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A Lie-Group Adaptive Method for Imaging a
Space-Dependent Rigidity Coefficient in an Inverse

Scattering Problem of Wave Propagation

Chein-Shan Liu1

Abstract: We are concerned with the reconstruction of an unknown space-
dependent rigidity coefficient in a wave equation. This problem is known as one of
the inverse scattering problems. Based on a two-point Lie-group equation we de-
velop a Lie-group adaptive method (LGAM) to solve this inverse scattering prob-
lem through iterations, which possesses a special character that by using only two
boundary conditions and two initial conditions, as those used in the direct problem,
we can effectively reconstruct the unknown rigidity function by a self-adaption be-
tween the local in time differential governing equation and the global in time alge-
braic Lie-group equation. The accuracy and efficiency of the present LGAM are
assessed by comparing the imaged results with some postulated exact solutions. By
means of LGAM, it is quite versatile to handle the wave inverse scattering problem
for the image of the rigidity coefficient without needing any extra information from
the wave motion.

Keywords: Inverse problem, Wave inverse scattering problem, Lie-group adap-
tive method (LGAM), Iterative method

1 Introduction

The parameter characterizing material property distributed in a solid medium may
be quite complicated, which depends on direction and position. Inverse scattering
is how we can obtain a large part of our information about the constitutents. We
know about the interior structure of the earth by solving the inverse problem of
determining the sound speed by measuring the travel times of seismic waves. In-
verse scattering is also often-used in the non-destructive evaluation of structures to
find cracks and corrosions. The task of inverse scattering theory is to determine
material properties of the target, given sufficiently many input and output pairs. It
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seeks to determine the profile of material property or an obstacle from its scattering
amplitude [Majda (1976, 1977)], which may be a quite difficult research issue.

For the material property identification problem of wave equations there are two
kinds of approach: time-independent approach and time-dependent approach. In
fact, most often the inverse scattering problems are stated in a time-independent
formulation that results after taking a Fourier transformation in the time variable,
or inserting a time-harmonic plane wave into the wave equations.

To motivate the present study, we consider the longitudinal wave motion of a one-
dimensional rod with variable Young’s modulus E(x) and cross-sectional area A(x):

1
A(x)

∂

∂x

(
E(x)A(x)

∂u(x, t)
∂x

)
= ρ(x)

∂ 2u(x, t)
∂ t2 , (1)

where ρ(x) is the variable mass-density, and u(x, t) is the longitudinal displace-
ment.

Let u(x, t) = eiωty(x), and Eq. (1) can be simplified as

− d
dx

(
E(x)A(x)

dy(x)
dx

)
= ω

2
ρ(x)A(x)y(x), (2)

where ω is the vibrational frequency. In the inverse scattering problem, it is tech-
nically important to identify the material properties E(x), ρ(x) and the geometric
variable A(x) for some measured frequencies ω of the vibrating rod. This problem
is known as an inverse scattering problem of a vibrating rod for specified frequen-
cies. Liu and Atluri (2008) have solved the above problem by using the Fictitious
Time Integration Method (FTIM). Under the given eigenvalues they can recover
the rigidity function E(x)A(x).
Instead of identifying all the functions of E(x), A(x), and ρ(x), we restrict ourselves
to only identify α(x) = E(x) by supposing ρ(x) = A(x) = 1, because E(x) is the
most important factor in the inverse wave scattering problem. The presently pro-
posed method can solve this sort inverse problem by directly treating the following
wave equation:

∂ 2u(x, t)
∂ t2 =

∂

∂x

[
α(x)

∂u(x, t)
∂x

]
+h(x, t), 0 < x < `, 0 < t < t f , (3)

u(x,0) = f (x), (4)

ut(x,0) = g(x), (5)

u(0, t) = u0(t), (6)

u(`, t) = u`(t), (7)
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where h(x, t), f (x), g(x), u0(t) and u`(t) are given functions, and α(x) > 0 is to be
determined.

In the time-domain approach of the inverse scattering problems, there are some
literature related to the present issue, to name a few, Baev (1986, 1987, 1988), Tadi
(1997, 1998, 1999), and Na and Kallivokas (2009). For the above inverse problem,
α(x) can be estimated, if one can provide an extra measurement of data as that
given by an over-specified boundary condition at x = `:

∂u(`, t)
∂x

= Fm(t), (8)

or sometimes by an internal measurement of u at a point xm:

u(xm, t) = um(t). (9)

For the problem governed by Eqs. (3)-(8) or (9) there are some studies as can be
seen from the papers by Tadi (1998), Na and Kallivokas (2009), and references
therein.

Liu (2006a, 2006b, 2006c) has extended the group-preserving scheme (GPS) de-
veloped previously by Liu (2001) for ODEs to solve the boundary value problems
(BVPs). In the construction of the Lie-group method for the calculations of BVPs,
Liu (2006a) has introduced the idea of one-step GPS by utilizing the closure prop-
erty of the Lie group, and hence, the resulting shooting method has been named the
Lie-group shooting method (LGSM). After that, Liu (2006d) has used this concept
to establish a one-step estimation method to estimate the temperature-dependent
heat conductivity, and then extended the Lie-group method to estimate the thermo-
physical properties of heat conductivity and heat capacity [Liu (2006e, 2007)]. The
Lie-group method possesses a great advantage than other numerical methods due
to its group structure, and it is a powerful technique to solve the inverse problem
of parameter identification [Liu (2008a, 2008b, 2009)]. Recently, Liu and Atluri
(2010) have made a breakthrough by solving the Calderón inverse problem with a
more general version of the Lie-group shooting method.

In this paper we introduce a new concept of the self-adaption by a two-point Lie-
group equation, such that we can iteratively solve the inverse scattering problem in
Eq. (3) by imaging α(x), which only using the data given in Eqs. (4)-(7). This paper
is organized as follows. In Section 2 we give a semi-discretization of the governing
equation by the numerical method of line. Section 3 is devoted to develop a Lie-
group formulation of the inverse scattering problem, including a group-preserving
scheme, a one-step Lie-group transformation, and a two-point Lie-group equation.
The Lie-group method is described in Section 4. In Section 5, we adjust the Lie-
group shooting method as being a Lie-group adaptive method suitable for the es-
timation of parameter without having a real target, and the numerical procedures



4 Copyright © 2010 Tech Science Press CMC, vol.18, no.1, pp.1-21, 2010

are described. The numerical tests are carried out in Section 6 with five numerical
examples. Finally, some significiant observations are drawn in Section 7.

2 The numerical method of line

First, let v(x, t) = ∂u(x, t)/∂ t, and then Eq. (3) in a state-space description can be
expressed as

∂u(x, t)
∂ t

= v(x, t), (10)

∂v(x, t)
∂ t

=
∂

∂x

[
α(x)

∂u(x, t)
∂x

]
+h(x, t). (11)

Second, we use a semi-discretization method to discretize the quantities of u(x, t)
and v(x, t) in the space domain, and then we can obtain a system of ODEs for u and
v with t as an independent variable:

u̇i(t) = vi(t), i = 1, . . . ,n, (12)

v̇i(t) =
1

(∆x)2 (αi+1[ui+1(t)−ui(t)]−αi[ui(t)−ui−1(t)])+hi(t), i = 1, . . . ,n,

(13)

where ∆x = `/(n+1) is a uniform spatial increment with n the number of interior
grid points, and xi = i∆x are the discretized coordinates of x, at which the displace-
ment and velocity are, respectively, discretized as ui(t) = u(xi, t) and vi(t) = v(xi, t).
Besides, hi(t) = h(xi, t) and αi = α(xi) are, respectively, the discretized quantities
of h(x, t) and α(x) at the spatial point xi.

When i = 1 in Eq. (13), the term u0(t) appeared there is determined by the boundary
condition in Eq. (6). Similarly, when i = n, the term un+1(t) = u`(t) is determined
by the boundary condition in Eq. (7). On the other hand, the term αn+1 is supposed
to be measurable at the right-boundary.

The two initial conditions are given by

ui(0) = f (xi), i = 1, . . . ,n, (14)

vi(0) = g(xi), i = 1, . . . ,n, (15)

which are obtained from Eqs. (4) and (5) by discretizations.

3 A Lie-group formulation

In order to explore our new method in a self-contained fashion, let us first briefly
sketch the group-preserving scheme (GPS) for ODEs and one-step GPS in this
section.
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3.1 The group-preserving scheme

We write Eqs. (12) and (13) in a vector form:

ẏ = f(t,y), (16)

where the dot denotes the differential with respect to t, and

y :=
[

u
v

]
, f =

[
f1
f2

]
:=
[

v
f2(t,u)

]
, (17)

in which u = (u1, . . . ,un)t and v = (v1, . . . ,vn)t with the superscript t for the trans-
pose. The components of f2 represent the right-hand side of Eq. (13).

When both the vector y and its magnitude ‖y‖ :=
√

yty =
√y ·y are combined into

a single augmented vector

X =
[

y
‖y‖

]
, (18)

Liu (2001) has transformed Eq. (16) into an augmented system:

Ẋ = AX :=

[
02n×2n

f(t,y)
‖y‖

ft(t,y)
‖y‖ 0

]
X, (19)

where A is an element of the Lie-algebra so(2n,1) satisfying

Atg+gA = 0, (20)

and

g =
[

I2n 02n×1
01×2n −1

]
(21)

is a Minkowski metric. Here, I2n is the 2n-order identity matrix.

The augmented variable X can be viewed as a point in the Minkowski space M2n+1,
satisfying the cone condition:

XtgX = y ·y−‖y‖2 = 0. (22)

Accordingly, Liu (2001) has developed a group-preserving scheme (GPS) to guar-
antee that each Xk automatically locates on the cone:

Xk+1 = G(k)Xk, (23)
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where Xk denotes the numerical value of X at a discrete time tk, and G(k) ∈
SOo(2n,1) satisfies

GtgG = g, (24)

det G = 1, (25)

G0
0 > 0, (26)

where G0
0 is the 00-th component of G.

3.2 One-step Lie-group transformation

Throughout this paper we use the superscripted symbol y0 to denote the value of y
at t = 0, and y f the value of y at t = t f .

Applying the scheme in Eq. (23) to Eq. (19) with an initial condition X(0) = X0 we
can compute X(t) by the GPS. Assuming that the time stepsize used in the GPS is
∆t = t f /K, we can calculate the value of X f = ((y f )t,‖y f ‖)t at a final time t = t f ,
by applying the scheme in Eq. (23) to Eq. (19) step-by-step:

X f = GK · · ·G1X0. (27)

Because each Gi, i = 1, . . . ,K, is an element of the Lie-group SOo(2n,1), and by
the closure property of the Lie group, GK · · ·G1 is also a Lie-group element denoted
by G. Hence, from Eq. (27) it follows that

X f = GX0, (28)

which is a one-step Lie-group transformation from X0 to X f .

Now the problem is how to calculate G. While an exact solution of G is not avail-
able, we can calculate G through a numerical method by a generalized mid-point
rule, which is obtained from an exponential mapping of A by taking the values of
the argument variables of A at a generalized mid-point. The Lie-group element
generated from such an A ∈ so(2n,1) by an exponential mapping is

G(r) =

 I2n + a−1
‖f̂‖2 f̂f̂t bf̂

‖f̂‖

bf̂t
‖f̂‖ a

 , (29)

where

ŷ = ry0 +(1− r)y f , (30)

f̂ = f(t̂, ŷ), (31)

a = cosh

(
t f ‖f̂‖
‖ŷ‖

)
, b = sinh

(
t f ‖f̂‖
‖ŷ‖

)
. (32)
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Here, we have derived a single-parameter Lie-group element G(r) in terms of r ∈
[0,1], and t̂ = (1− r)t f .

3.3 A two-point Lie-group equation

Upon defining

F :=
f̂
‖ŷ‖

, (33)

Eqs. (29) and (32) can be expressed as

G =

 I2n + a−1
‖F‖2 FFt bF

‖F‖

bFt
‖F‖ a

 , (34)

a = cosh(t f ‖F‖), b = sinh(t f ‖F‖). (35)

From Eqs. (18), (28) and (34) it follows that

y f = y0 +ηF, (36)

‖y f ‖= a‖y0‖+b
F ·y0

‖F‖
, (37)

where

η :=
(a−1)F ·y0 +b‖y0‖‖F‖

‖F‖2 . (38)

Eq. (36) is written as

F =
1
η

(y f −y0). (39)

Substituting F into Eq. (37) and dividing both the sides by ‖y0‖, we can obtain

‖y f ‖
‖y0‖

= a+b
(y f −y0) ·y0

‖y f −y0‖‖y0‖
, (40)

where, after inserting Eq. (39) for F into Eq. (35), a and b are now written as

a = cosh
(

t f ‖y f −y0‖
η

)
, b = sinh

(
t f ‖y f −y0‖

η

)
. (41)
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Let

cosθ :=
(y f −y0) ·y0

‖y f −y0‖‖y0‖
, (42)

S := t f ‖y f −y0‖, (43)

and thus from Eqs. (40) and (41) it follows that

‖y f ‖
‖y0‖

= cosh
(

S
η

)
+ cosθ sinh

(
S
η

)
. (44)

Upon defining

Z := exp
(

S
η

)
, (45)

we can derive [Liu (2008b, 2010)]

Z =
(cosθ −1)‖y0‖

cosθ‖y0‖+‖y f −y0‖−‖y f ‖
, (46)

and from Eqs. (45) and (43) it follows that

η =
t f ‖y f −y0‖

lnZ
. (47)

Therefore, we arrive to an important result that between any two points (y0,‖y0‖)
and (y f ,‖y f ‖) on the cone, there exists a Lie-group element G ∈ SOo(2n,1) map-
ping (y0,‖y0‖) onto (y f ,‖y f ‖), which is given by[

y f

‖y f ‖

]
= G(t f )

[
y0

‖y0‖

]
, (48)

G(t f ) =

 I2n + a−1
‖F‖2 FFt bF

‖F‖

bFt
‖F‖ a

 , (49)

a = cosh(t f ‖F‖), b = sinh(t f ‖F‖), (50)

F =
1
η

(y f −y0) =
lnZ
t f

y f −y0

‖y f −y0‖
. (51)

It should be emphasized that the above G(t f ) is different from the G(r) in Eq. (29).
In order to extrude it being a Lie-group mapping between the quantities spanned a
whole time interval of [0, t f ] we write it to be G(t f ), which is independent on f and
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r. In contrast, G(r) is a function of r and f. However, these two Lie-group elements
G(r) and G(t f ) are both indispensable in our development of the Lie-group method,
which is coined as the following Lie-group equation:

y f = y0 +
η

‖ŷ‖
f̂, (52)

y f −y0

‖y f −y0‖
=

t f

lnZ
f̂
‖ŷ‖

, (53)

by equating the two F’s in Eqs. (51) and (33), i.e., G(t f ) = G(r). When t f is a
physical time, lnZ can be viewed as a geometrical time of the ODEs system.

Corresponding to the local in time differential equation (16), the above is a global
in time algebraic equation, defined at two points t = 0 and t = t f , and it is a two-
point Lie-group equation. Previously, Liu (2006a) has derived this equation, but
did not write it explicitly, and originally this equation was used to solve the two-
point boundary value problem; later, Liu (2008a, 2008b, 2009, 2010) has called
this equation a Lie-group shooting equation and employed it to solve many inverse
problems. At there the situation is that this equation was used for the inverse prob-
lems which have a real target to be shot. Presently, we release this constraint with a
new concept that the above equation is just a two-point Lie-group equation describ-
ing a nonlinear relation between these two quantities of y0 and y f defined at two
different times t = 0 and t = t f . This equation is indeed inherent in all ODEs, no
matter there is a target or does not have a target in the ODEs. In the next section for
the inverse problem of recovering an unknown coefficient without the help from a
real target, i.e., extra data measurement, like as that in Eq. (8) or Eq. (9), we will
employ the above Lie-group equation to derive algebriac equations system to solve
α(x).

4 The Lie-group method

From Eqs. (12)-(15) it follows that

u̇ = v, (54)

v̇ = f2(t,u), (55)

u(0) = u0, u(t f ) = u f , (56)

v(0) = v0, v(t f ) = v f , (57)

where u0 and v0 are known from Eqs. (14) and (15).

By using Eq. (17) for y we have

y0 =
[

u0

v0

]
, y f =

[
u f

v f

]
, (58)
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and by Eq. (52) we can obtain

u f = u0 +
η

‖ŷ‖
v̂, (59)

v f = v0 +
η

‖ŷ‖
f̂2, (60)

where

‖ŷ‖=
√
‖û‖2 +‖v̂‖2

=
√
‖ru0 +(1− r)u f ‖2 +‖rv0 +(1− r)v f ‖2, (61)

f̂2 =



1
(∆x)2 [α2(û2− û1)−α1(û1− û0)]+ ĥ1

1
(∆x)2 [α3(û3− û2)−α2(û2− û1)]+ ĥ2

...

1
(∆x)2 [αn(ûn− ûn−1)−αn−1(ûn−1− ûn−2)]+ ĥn−1

1
(∆x)2 [αn+1(ûn+1− ûn)−αn(ûn− ûn−1)]+ ĥn


, (62)

where ûi = ru0
i + (1− r)u f

i = r f (xi) + (1− r)u f
i , ĥi = hi(t̂), and û0 = u0(t̂) and

ûn+1 = u`(t̂).
From Eqs. (60) and (62) we can obtain a closed-form formula to calculate αi:

αi =
(∆x)2

ûi− ûi−1

[
ûi+1− ûi

(∆x)2 αi+1 + ĥi−
‖ŷ‖
η

(v f
i − v0

i )
]
. (63)

Here, αn+1 is the right-boundary value of α , which is supposed to be measurable.
Because η is a nonlinear function of u f

i and v f
i , Eq. (63) provides us a mathematical

tool to calculate αi through iterations.

5 A Lie-group adaptive method to compute α(x)

Now, the numerical procedures for estimating αi are described as follows. We
assume an initial value of αi, for example, αi = 1. Substituting it into Eqs. (12)
and (13) we can apply the GPS to integrate them from t = 0 to t = t f . Here t f is a
parameter chosen by the user. Then, we can obtain u f

i and v f
i , and inserting them

into Eq. (63) by fixing r = 1 we can calculate a new αi, which is then compared
with the old αi. If the difference of these two sets of αi is smaller than a given
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criterion, then we stop the iteration and the final αi is obtained. The numerical
processes are summarized as follows:
Step 1: Give an initial αi = 1.
Step 2: For j = 1,2 . . . we repeat the following calculations. Calculate u f

i and v f
i

by using the GPS to integrate Eqs. (12) and (13) from t = 0 to t = t f .
Step 3: Insert the above calculated u f

i and v f
i , denoted respectively by u f

i ( j) and
v f

i ( j), together with u0
i and v0

i given by Eqs. (14) and (15) into

αi( j) =
(∆x)2

ûi( j)− ûi−1( j)

[
ûi+1( j)− ûi( j)

(∆x)2 αi+1( j)+ ĥi−
‖ŷ( j)‖
η( j)

{v f
i ( j)− v0

i }
]
,

(64)

where η( j) and ‖ŷ( j)‖ are calculated from Eqs. (47) and (61) by inserting u f
i ( j),

v f
i ( j), u0

i and v0
i . If αi( j) converges by satisfying a given convergence criterion:

C j =:

√
1
n

n

∑
i=1

[αi( j +1)−αi( j)]2 < ε, (65)

then stop; otherwise, go to Step 2. C j measures the convergence speed.

Basically, the present method is used the two-point Lie-group equation (52) to de-
rive Eq. (64), where the values of u f

i ( j) and v f
i ( j) at a time t f are obtained by repeat-

edly using the time-direction integrator GPS for Eqs. (12) and (13), and then we can
adjust αi by Eq. (64). The final time data u f

i ( j) and v f
i ( j) are not obtained through

measurements. Because of the iteration processes as being a combination of the
GPS and the Lie-group equation, the present algorithm is quite different from other
algorithms. It can be seen that the present algorithm is simple, straightforward, and
easy to numerical implementation. In order to distinct the present method from the
earlier ones, we may call it a Lie-group adaptive method (LGAM), where the adap-
tions are performed by the governing equations themselves. The rationale of this
algorithm is that the local in time differential equation (13) and the global in time
algebraic equation (63) must self-adapt to a situation that they are compatible, such
that αi can be computed from them through a self-adaption in the iteration process.

6 Numerical investigations

6.1 Example 1

Let us first use the following example to demonstrate the above process. This
example is given by

α(x) = (x−3)2, x ∈ (0,1), (66)

h(x, t) =−5(x−3)2e−t , (67)
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with the boundary conditions

u(0, t) = 9e−t , u(1, t) = 4e−t , (68)

and the initial conditions

u(x,0) = (x−3)2, v(x,0) =−(x−3)2 (69)

as the only inputs in the new algorithm of LGAM.

The exact solution of u is given by

u(x, t) = (x−3)2e−t . (70)

Besides the conditions given in Eqs. (68) and (69), we do not need the data of u
inside the domain of Ω := {(x, t) | 0 < x < 1, 0 < t ≤ t f }. However, we write it
explicitly for that we can conveniently derive all the required boundary conditions
and initial conditions from it.

Now we apply the LGAM to this problem of the identification of α(x), where we
have fixed ∆x = 1/40, ∆t = 0.2/500, and t f = 0.2. Under the stopping criterion with
ε = 10−5, the numerical process is convergent within 30 iterations. In Fig. 1(a) we
show the rate of convergence, which is an exponential convergence. In Fig. 1(b), we
plot the tentative αi for the first iteration, the fifth iteration, and the ninth iteration,
the last of which is already very close to the exact solution. As shown in Fig. 1(c)
the numerically obtained αi is almost coincident with the exact one, with the Root-
Mean-Squared-Error (RMSE) about 0.0248, and the maximal relative error about
4.6×10−3.

6.2 Example 2

In this example we let h(x, t) = 0 by giving

α(x) = 1+ e−x, x ∈ (0,1), (71)

u(x, t) = exp(x+ t). (72)

The required conditions can be derived from Eq. (72) readily.

We apply the LGAM to this problem by using ∆x = 1/30, ∆t = 0.2/100, and
t f = 0.2. Under the stopping criterion with ε = 10−4, the numerical process is con-
vergent within 13 iterations. In Fig. 2(a) we show the rate of convergence, which
is an exponential convergence. In Fig. 2(b), we compare the numerical solution
with the exact solution, which are almost coincident. The numerical solution of αi

is very close to the exact one with the RMSE about 7.12×10−4, and the maximal
relative error about 8.02×10−4 as shown in Fig. 2(c).
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Figure 1: For example 1: (a) the convergence rate, (b) comparing numerical and exact 

solutions of rigidity coefficient, and (c) showing the relative error. 

 

Figure 1: For example 1: (a) the convergence rate, (b) comparing numerical and
exact solutions of rigidity coefficient, and (c) showing the relative error.

6.3 Example 3

The identified function α(x) is oscillatory, given as follows:

α(x) = 1+ sin(3πx), x ∈ (0,1), (73)

and the function h(x, t) is calculated from

h(x, t) =
∂ 2u(x, t)

∂ t2 − ∂

∂x

[
α(x)

∂u(x, t)
∂x

]
, (74)

by inserting Eq. (72) for u(x, t).
In this identification of α(x) we use ∆x = 1/80, ∆t = 0.01/50, and t f = 0.01. Fig. 3
shows that the numerical solution marked by the dashed line is close to the solid
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Figure 2: For example 2: (a) the convergence rate, (b) comparing numerical and exact 

solutions of rigidity coefficient, and (c) showing the relative error. 
Figure 2: For example 2: (a) the convergence rate, (b) comparing numerical and
exact solutions of rigidity coefficient, and (c) showing the relative error.

line of the exact solution, with the RMSE about 3.48× 10−2, and the maximal
absolute error about 5.02×10−2.

6.4 Example 4

The identified function α(x) is a one-hump function:

α(x) = 2+ exp
(
−(x−0.5)2

0.05

)
, x ∈ (0,1), (75)

and the function h(x, t) is calculated from Eq. (74) by inserting Eq. (70) for u(x, t).
In this identification of α(x) we have applied the LGAM with ∆x = 1/100, ∆t =
0.05/50, and t f = 0.05. Fig. 4(a) shows the convergence rate under a stopping cri-
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Figure 3: For example 3 comparing numerical and exact solutions of rigidity 

coefficient. 

 

 

 

 

 

Figure 3: For example 3 comparing numerical and exact solutions of rigidity coef-
ficient.

terion ε = 10−4, which is convergent within 179 iterations. The numerical solution
marked by the dashed line is close to the solid line of the exact solution as shown in
Fig. 4(b), with the RMSE about 3.57×10−2, and the maximal absolute error about
5.89×10−2.

Now, we impose other boundary conditions and initial conditions obtained from
Eq. (72) for u(x, t), and the function h(x, t) is calculated from Eq. (74) by inserting
the same u(x, t) in Eq. (72). Fig. 5 shows that the numerical solution marked by
the dashed line is rather close to the solid line of the exact solution. The RMSE is
about 1.06×10−2, and the maximal absolute error is about 1.95×10−2.

This example demonstrates that the new algorithm is not affected by the boundary
conditions and initial conditions. Even under different boundary conditions and
initial conditions, the new algorithm of LGAM led to the same α(x).

6.5 Example 5

The identified function α(x) is a two-hump function [Tadi (1998)]:

α(x) = 1+ exp
(
−(x−0.26)2

0.02

)
+ exp

(
−(x−0.74)2

0.02

)
, x ∈ (0,1), (76)
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Figure 4: For example 4: (a) the convergence rate, and (b) comparing numerical and 

exact solutions of rigidity coefficient. 

 

 

Figure 4: For example 4 : (a) the convergence rate, (b) comparing numerical and
exact solutions of rigidity coefficient.

and the function h(x, t) is calculated from Eq. (74) by inserting Eq. (70) for u(x, t).
In this identification of α(x) we have applied the LGAM with ∆x = 1/100, ∆t =
0.06/50, and t f = 0.06. Fig. 6(a) shows the convergence rate under a stopping cri-
terion ε = 10−5, which is runned 400 iterations but not converges under the above
convergence criterion. In Fig. 6(b), the zeroth, the fifth and the fiftieth iterations
are plotted, which initially converges very fast with the fiftieth iteration being close
to the exact solution. The numerical solution marked by the dashed line is close
to the solid line of the exact solution as shown in Fig. 6(b), with the RMSE about
2.13×10−2, and the maximal absolute error about 3.55×10−2. As compared with
the results obtained by Tadi (1998) as shown in Figs. 4 and 5 therein, the present
method is better than the time-dependent regularization method proposed by Tadi
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Figure 5: For example 4 comparing numerical and exact solutions of rigidity 

coefficient under different boundary and initial conditions. 

 

 

 

 

Figure 5: For example 4 comparing numerical and exact solutions of rigidity coef-
ficient under different different boundary and initial conditions.

(1998) in three-aspect: convergent speed, accuracy, and simplicity.

7 Conclusions

A Lie-group adaptive method (LGAM) has been developed for the inverse scatter-
ing problem by imaging a spatially-dependent rigidity function in a one-dimensional
rod. Eq. (63) is a critical equation, which plays an important role to adjust the pa-
rameter α(x) through iterations. The advantages of the present method are that no a
priori information about the functional form of rigidity coefficient is necessary, and
no extra measurement of data are required, in addition to the usual boundary con-
ditions and initial conditions for the direct problem of wave propagation in a finite
rod. In this regard the present method provides the most cheap tool to handle the
inverse scattering problem. The accuracy and efficiency of the present algorithm
are confirmed by comparing the estimated results with exact solutions. Through
the above identifications of α(x) in Examples 1-5, it can be seen that when the
functions α(x) are smooth, the convergences are fast and the estimations are rather
accurate. Accordingly we can conclude that the LGAM is a powerful tool used in
the reconstruction of parameter for the inverse scattering problem of wave propa-
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Figure 6: For example 5: (a) the convergence rate, (b) comparing numerical and
exact solutions of rigidity coefficient. The zeroth, fifth and fiftieth iterations are
shown for comparison.

gation. The success of the present method is hinged on a rationale that the local in
time differential governing equation (13) and the global in time algebraic equation
(63) have to be self-adapted during the iteration process. This study may bring us
to a new field of the inverse scattering problem of imaging the profile of material
property, of which the work becomes quite easy than before.
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