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On Solving the Direct/Inverse Cauchy Problems of Laplace
Equation in a Multiply Connected Domain, Using the

Generalized Multiple-Source-Point Boundary-Collocation
Trefftz Method & Characteristic Lengths

Weichung Yeih1, Chein-Shan Liu2, Chung-Lun Kuo3 and Satya N. Atluri4

Abstract: In this paper, a multiple-source-point boundary-collocation Trefftz
method, with characteristic lengths being introduced in the basis functions, is pro-
posed to solve the direct, as well as inverse Cauchy problems of the Laplace equa-
tion for a multiply connected domain. When a multiply connected domain with
genus p (p>1) is considered, the conventional Trefftz method (T-Trefftz method)
will fail since it allows only one source point, but the representation of solution
using only one source point is impossible. We propose to relax this constraint by
allowing many source points in the formulation. To set up a complete set of basis
functions, we use the addition theorem of Bird and Steele (1992), to discuss how
to correctly set up linearly-independent basis functions for each source point. In
addition, we clearly explain the reason why using only one source point will fail,
from a theoretical point of view, along with a numerical example. Several direct
problems and inverse Cauchy problems are solved to check the validity of the pro-
posed method. It is found that the present method can deal with both direct and
inverse problems successfully. For inverse problems, the present method does not
need to use any regularization technique, or the truncated singular value decom-
position at all, since the use of a characteristic length can significantly reduce the
ill-posed behavior. Here, the proposed method can be viewed as a general Trefftz
method, since the conventional Trefftz method (T-Trefftz method) and the method
of fundamental solutions (F-Trefftz method) can be considered as special cases of
the presently proposed method.
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1 Introduction

The development of the so-called Trefftz method dates back to 1926 when Trefftz
first proposed it in a conference (Trefftz, 1926). Since then, the so-called Trefftz
method has been extensively studied and applied to many engineering problems.
The basic idea of the Trefftz method is to find a set of the co-called T-complete func-
tions that satisfy the governing equation identically, and then use these functions as
the weighting functions of the field quantity (direct Trefftz method) or represent the
field quantity by a linear combination of them (indirect method). This idea is very
similar to the eigenfunction expansion, so that the Trefftz method is sometimes
considered as a generalized eigenfunction expansion method. There exists a vo-
luminous literature about using the Trefftz method. Cheung, Jin and Zienkiewicz
(1989) applied the Trefftz method to a harmonic equation, and they also applied
it to the plane elasticity problem (Cheung, Jin and Zienkiewicz, 1990), Helmholtz
problem (Cheung, Jin and Zienkiewicz, 1991), and the plate bending problem (Che-
ung, Jin and Zienkiewicz, 1993). Kamiya and Wu (1994) used the Trefftz method
to solve the Helmholtz equation. Kita, Kamiya and Ikeda (1995) used the Trefftz
formulation to develop a boundary-type sensitivity analysis. Kita, Kamiya and Iio
(1999) combined the domain decomposition method and Trefftz method to solve
a 2D potential problem. Portela and Charafi (1999) proposed a multi-region Tre-
fftz method to deal with the potential problem in an arbitrarily shaped 2D domain.
Kita, Katsuragawa and Kamiya (2004) applied the Trefftz method to simulate the
two-dimensional sloshing problem. Chang, Liu, Yeih and Kuo (2002) have used
the direct Trefftz method to deal with the free vibration problem of a membrane.
Chang, Liu, Kuo and Yeih (2003) developed a symmetric indirect Trefftz method to
solve the free vibration problem. Liu, Yeih, Kuo and Chen (2006) have applied the
T-Trefftz and F-Trefftz method, an alternative name for the method of fundamental
solutions, to solve the Poisson equation. Yeih, Liu, Chang and Kuo (2007) have
discussed the ill-posed nature of the Trefftz method. Li, Lu and Hu (2004) adopted
a boundary-collocation Trefftz method to solve the biharmonic equation with sin-
gularities. Lu, Hu and Li (2004) used the Trefftz method to deal with the Motz
problem, and the cracked beam problem. Huang and Li (2006) used the Trefftz
method coupled with high order FEM to deal with the singularity problem. Li, Lu,
Tsai and Cheng (2006) used the Trefftz method to solve the eigenvalue problem.
For a useful survey of literature, one can refer to Kita and Kamiya (1995)

Unlike the conventionally used numerical methods such as the finite difference
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method (FDM), the finite element method (FEM), the boundary element method
(BEM) and so on, the Trefftz method is less popular. In the authors’ opinions,
there are two reasons that limit the use of the Trefftz method. The first reason is
that the system of linear equations which result from the Trefftz method is an ill-
posed system, even for a well-posed boundary value problem. As mentioned by
Kita and Kamiya (1995), when the number of functions in the Trefftz method in-
creases, the condition number of the resulting dense unsymmetric matrix increases
very fast. Yeih, Liu, Chang and Kuo (2007) have discussed the ill-posed nature
of the Trefftz method, and they suggested to deal with it by using the Tikhonov’s
regularization method and L-curve concept. Liu (2007a, 2007b) later proposed a
boundary-collocation Trefftz method to deal with the ill-posed behavior, in which
a characteristic length is adopted, to scale the basis functions, hereafter referred
to as the “modified” Trefftz method. Later, Liu (2008a) extended this method to
deal with the potential problem in a 2-D doubly connected domain. Liu (2008b,
2008c) also applied this modified boundary-collocation Trefftz method to solve the
inverse Cauchy problem, and found that this method did not require any regulariza-
tion technique. Liu (2008d) applied the “characteristic-length-scale” or “modified”
Trefftz method to solve the biharmonic equation. Since the “modified” collocation
Trefftz method has successfully resolved the ill-posed nature of the problem, Liu,
Yeih and Atluri (2009) used the resulting matrix of this method to propose a gen-
eral purpose conditioner which can tackle with the ill-posed behaviors of various
systems of linear algebraic equations. The second reason for the lack of popular-
ity of the Trefftz method is that, for the multiply connected domains with genus
p (p>1), the conventional Trefftz method (T-Trefftz method) fails. To deal with
arbitrary shapes in a 2-D domain, especially for multiply connected domain with
genus p (p>1), in the T-Trefftz method, one needs to decompose the problem do-
main into several simply connected subdomains and use the Trefftz method in each
one. On the real boundary, the Trefftz method requires the approximate solution to
satisfy the boundary conditions at each collocation point. On the artificial bound-
ary (for dividing the domain into subdomains), the continuity conditions are used to
connect the adjacent subdomains. Although this method may successfully resolve
the difficulty when facing the multiply connected domain with genus p (p>1), the
artificial boundaries introduced in this method, to satisfy the interfacial infinitely
conditions, are not unique and depend on the users’ preference. In addition, many
extra collocation points on the artificial boundary introduce additional unknowns
that are generally not good for the numerical method. Due to these two reasons, the
Trefftz method is less popular. In this paper, we seek to remedy this situation.

In this paper, we propose a “modified” multiple-source-point boundary-collocation
Trefftz method to deal with the Laplace equation. In presently proposed method,
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we first relax the constraint of the T-Trefftz method, and allow many source points
in the system. For each source point, we will discuss how to construct a basis
function set. Then, we adopt the “characteristic length” concept to reduce the ill-
posed behavior for the Trefftz method. Beside this Introduction section, this article
contains the following sections. In section 2, we discuss how to use multiple source
points, and how to arrange the basis functions. In section 3, we introduce the
concept of a characteristic length. In section 4, we use six examples to show the
validity of the proposed method. In the final section, some concluding remarks are
given.

2 Trefftz method: source points and basis functions

Consider a two-dimensional domain Ω enclosed by a boundary Γ, and the physical
quantity u satisfies the Laplace equation:

∇
2u(x) = 0 for x ∈Ω, (1)

u = f (x) ∈ ΓD (Dirichlet boundary condition) (2)

un ≡
∂u
∂n

= g(x) ∈ ΓN(Neumann boundary condition) (3)

αu+βun = h, α
2 +β

2 6= 0, x ∈ ΓR (Robin boundary condition) (4)

where n denotes the outward normal direction, ΓD denotes the boundary where the
Dirichlet boundary condition is given, ΓN denotes the boundary where the Neu-
mann boundary condition is given, and ΓR denotes the boundary where the Robin
boundary condition is given.

On each boundary point, if only one type of a boundary condition is given it is
referred to, in this paper, as the direct boundary value problem. If on a part of
boundary, one is given both the Dirichlet data and Neumann data, but has no infor-
mation on some other part of the boundary, it is referred to as the inverse Cauchy
problem. It is known that the direct boundary value problem is well-posed, while
the inverse Cauchy problem is ill-posed.

The conventional Trefftz method (T-Trefftz method) begins with the so-called T-
complete functions. For a simply connected domain illustrated in Fig. 1(a), one
usually locates the source point inside the domain, and the T-complete basis func-
tions are chosen to be{

1,r cosθ ,r sinθ , · · · ,rk sin(kθ) ,rk cos(kθ) , · · ·
}

,

where r and θ are the polar coordinate centered at the source-point, as shown in
Fig. 1(a).
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 Figure 1: An illustration of (a) simply connected domain; (b) an infinite domain
with a cavity; (c) a doubly connected domain, and (d) a multiply connected domain
with genus p (p>1). denotes the source point which the conventional T-Trefftz
method uses to generate the basis functions.

For an infinite domain with a cavity as illustrated in Fig. 1(b), one usually locates
the source point inside the cavity, and the T-complete functions include{

lnr,r−1 cosθ ,r−1 sinθ , · · · ,r−k sin(kθ) ,r−k cos(kθ) , · · ·
}

.

For a doubly connected domain (the multiply connected domain with genus 1) as
shown in Fig. 1(c), the source point is located inside the cavity, and the T-complete
functions include{

1, lnr,r±1 cosθ ,r±1 sinθ , · · · ,r±k sin(kθ) ,r±k cos(kθ) , · · ·
}

.

For a multiply connected domain with genus p (p>1) as shown in Fig. 1(d), one
needs to divide the domain into several simply connected domains, and apply the T-
Trefftz method in each subdomain. However, as mentioned earlier, the introduction
of an artificial boundary increases the number of unknowns and there is no unique
way to introduce the imaginary boundaries. It is thus natural for one to ask, if there
is simpler way to deal with the problem defined in a multiply connected domain.

Before we answer this question, we introduce another type of Trefftz method,
namely the so-called F-Trefftz method, or the so-called method of fundamental
solutions (MFS). For the T-Trefftz method, one can see that the number of source
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points is only one. To represent the field quantity in the T-Trefftz method, one in-
creases the order of the basis functions in r and θ . The F-Trefftz method uses a
different concept, in comparison with the T-Trefftz method. Instead of using only
one source point and increasing the order of basis functions, the F-Trefftz method
allows many source points but uses only one basis function, i.e., the fundamental
solution of the differential operator. The concept of the F-Trefftz method is illus-
trated in Fig. 2. One may ask the questions: can we use many source points, as
well as many basis functions at the same time? How does one construct a com-
plete set of basis functions then? In the following, we will propose a generalized
multiple-source-point Trefftz method to carry out this idea.

Ω

: source points
 

Figure 2: The F-Trefftz method uses many source points outside the domain to
generate the fundamental solutions.
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Figure 3: Illustration of the transformation between basis functions using different
source points, O and S.
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First, we consider a diagram as shown in Fig. 3. We consider two source points say
O and S. The observation point is X. Using the polar coordinates centered at O, the
coordinates of S are

(
R, θ̄

)
, and those of X are (ρ,φ). Using the polar coordinates

centered of S, the location of X is (r,θ). Thus X is denoted by either (ρ,φ) or
(r,θ). Then, we have the following formulae according to the addition theorem
(Bird and Steele, 1992):

rn cos(nθ) =
n

∑
m=0

Cn
m (−1)m

ρ
n−mRm cos

(
nθ̄ +m

(
φ − θ̄

))
, (5)

rn sin(nθ) =
n

∑
m=0

Cn
m (−1)m

ρ
n−mRm sin

(
nθ̄ +m

(
φ − θ̄

))
, (6)

where Cn
m is the number of combinations to pick m pieces from n pieces.

From Eqs. (5) and (6), one can see that, for basis functions involving positive
powers of the radial distance, the transformation of basis functions is possible. For
example, consider the case when n=3, and try to represent r3 cos(3θ) by the basis
functions using the source point at O. From Eq. (5), one can easily verify that one
can use a combination of positive power basis functions, with power not greater
than n=3, on the right-hand-side of Eqs. (5) and (6) to represent r3 cos(3θ). It
means that we can use a linear combination of

{1, ρ cosφ , ρ sinφ , ρ
2 cos2φ , ρ

2 sin2φ , ρ
3 cos3φ , ρ

3 sin3φ}

to represent r3 cos(3θ). Therefore, when many source points are used, we may
develop a set of positive power (of radial distance) basis functions from any one of
these source points. If one uses two sets of positive power (of radial distance) basis
functions from two source points, they form a linearly dependent basis, and make
the resulting linear equation rank deficient. From this argument, one can easily
see that for a simply connected domain as shown in Fig. 1(a), it is not necessary to
locate the source point inside the domain, and we can as well locate the source point
outside the domain. If we develop two sets of positive power (of radial distance)
basis functions of the same order, from Eqs. (5) and (6) one can easily see that
they are mathematically equivalent. However, in the existing literature, researchers
usually locate the source point inside the domain. The reason may come from the
fact that such a choice can avoid possible ill-posed behaviors, and is explained in
previous literature (Yeih, Liu, Chang and Kuo, 2007).

If one locates the source point outside the domain then the negative power basis
functions and logarithm function can also be employed to expand the solution. The
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addition theorem also gives the following formulae (Bird and Steele, 1992):

lnr =


lnR−

∞

∑
m=1

1
m

(
ρ

R

)m cos
(
m
(
θ̄ −φ

))
, R > ρ

lnρ−
∞

∑
m=1

1
m

(
R
ρ

)m
cos
(
m
(
θ̄ −φ

))
, R < ρ

 (7)

r−m cos(mθ)=




∞

∑
k=−1

Cm+k
k+1

ρk+1

Rk+m+1 cos
[
(k +1)φ − (k +m+1) θ̄

]
, R > ρ

∞

∑
k=−1

(−1)mCm+k
k+1

Rk+1

ρk+m+1 cos
[
(k +1) θ̄ − (k +m+1)φ

]
, R < ρ


(8)

r−m sin(mθ)=




∞

∑
k=−1

Cm+k
k+1

ρk+1

Rk+m+1 sin
[
(k +1)φ − (k +m+1) θ̄

]
, R > ρ

∞

∑
k=−1

(−1)mCm+k
k+1

Rk+1

ρk+m+1 sin
[
(k +1) θ̄ − (k +m+1)φ

]
, R < ρ


(9)

It can be easily seen that in order to replace the negative power or logarithmic basis
function for the source point S, by using the basis functions developed from source
point O (see Fig. 3), one may need infinitely many positive power functions and
negative power functions depending on the relationship between R and ρ . In other
words, such basis functions (negative power and logarithm functions) developed
from different source point are not mathematically equivalent. It means that they
can be linear independent functions. To explain this in more detail, we consider a
multiply connected domain with genus 2 as shown in Fig. 4. The boundary curve
for outer circle, Γ1, is x2 + y2 = 4. The boundary curve for inner circles enclos-
ing the cavities are: (x−0.5)2 + y2 = 0.42 for Γ2 and (x + 0.6)2 + y2 = 0.32 for
Γ3,respectively. We design the solution as: 1

rA
sinθA where rA and θ A are measured

from the point A which is a point (0.5,0) in the Cartesian coordinate system. Now
we place only one source point at B which is (-0.6,0) inside the cavity and the basis
functions are:{

1, lnrB,r±1
B cosθB,r±1

B sinθB, · · · ,r±k
B sin(kθB) ,r±k

B cos(kθB) , · · ·
}

where rB and θ B are measuring from the point B. Now, using Eq. (9) we know
that for R>rB where R is the distance between points A and B, we can use posi-
tive power basis functions to represent the solution. However, for R < rB one then
needs negative power basis functions to represent the solution. We recall that, in
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the Trefftz method, the undetermined coefficients must be some constants, and can-
not be functions of spatial variables. It then can be concluded that for a multiply
connected domain with genus p (p>1), we cannot represent all possible solutions
if only one source point is used. Following this, we also can have a very important
conclusion that inside each cavity at least one source point is required.

1Γ

2Γ3Γ
AB

R 1x

2x

 

Figure 4: It is impossible to represent the negative power basis functions generated
from source point B, by the basis functions from source point A [Linear indepen-
dence].

Also, when we observe Eqs. (7)-(9), we can find that for different source points
the negative power basis functions and logarithm basis functions are linearly inde-
pendent. If we want to represent one such basis function of source point A, using
basis functions developed from source point B, we may require infinitely many
basis functions from source point B which is definitely not possible for numerical
calculation, because at each source point we can only set up finitely many basis
functions.

From the abovementioned reasons, one can conclude that if we allow ourselves to
have many source points, and locate at least one source point inside each cavity
then we can handle the multiply connected domains with genus p (p>1), with-
out using the domain decomposition as suggested by the previous researches. To
summarize the above discussion, we propose the generalized multiple-source-point
Trefftz method: for each cavity, at least one source point should be placed, and
the negative power and logarithmic basis functions are chosen for each point; and
the positive power basis functions can be chosen for only one source point when
considering a finite region (one can pick any one source point located in the cavity
or just pick one point inside the domain). This generalized multiple-source-point
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Trefftz method is the most general one developed so far, because the T-Trefftz and
F-Trefftz methods can be treated as the special cases of the presently proposed gen-
eralized multiple-source-point Trefftz method. Although now we have resolved the
difficulty of treating a multiply connected domain with genus p (p>1) by the con-
cept of multiple-source-point Trefftz method, the ill-posed behavior still needs to
be treated. In the following, the concept of characteristic length developed by Liu
will be adopted, and the “generalized” multiple-source-point collocation Trefftz
method, along with a characteristic length, will be introduced.

3 Generalized multiple-source point collocation Trefftz method, including
the concept of a characteristic length

Now we consider a two-dimensional multiply connected domain with genus p. The
multiple-source-point Trefftz method uses the following T-complete set:{

r−m
i sin(mθi) ,r−m

i cos(mθi) , lnri
}

for the source points inside the cavity or outside the domain of interest, where in
the subscript idenotes the i-th source points. The positive power basis functions can
be arranged at only one source point, say P (P can coincide with one of the previous
selected source points inside the cavity). The basis functions are:

{1,rm
P sin(mθP) ,rm

P cos(mθP)} .

Therefore, for the indirect Trefftz formulation one can say the solution is written as
the linear combination of these basis functions as:

u =
k

∑
i=1

{
ci lnri +

{
h

∑
m=1

[
aimr−m

i cos(mθi)+bimr−m
i sin(mθi)

]}}

+d +
h

∑
m=1

[emrm
P cos(mθP)+ fmrm

P sin(mθP)]

(10)

when the finite region is considered; and

u =
k

∑
i=1

{
ci lnri +

{
h

∑
m=1

[
aimr−m

i cos(mθi)+bimr−m
i sin(mθi)

]}}
(11)

when an infinite region is considered.

Liu has developed a collocation Trefftz method, involving a characteristic length, in
order to make the resulting leading coefficient matrix well-posed. He proposed to
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use the characteristic lengths to the terms such as (r)±m, by a characteristic length
R, to lead to

( r
R

)±m, such that they will tend to zero for large m. For positive
power basis functions, the choice of R should be larger than the maximum distance
between any domain point and source point. On the other hand for negative power
basis functions, the choice of R should be less than the minimum distance between
any domain point and the source point. To adopt this idea, Eqs. (10) and (11) can
be rewritten as

u =
k

∑
i=1

{
c̄i lnri +

{
h

∑
m=1

[
āim

(
ri

Ri

)−m

cos(mθi)+ b̄im

(
ri

Ri

)−m

sin(mθi)

]}}

+ d̄ +
h

∑
m=1

[
ēm

(
rP

RP

)m

cos(mθP)+ f̄m

(
rP

RP

)m

sin(mθP)
]

(12)

for the finite region, where Ri and RP are the characteristic lengths for different
source points; and,

u =
k

∑
i=1

{
c̄i lnri +

{
h

∑
m=1

[
āim

(
ri

Ri

)−m

cos(mθi)+ b̄im

(
ri

Ri

)−m

sin(mθi)

]}}
(13)

for an infinite region. The formulations listed in Eqs. (12) and (13) constitute the
basis for the generalized multiple-source-point collocation Trefftz method, with
characteristic lengths. Using this formulation, we can deal with a multiply con-
nected domain with genus p without introducing any artificial boundaries, and also
avoid the ill-posed behavior, such that both the well-posed direct boundary value
problem (BVP) as well as ill-posed Cauchy inverse BVP can be equally easily tack-
led by one unified tool. Before we demonstrate numerical examples, we will make
a comment here. The concept of using many source points and the characteris-
tic length has been mentioned in the paper by Bird and Steele (1992). However,
they did not explain why one needs to adopt the concept of characteristic length,
as Liu has explained (Liu, 2008a, 2008b, 2008c, 2008d). They did not mention
that the use of a characteristic length can make the ill-posed system to be a well-
posed one. In addition, they did not set up the basis functions for multiple source
points correctly. Specifically, they assumed positive power basis functions for all
source points, which will make the rank of resulting linear system to be deficient.
In their paper, only a multiply connected domain with circular boundaries is con-
sidered. Therefore, we believe that the current method provides a more complete
description, and is a thorough extension of their work.

In the following, we will use numerical examples to validate the proposed method.
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4 Numerical examples

4.1 Example 1

In this example, we solve a well-posed Dirichlet boundary value problem. The
domain of interest is a multiply-connected domain with genus 2. The boundaries
are described as:

Γ1 : ρ1 = 15,

x1 = ρ1 cosθ1, y1 = ρ1 sinθ1,0≤ θ1 ≤ 2π,
(14)

Γ2 : ρ2 =
√

26−10cos4θ2,

x2 = ρ2 cosθ2, y2 = ρ2 sinθ2,0≤ θ2 ≤ 2π,
(15)

Γ3 : ρ3 =
√

10−6cos2θ2,

x3 = ρ3 cosθ3 +8, y3 = ρ3 sinθ3,0≤ θ3 ≤ 2π,
(16)

where (ρ i, θ i) are the polar coordinates to describe the boundary Γι and (xi, yi)
represent the location of points on the boundary Γι in Cartesian coordinates.

The designed analytical solution is:

u(x,y) =
cosθs1

rs1

+
sin2θs2

r2
s2

, (17)

where (rsi ,θsi) is the polar coordinates system from point si with (xs1 ,ys1) = (0,0),
(xs2 ,ys2) = (7,0) representing location of two points s1 and s2. It implies that we
have:

rs1 =
√

(x− xs1)2 +(y− ys1)2, θs1 = atan(
y− ys1

x− xs1

), (18)

rs2 =
√

(x− xs2)2 +(y− ys2)2, θs2 = atan(
y− ys2

x− xs2

). (19)

We use the Dirichlet boundary conditions arising out of the solution in (17) as
inputs, and use the presently proposed generalized multiple-source-point boundary-
collocation Trefftz method with characteristic length scales to compute the solution
and compare it with (17).

It can be easily verified that the s1point is located inside the cavity enclosed by the
boundary Γ2, and the s2 point is located inside the cavity enclosed by the boundary
Γ3. Accordingly, we expect that the conventional Trefftz method will fail.

We now give the locations of source points as:

(xP,yP) = (1,1), (x̄1, ȳ1) = (1,1), (x̄2, ȳ2) = (8,1). (20)
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where (xP,yP) is the location from which we set up the positive power basis func-
tions, and (x̄i, ȳi) represents the i-th source point from where we set up the log-
arithmic and negative power basis functions. The domain and the source points
illustrate in Fig. 5. It can be seen that (x̄1, ȳ1) is identical with (xP,yP), and is lo-
cated inside the cavity enclosed by the boundary Γ2 and (x̄2, ȳ2) locates inside the
cavity enclosed by the boundary Γ3.
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 Figure 5: The boundary shapes of Example 1. The symbols ∆ denote the origin of
the polar coordinate for analytical solution in Eq. (17), and the symbols * denote
the source points of the multiple-source-point Trefftz method.

To verify the claim we made previously that for a multiply connected domain with
genus p (p>1) it is impossible to solve if one only uses one source point, we first
use (x̄1, ȳ1) as our source point and set up positive power basis functions, nega-
tive power basis functions and a logarithmic function. The characteristic lengths
are: RP=15 for the positive power basis functions and R1=1 for the negative power
functions. The maximum order for the power basis functions is m=50. We select
a circle with radius equal to 12 and with a center at (0,0), and then plot the field
quantity u and its absolute error as the blue dotted lines in Figs. 6(a) and 6(b). It
can be seen that using only one source point we cannot obtain an acceptable solu-
tion in comparison with the exact one, even though we have already adopted the
concept of a characteristic length and 102 basis functions. The reason can be seen
from Fig. 6(c). To represent the second term in the right hand side of Eq. (11)
using the source point at (x̄1, ȳ1), we can draw a circle with its radius of

√
37 (the

distance between (x̄1, ȳ1) and (xs2 ,ys2)) and center at (x̄1, ȳ1). It can be seen that
for the boundaries Γ2 and Γ3, some points are inside the circle, but some points are
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Figure 6: (a) The comparison of the exact solution u on a circle and the numerical
solutions obtained by single-Trefftz source and Multi- Trefftz source points; (b) the
numerical error of Example 1, and (c) the sketched diagram to explain why using a
single source point fails.

not. According to the addition theorem in Eq. (9), we then need two sets of coef-
ficients for the basis functions generated from the source point (x̄1, ȳ1) to represent
the second term of the right hand side in Eq. (11), which is definitely impossible.
In numerical reality, the coefficients of the basis functions which we solved by us-
ing the conjugate gradient method can only make the boundary collocation error
minimum, and it never can be correct. Consequently, when we examine the phys-
ical quantities on the circle with radius equal to 12 and with a center at (0,0) it is
impossible for us to have accurate results as shown in Fig. 6(a).

Now we adopt the generalized multiple-source point collocation Trefftz method
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with characteristic lengths, to solve this problem again. The source points are those
in Eq. (20). It can be seen that the source point we use to set up the positive
power basis functions, and the source point we use to set up the negative power
basis functions and logarithm function for the cavity enclosed by the boundary Γy
are identical. The characteristic lengths used are: RP=15, R1=1 and R2=1. The
maximum order for the power basis functions is m=50. It means that now we have
152 basis functions totally. We plot the field quantity u as well by the red dotted
lines in Figs. 6(a) and 6(b). It can be seen that now the numerical solution is very
close to the exact one when multiple sources are used.
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 Figure 7: The contour of (a) the exact solution, (b) the numerical solution, and (c)
error of Example 1.

In Fig. 7, we also demonstrate the contour plots of the exact solution, numerical
solution and absolute error. It can be said that the proposed method successfully
solves the difficulty of a multiply connected domain problem with genus p>1 for
the Trefftz method.

4.2 Example 2

In this example, we solve the boundary value problem with Dirichlet boundary data
on part of the boundary and Neumann boundary data on the remainder. The domain
of interest is a multiply connected domain with genus 2, as shown in Fig. 8. The
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Figure 8: The boundary shapes of Example 2. The symbols ∆ denote the origin of
the polar coordinate for analytical solution in Eq. (24), and the symbols * denote
the source points of the multiple-source-point Trefftz method.

boundaries are described as follows:

Γ1 : ρ1 = 4

√
cos2θ1 +

√
1.1−sin2 2θ1,

x1 = ρ1 cosθ1, y1 = ρ1 sinθ1,0≤ θ1 ≤ 2π,

(21)

Γ2 : ρ2 =

√
cos2θ2 +

√
1.1− sin2 2θ2,

x2 = ρ2 cosθ2−3, y2 = ρ2 sinθ2,0≤ θ2 ≤ 2π,

(22)

Γ3 : ρ3 =

√
cos2θ3 +

√
1.1− sin2 2θ3,

x3 = ρ3 cosθ3 +3, y3 = ρ3 sinθ3,0≤ θ3 ≤ 2π,

(23)

where (ρ i, θ i) is the polar coordinates to describe the boundary Γι and (xi, yi)
represent the location of points on the boundary Γι by the Cartesian coordinates.
On boundary Γ1 the Dirichlet boundary condition is given and on boundaries Γ2
and Γ3 the Neumann boundary condition is given.

The designed exact solution is

u(x,y) = exp(
x− xs1

r2
s1

)cos(
y− ys1

r2
s1

)+ exp(
y− ys2

r2
s2

)sin(
x− xs2

r2
s2

) (24)

where (rsi ,θsi) is the polar coordinates system from point si with (xs1 ,ys1)= (−3.1,0),
(xs2 ,ys2) = (3.1,0) representing location of two points s1 and s2. It means:

rs1 =
√

(x− xs1)2 +(y− ys1)2, (25)
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rs2 =
√

(x− xs2)2 +(y− ys2)2. (26)

The Dirichlet b.c on Γ1 and the Neumann b.c on Γ2 and Γ3, corresponding to the
exact solution (24) are then used as inputs to the present multiple-source-point
boundary-collocation Trefftz method, with characteristic lengths, and the computed
solution by boundary-collocation is compared to the exact solution (24).

The source points we use for the MMSCT are:

(xP,yP) = (−3,0), (x̄1, ȳ1) = (−3,0), (x̄2, ȳ2) = (3,0). The domain and the source
points illustrate in Fig. 8. Other parameters are: M=30, RP=9, R1=0.2 and R2=0.2.

We select a circle with radius equal to 0.5 and with a center at (0,0) and plot the
physical quantity u on it. In Fig. 9(a), the numerical solution is very close to the
exact one. In Fig 9(b), both absolute error and relative error are plotted and they
all reach the order of 10−3

, which shows the proposed method can obtain a very
accurate solution.
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 Figure 9: (a) The comparison of the exact solution of u on a circle with radius equal
to 0.5 and its center at (0,0) and the numerical solution, and (b) the absolute and
the relative error of Example 2.
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 Figure 10: The boundary shapes of Example 3. The symbols ∆ denote the origin of
the polar coordinate for analytical solution in Eq. (29), and the symbols * denote
the source points of the multiple-source-point Trefftz method.

4.3 Example 3

In this example, we consider an infinite domain with two cavities, as shown in Fig.
10. The boundaries of cavities are given as:

Γ1 : x1 = cosθ1−2, y1 = sinθ1,0≤ θ1 ≤ 2π, (27)

Γ2 : x2 = cosθ2 +2, y2 = sinθ2,0≤ θ2 ≤ 2π, (28)

where θ1 is the angle between positive x-axis and the line between (-2,0) and the
observation point; θ2 is the angle between positive x-axis and the line between (2,0)
and the observation point. The designed exact solution is given as:

u(x,y) =
2
π

atan(
2(y− ys1)

r2
s1
−1

)+
2
π

atan(
2(y− ys2)

r2
s2
−1

), (29)

where (xs1 ,ys1) = ( - 2,0), (xs2 ,ys2) = (2,0) and rs1 =
√

(x− xs1)2 +(y− ys1)2,
rs2 =

√
(x− xs2)2 +(y− ys2)2.

In this example, we can only arrange the negative power basis functions and the
logarithm function, since the positive power basis functions tend to infinity when
the radius goes to infinity. Therefore two source points we used are:

(x̄1, ȳ1) = (−2,0) and (x̄2, ȳ2) = (2,0).
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The domain and the source points are illustrated in Fig. 10. Parameters used are:
m = 50, R1 = 1, R2 = 1. We solve the problem by giving Dirichlet boundary data
on boundaries.

We select a circle with radius equal to 0.1 and with a center at (0,0), and then
we examine how well the numerical solution is computed, by using the proposed
method. The physical quantity u is plotted in Fig. 11(a) and absolute error is plotted
in Fig. 11(b). From these figures, one can see that the proposed method can obtain
a very good result. It then can be concluded that the proposed method can deal with
an infinite domain with many cavities.
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 Figure 11: (a) The comparison of the exact solution of u on a circle with radius
equal to 0.1 and its center at (0,0) and the numerical solution, and (b) the error of
Example 3.

4.4 Example 4

In this example, we consider the inverse Cauchy boundary value problem. The
domain is a multiply connected domain with genus 2, as shown in Fig. 12. The
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 Figure 12: The boundary shapes of Example 4. The symbols ∆ denote the origin of
the polar coordinate for analytical solution in Eq. (33), and the symbols * denote
the source points of the multiple-source-point Trefftz method.

boundaries are given as:

Γ1 : ρ1 = 4(cos3θ1 +
√

2−sin2 3θ1)
1
3 ,

x1 = ρ1 cosθ1, y1 = ρ1 sinθ1,0≤ θ1 ≤ 2π,
(30)

Γ2 : x2 = 0.5cosθ2−2, y2 = 0.5sinθ2,0≤ θ2 ≤ 2π, (31)

Γ3 : x3 = 0.5cosθ3 +2, y3 = 0.5sinθ3,0≤ θ3 ≤ 2π, (32)

where Cauchy data are given on Γ1 and no information on Γ2 and Γ3.

The designed exact solution is:

u(x,y) =
cos3θs1

r3
s1

+
sin3θs2

r3
s2

, (33)

where (xs1 ,ys1) = (−2,0), (xs2 ,ys2) = (2,0) and

rs1 =
√

(x− xs1)2 +(y− ys1)2, θs1 = atan(
y− ys1

x− xs1

), (34)

rs2 =
√

(x− xs2)2 +(y− ys2)2, θs2 = atan(
y− ys2

x− xs2

). (35)
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The Cauchy data on Γ1, corresponding to the assumed exact solution (33), is as-
sumed as input to the present numerical solution process, and the computed solution
and the b.c on Γ2 and Γ3 are compared with these from Eq. (33).

The source points are:

(xP,yP) = (−2,0), (x̄1, ȳ1) = (−2,0), (x̄2, ȳ2) = (2,0). (36)

The domain and the source points illustrate in Fig. 12. Parameters used are: m =
4, Rp = 8, R1 = 0.4, R2 = 0.4.
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 Figure 13: (a) The comparison of the exact solution and the numerical solutions
without noise, and under 5% random noise on Γ2, and (b) on Γ3of Example 4.

We study two cases: the boundary data being polluted with a 5% relative random
noise, and without noise. The results are illustrated in Figs. 13(a) and 13(b) in
which the physical quantity on Γ2 is plotted in Fig. 13(a) and the physical quantity
on Γ3 is plotted in Fig. 13(b). It can be seen when no noise exists in the bound-
ary data, the recovery of physical quantity on the unknown boundary is very good.
However, when the noise appears in data, the recovery of physical quantity for the
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 Figure 14: The comparison of the exact solution and the numerical solutions with-
out noise, and under 0.1% random noise on Γ1of Example 5.

unknown boundary then becomes not so good, due to the ill-posed nature of the in-
verse Cauchy problem. Although the numerical solution cannot accurately recover
the quantity on unknown boundary under noise, the trend of physical quantity is
acceptable. In comparison with conventional methods to deal with the ill-posed
problem such as Tikhonov’s regularization method (Tikhonov and Arsenin, 1977),
or the truncated SVD method, the current method shows many superior merits over
them. In Tikhonov’s regularization method or truncated SVD method, the determi-
nation of regularization parameter or truncation threshold consumes a lot of com-
putational time. In our method, the characteristic length is very easy to determine,
such that one can solve the ill-posed problem without spending effort on deter-
mining the regularization parameter, or truncation threshold. In this manner, our
method can deal with the well-posed problem, as well as the ill-posed problem, by
using the same algorithm and this feature makes our method a unified one.

4.5 Example 5

In the previous example, the Cauchy data are given on the outer boundary and
no information on the boundaries of cavities is given. In this example, we give the
Cauchy data on the boundaries of cavities and no information on the outer boundary
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is given. The boundaries of interested domain are given as:

Γ1 : x1 = 2cosθ1 + cos2θ1, y1 = 2sinθ1− sin2θ1,0≤ θ1 ≤ 2π, (37)

Γ2 : x2 = 0.1(2cosθ2 +cos2θ2)−0.5, y2 = 0.1(2sinθ2−sin2θ2)−1,0≤ θ2≤ 2π,

(38)

Γ3 : x3 = 0.1(2cosθ3 +cos2θ3)−0.5, y3 = 0.1(2sinθ3−sin2θ3)+1,0≤ θ3≤ 2π,

(39)

where Cauchy data are now given on Γ2 and Γ3, and no information on Γ1.

The designed exact solution is given as:

u(x,y) =
cosθs1

rs1

+
sinθs2

rs2

, (40)

where (xs1 ,ys1) = (−0.5,−1), (xs2 ,ys2) = (−0.5,1), and

rs1 =
√

(x− xs1)2 +(y− ys1)2, θs1 = atan(
y− ys1

x− xs1

), (41)

rs2 =
√

(x− xs2)2 +(y− ys2)2, θs2 = atan(
y− ys2

x− xs2

). (42)

The Cauchy data on the boundaries of cavities, corresponding to Eq. (40), is taken
as input to the present numerical solution, and the computed interior solution, as
well as the b.c on the outer boundary, are compared with these from Eq. (40).

The source points are: (xP,yP) = (−0.5,−1), (x̄1, ȳ1) = (−0.5,−1), (x̄2, ȳ2) =
(−0.5,1). The parameters are: m = 4, RP = 4, R1 = 0.1, R2 = 0.1.

The cases with 0.1% relative random noise in data and that without noise are stud-
ied. The recovery of physical quantity on the unknown boundary is illustrated in
Fig. 14. It can be seen that without noise, the proposed method can recover bound-
ary quantity very well. When 0.1% relative noise is added, the numerical result
deviates from the exact one a little bit but still very good for the ill-posed inverse
Cauchy problem. The contour plots of exact solution, numerical solution without
noise and numerical solution with 0.1% relative noise are shown in Figs. 15(a), (b)
and (c), respectively.
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 Figure 15: The contours of (a) the exact solution, (b) the numerical solution, and
(c) error of Example 5.

4.6 Example 6

In this example, we consider to solve the inverse Cauchy boundary value problem
of an infinite domain with two cavities. The boundaries of two cavities are given
as:

Γ1 : x1 = cos3
θ1−2, y1 = sin3

θ1,0≤ θ1 ≤ 2π, (43)

Γ2 : x2 = cos3
θ2−2, y2 = sin3

θ2,0≤ θ2 ≤ 2π, (44)

where Cauchy data are given on Γ1 and no information is given on Γ2.

The designed exact solution is:

u(x,y) =
sin2θs1

r2
s1

+
sin2θs2

r2
s2

, (45)
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 Figure 16: The comparison of the exact solution and the numerical solutions with-
out noise, and under 0.05% random noise on Γ2, of Example 6.

with(xs1 ,ys1) = (−2,0), (xs2 ,ys2) = (2,0), and

rs1 =
√

(x− xs1)2 +(y− ys1)2, θs1 = atan(
y− ys1

x− xs1

), (46)

rs2 =
√

(x− xs2)2 +(y− ys2)2, θs2 = atan(
y− ys2

x− xs2

). (47)

The Cauchy data on Γ corresponding to Eq. (45) are used as inputs to the present
numerical solution of the Laplace equation and the computed interior solution, as
well as the b.c on Γ2, are compared with these corresponding to Eq. (45).

The source points are:(x̄1, ȳ1) = (−2,0), (x̄2, ȳ2) = (2,0). Parameters are: m =
4, R1 = 0.4, R2 = 0.4.

We study the cases of introducing a 0.05% relative random noise and that without
noise. The results of boundary quantity recovery are shown in Fig 16. From the
results, we can find that our method can deal with inverse Cauchy problem of an
infinite domain with multiple cavities.
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5 Conclusions

In this paper, a generalized multiple-source-point boundary-collocation Trefftz method,
with characteristic lengths, is proposed. The reasons why multiple source points are
needed is explained, and how to set up linearly independent basis functions is indi-
cated clearly. Due to the use of many source points, the multiply connected domain
with genus p (p>1) can be treated without introducing any artificial boundaries.
The present method is a unified method, such that the conventional Trefftz method
(T-Trefftz method) and the method of fundamental solutions (F-Trefftz method) be-
come special cases of the present method. Owing to the concept of a characteristic
length, the ill-posed behaviors can be overcome, such that one can deal well-posed
BVP, as well as ill-posed Cauchy BVP, under the present unified method. Numer-
ical examples show that the proposed method can deal with BVPs of a multiply
connected domain with genus p (p>1).
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