 0.59 [17.51,23.76] 1.20
3 8.57 [7.37,22.04] 1.20
4 15.18 [17.38,23.73] 1.20
5 4.38 [11.90,16.32] 2.96
6 0.59 [17.51,23.76] 1.20
7 11.23 [19.72,24.10] 1.20
8 2.04 [13.13,23.01] 1.20
9 2.80 [40.01,48.90] 3.94
10 0.83 [17.48,23.72] 1.21

Interval of the displacement is [2.42in, 4.57in], RPDI is 1.20.
The weight of the optimal truss is 2556.14 lb

5.2 Numerical example 2

A simple beam design problem as shown in Fig. 3 is investigated, which is mod-
ified from a numerical example in the reference Hu (1990). Two cross-sectional
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Table 2: Optimization results under the RPDI level 1.1

Bar’s number Cross-sectional Area(in2) Stress Interval(ksi) RPDI Level
1 17.53 [6.13,8.06] 9.75
2 0.35 [17.78,24.35] 1.10
3 8.01 [7.66, 23.39] 1.10
4 14.63 [17.66,24.34] 1.10
5 4.49 [12.95,17.52] 2.64
6 0.35 [17.80,24.35] 1.10
7 11.14 [20.09,24.56] 1.10
8 1.85 [13.28,23.96] 1.10
9 2.91 [40.54,49.55] 3.83
10 0.49 [17.80,24.35] 1.10

Interval of the displacement is [2.46in, 4.76in], RPDI is 1.11.
The weight of the optimal truss is 2468.85 lb

Table 3: Optimization results under the RPDI level 0.9

Bar’s number Cross-sectional Area(in2) Stress Interval(ksi) RPDI Level
1 17.48 [5.91,7.77] 10.27
2 0.10 [18.59,25.71] 0.90
3 6.82 [8.18, 26.87] 0.90
4 13.68 [18.46,25.73] 0.90
5 4.37 [15.43,20.36] 1.94
6 0.10 [18.59,25.71] 0.90
7 11.02 [20.83,25.46] 0.90
8 1.39 [13.55,26.27] 0.90
9 2.98 [41.77,51.05] 3.58
10 0.14 [18.59,25.71] 0.90

Interval of the displacement is [2.46, 5.09], RPDI is 0.90.
The weight of the optimal truss is 2322.94 lb

dimensions X1 and X2 are required to be optimized to obtain a minimum vertical
deflection of the beam, which is subjected to a cross-sectional area constraint and a
stress constraint. The other two cross-sectional dimensions p1 and p2 are uncertain
parameters, and their midpoints are both 2.0cm, respectively. The Young’s Modu-
lus of the beam, blending forces Q1 and Q2, length of the beam are 2×104kN/cm2,
600kN, 50kN, 200cm, respectively.
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Table 4: Optimization results under the RPDI level 0.8

Bar’s number Cross-sectional Area(in2) Stress Interval(ksi) RPDI Level
1 17.11 [5.68,7.34] 11.62
2 0.10 [19.11,26.47] 0.80
3 6.04 [7.55, 29.34] 0.80
4 13.28 [19.02,26.50] 0.80
5 4.62 [16.40,20.97] 1.88
6 0.10 [19.11,26.47] 0.80
7 11.32 [21.21,25.93] 0.80
8 0.79 [12.85,28.02] 0.80
9 2.90 [42.86,52.39] 3.37
10 0.14 [19.11,26.47] 0.80

Interval of the displacement is [2.36, 5.28], RPDI is 0.90.
The weight of the optimal truss is 2256.24 lb

 

Figure 3: A beam design problem

The uncertain optimization model can be formulated as follows:

min
x

f (X,p) =
Q1L3

48EI
=

5000

1
12 p1(X1−2p2)+ 1

6 X2 p3
2 +2X2 p2

(
X1−p2

2

)2

subject to

Cross-sectional area is not more than 300cm2:

g1 (X,p) = 2X1 p2 + p1 (X1−2p2)≤ 300
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The maximal stress is not more than 10kN/cm2:

g2 (X,p) =
180000X1

p1 (X1−2p2)
3 +2X2 p2 [4p2 +3X1 (X1−2p2)]

+
15000X2

(X1−2p2) p3
1 +2p2X3

2
≤ 10

10.0cm≤ X1 ≤ 120.0cm,10.0cm≤ X2 ≤ 120.0cm (27)

The uncertainty levels are both only ±10% off from the midpoints of the uncertain
parameters, namely:

p1 ∈ [1.8cm,2.2cm] , p2 ∈ [1.8cm,2.2cm] (28)

where the objective function f represents the vertical deflection of the beam.

In the optimization process, the weighting factor β is specified as 0.5, and the scal-
ing factor is set to 0.9. ε1, ε2,and ε3 are all taken equal to 0.01. The initial design
vector and move limit vector are set as (40.00,40.00)T and (10.00,10.00)T , re-
spectively. The same predefined RPDI level is used for each constraint. Using the
proposed methodology, the optimization results under different predefined RPDI
levels are listed in Table 5, it can be found that the RPDI levels of all the con-
straints are satisfied for the predefined RPDI levels.. For predefined RPDI level
1.1, the obtained interval of the cross sectional area and stress constraints are
[242.64cm2,294.79cm2] and [8.11kN/cm2, 9.83kN/cm2] respectively, which are
completely less than the corresponding allowable interval. The convergence curve
of the proposed algorithm for the case of predefined RPDI level 0.7 is also plotted
in Fig. 4. It can be found that the optimization converges at a relatively stationary
value only through 10 iterative steps.

5.3 Application

A practical automobile frame model as shown in Fig. 5 is investigated. This
frame model is composed by two side beams and eight cross beams. The cross
beams are denoted by bi, i = 1,2, ...,8. The density of the frame’s material is
7.8×10−3Kg/mm3. The frame is a base of the whole automobile, and many parts
and unit assemblies are fixed on the frame through the connecting pieces. A static
mechanical model of the frame is obtained as shown in Fig. 5. Q1, Q2, Q3, Q4
represent the uniform distributed forces acting on the frame. The small triangle
denotes the fixed constraints.

The cross beams b1, b2, b3,and b6 are fixed, and the spans li, i = 1,2,3 of the beams
are optimized to obtain a maximum stiffness of the frame in Y direction. The
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Figure 4: Convergence curve for the predefined RPDI level 0.7

maximum nodal displacement in Y direction can be used to represent the stiffness.
As errors are unavoidable during the manufacturing and measurement processes,
Young’s Modulus E and Poisson’s ratio ν are uncertain. The midpoints of E and ν

are 2.0×105 MPa and 0.3, respectively.

A following uncertain optimization problem can be formulated:

min
l

dmax(l,E,ν)

Subject to

σmax(l,E,ν)≤ 90MPa

500mm≤ li ≤ 1200mm, i = 1,2,3

E ∈
[
1.8×105 MPa,2.2×105 MPa

]
, ν ∈ [0.27,0.33] (29)

Where l represent a three-dimensional design vector. The objective function dmax
and constraint σmax denote the maximum displacement in Y direction and the max-
imum equivalent stress in the frame, respectively.

Finite element method is employed to calculate dmax and σmax. In the optimiza-
tion process, the weighting factor β is specified as 0.5, and the RPDI level of the
constraint is predefined as 3.8. The scaling factor is set to 0.5. ε1, ε2, and ε3 are
all taken equal to 0.01. The initial design vector and move limit vector are set to
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Figure 5: An automobile frame

[800.00,800.00,800.00]T and [50.00,50.00,50.00]T , respectively. The optimiza-
tion results are listed in Table 6, it can be found that the optimal design vector is
[777.29,775.83,825.83], at which the interval of the maximum displacement in Y
direction is [1.34mm,1.64mm] and the RPDI of the stress constraint is satisfied for
the predefined RPDI level. The convergence curve is shown in Fig. 6. It can be
found that only 8 iterative steps are needed to obtain the maximum stiffness of the
frame. In the optimization process, a total of 72 FEM evaluations are needed.

Table 6: Optimization results of the automobile frame

Optimal design Displacement interval Stress RPDI
vector(mm) in Y direction(mm) interval(Mpa) Level

[777.29,775.83,825.83] [1.34,1.64] 87.17 3.83
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Figure 6: Convergence curve for the design of the automobile frame

6 Conclusion

In this paper, we propose an efficient interval optimization method based on a
RPDI, which is more suited for reliability analysis and reliability-based optimiza-
tion. The simplex method is employed to solve the approximate optimization prob-
lem at each iterative step. Additionally, a computational framework is constructed
to guarantee the algorithm to converge efficiently. To further improve the efficiency,
an approximate method is also suggested to compute the bounds of the objective
function and constraints at each intermediate optimum. In the first two numerical
examples, different predefined RPDI levels are investigated. The optimization re-
sults indicate that the proposed method behaves a relatively good performance. it is
also applied to a practical engineering problem, and fine results are obtained with a
relatively small number of FEM evaluations.

It is also should be noticed that the intervals of the objective and constraints are
calculated based on the Taylor expansion at each iterative step, and thus the uncer-
tainty level of the problem is relatively small. Fortunately, this is always satisfied
in most practical engineering problems.
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