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Stable Boundary and Internal Data Reconstruction in
Two-Dimensional Anisotropic Heat Conduction Cauchy
Problems Using Relaxation Procedures for an Iterative

MFS Algorithm
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Abstract: We investigate two algorithms involving the relaxation of either the
given boundary temperatures (Dirichlet data) or the prescribed normal heat fluxes
(Neumann data) on the over-specified boundary in the case of the iterative algo-
rithm of Kozlov, Maz′ya and Fomin (1991) applied to Cauchy problems for two-
dimensional steady-state anisotropic heat conduction (the Laplace-Beltrami equa-
tion). The two mixed, well-posed and direct problems corresponding to every
iteration of the numerical procedure are solved using the method of fundamen-
tal solutions (MFS), in conjunction with the Tikhonov regularization method. For
each direct problem considered, the optimal value of the regularization parameter is
chosen according to the generalized cross-validation (GCV) criterion. The iterative
MFS algorithms with relaxation are tested for over-, equally and under-determined
Cauchy problems associated with the steady-state anisotropic heat conduction in
various two-dimensional geometries to confirm the numerical convergence, stabil-
ity, accuracy and computational efficiency of the method.

Keywords: Steady-state anisotropic heat conduction; inverse problem; Cauchy
problem; iterative method of fundamental solutions (MFS); relaxation procedures;
regularization.

1 Introduction

Numerous natural and man-made materials cannot be considered isotropic and the
dependence of the thermal conductivity with direction has to be accounted for in
the modelling of the heat transfer. More specifically, it should be mentioned that
crystals, wood, sedimentary rocks, metals that have undergone heavy cold pressing,
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laminated sheets, composites, cables, heat shielding materials for space vehicles,
fibre reinforced structures, and many others are examples of anisotropic materials.
Composites are also of special interest to the aerospace industry because of their
strength and reduced weight. Therefore, heat conduction in anisotropic materials
has numerous important applications in various branches of science and engineer-
ing and hence its understanding is of great importance.

A classical and quite often encountered inverse problem in heat transfer is the so-
called Cauchy problem. For such a problem, the boundary of the solution domain,
the thermal conductivities and/or the heat sources are all known, while the boundary
conditions are incomplete. More precisely, both the Dirichlet (temperature) and the
Neumann (normal heat flux) conditions are prescribed on a part of the boundary,
while on the remaining portion of the boundary no data are available. It is well
known that Cauchy problems are generally ill-posed, in the sense that the existence,
uniqueness and stability of their solutions are not always guaranteed, see Hadamard
(1923). Consequently, a special treatment of these problems is required.

There are numerous important contributions in the literature to the theoretical and
numerical solutions of the Cauchy problem associated with the steady-state heat
conduction. However, most of these are related to steady-state heat conduction in
isotropic solids (the Laplace equation), while just a few studies refer to steady state
heat conduction in anisotropic media (the Laplace-Beltrami equation). The method
of quasi-reversibility, in conjunction with a finite-difference method (FDM) and
Carleman-type estimates, were employed by Klibanov and Santosa (1991) to solve
this inverse problem. Kozlov, Maz′ya and Fomin (1991) proposed an alternating
iterative algorithm for the stable solution of this problem, which was implemented
using the boundary element method (BEM) for both isotropic and anisotropic solids
by Lesnic, Elliott and Ingham (1997) and Mera, Elliott, Ingham and Lesnic (2000),
respectively. Ang, Nghia and Tam (1998) reformulated the Cauchy problem as an
integral equation problem and solved it by employing the Fourier transform and
the Tikhonov regularization method. Reinhardt, Han and Hào (1999) proved
that the standard five-point FDM approximation to the Cauchy problem for the
Laplace equation satisfies some stability estimates and hence it turns out to be a
well-posed problem, provided that a certain bounding requirement is fulfilled. As
a result of a variational approach to the Cauchy problem, the conjugate gradient
method, together with the BEM, was proposed by Hào and Lesnic (2000) in order
to obtain a stable solution. Cheng, Hon, Wei and Yamamoto (2001) transformed
the original problem into a moment problem by using Green’s formula and they
also provided an error estimate for the numerical solution. Hon and Wei (2001)
converted the Cauchy problem into a classical moment problem whose numerical
approximation can be achieved and also provided a convergence proof based on
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Backus-Gilbert algorithm. Cimetière, Delvare, Jaoua and Pons (2001) reduced
the Cauchy problem for the Laplace equation to solving a sequence of optimiza-
tion problems under equality constraints using the finite element method (FEM).
The minimization functional consists of two terms that measure the gap between
the optimal element and the over-specified data and the gap between the optimal
element and the previous optimal element (regularization term), respectively. This
method was later implemented using the BEM by Delvare, Cimetière and Pons
(2002). Cimetière, Delvare, Jaoua and Pons (2002) reduced the solution of har-
monic Cauchy problems to the resolution of a fixed point process, while the authors
implemented numerically the proposed method by employing both the BEM and
the FEM. Mera, Elliott, Ingham and Lesnic (2003) implemented numerically, us-
ing the BEM, various regularization methods to solve the Cauchy steady-state heat
conduction problem in an anisotropic medium. Jourhmane and Nachaoui (2004)
and Jourhmane, Lesnic and Mera (2004) developed three relaxation procedures in
order to increase the rate of convergence of the algorithm of Kozlov, Maz′ya and
Fomin (1991), at the same time selection criteria for the variable relaxation factors
having been provided. Bourgeois (2005) approached the Cauchy problem for the
Laplace equation by the mixed formulation of the method of quasi-reversibility,
which finally led to a C 0 FEM. Andrieux, Baranger and Ben Abda (2006) intro-
duced an energy-like error functional and converted the inverse problem into an
optimization problem. In order to improve the reconstruction of the normal deriva-
tives, Delvare and Cimetière (2008) extended the method originally proposed by
Cimetière, Delvare, Jaoua and Pons (2001) to a higher-order one, which was imple-
mented using the BEM. On assuming the available data to have a Fourier expansion,
Liu (2008a) applied a modified indirect Trefftz method to solve the Cauchy prob-
lem for the Laplace equation. Recently, Marin (2009a,b) solved numerically the
Cauchy problem in steady-state heat conduction for both isotropic and anisotropic
solids, respectively, by applying, in an iterative manner, the method of fundamen-
tal solutions (MFS) for the alternating iterative algorithm of Kozlov, Maz′ya and
Fomin (1991).

The MFS is a simple but powerful technique that has been used to obtain highly
accurate numerical approximations of solutions to linear partial differential equa-
tions. Like the BEM, the MFS is applicable when a fundamental solution of the
governing partial differential equation is explicitly known. Since its introduc-
tion as a numerical method in the late 1970s by Mathon and Johnston (1977),
it has been successfully applied to a large variety of physical problems, an ac-
count of which may be found in the excellent survey papers by Fairweather and
Karageorghis (1998), Fairweather, Karageorghis and Martin (2003), and Golberg
and Chen (1999). Since the MFS can be easily implemented and, in addition,
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has a very low computational cost, this meshless method becomes an ideal candi-
date for inverse problems as well. Consequently, the MFS, together with various
regularization methods (e.g. the Tikhonov regularization method, singular value
decomposition, iterative regularization methods etc.), have been used increasingly
over the last decade for the numerical solution of inverse problems. For example,
the Cauchy problem associated with the heat conduction equation (Dong et al. ,
2007; Wei et al. , 2007; Ling and Takeuchi , 2008; Young et al. , 2008; Marin ,
2008, 2009a,b), linear elasticity (Marin and Lesnic , 2004; Marin , 2005a, 2010a;
Marin and Johansson , 2010b), steady-state heat conduction in functionally graded
materials (Marin , 2005b), Helmholtz-type equations (Marin , 2005c; Marin and
Lesnic , 2005a; Jin and Zheng , 2006; Marin , 2010b,c), Stokes problems (Chen
et al. , 2005) and the biharmonic equation (Marin and Lesnic , 2005b) have been
successfully addressed by using the MFS.

Recently, Marin (2009b) solved numerically the Cauchy problem in steady-state
anisotropic heat conduction (the Laplace-Beltrami equation) by applying, in an it-
erative manner, the MFS for the alternating iterative algorithm of Kozlov, Maz′ya
and Fomin (1991). At every iteration, two mixed, well-posed and direct prob-
lems were solved using the MFS, in conjunction with the Tikhonov regularization
method, while the optimal value of the regularization parameter was chosen au-
tomatically according to the generalized cross-validation (GCV) criterion, see e.g.
Marin (2009b). Consequently, an iterative procedure, which provides the selection
of the optimal regularization parameter, occurs within every step of the iterative
algorithm of Kozlov, Maz′ya and Fomin (1991) and hence the computational cost
of the iterative MFS-based algorithm is increased. In order to overcome this in-
convenience and encouraged by the findings of Jourhmane and Nachaoui (2004)
and Jourhmane, Lesnic and Mera (2004), as well as similar results obtained for the
Cauchy problem associated with the Poisson equation (Jourhmane and Nachaoui ,
2002), the modified Helmholtz equation (Marin , 2010c; Johansson and Marin ,
2010) and the Cauchy-Navier system of elasticity (Elabib and Nachaoui , 2008;
Marin and Johansson , 2010a,b), we decided to employ two relaxation procedures
for the iterative MFS-based algorithm implemented by Marin (2009b) and study
the influence of the relaxation parameter upon the rate of convergence of the mod-
ified method. The efficiency of these relaxation procedures is tested for over-,
equally and under-determined Cauchy problems associated with the two-dimensional
Laplace-Beltrami operator in simply and doubly connected domains with smooth
or piecewise smooth boundaries.
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2 Mathematical formulation

Consider a bounded Lipschitz domain Ω ⊂ R2 occupied by an anisotropic solid
characterised by the homogeneous, symmetric and positive-definite thermal con-
ductivity tensor K =

[
Ki j
]

1≤i, j≤2. We also assume that Ω is bounded by a smooth
or piecewise smooth curve ∂Ω, such that ∂Ω = Γ1 ∪Γ2, where Γ1 6= /0, Γ2 6= /0
and Γ1 ∩Γ2 = /0. Let H1(Ω) be the Sobolev space of real-valued functions in Ω

endowed with the standard norm. We denote by H1
0(Ω) and H1

Γi
(Ω), i = 1,2, the

subspaces of functions from H1(Ω) that vanish on ∂Ω and Γi, i = 1,2, respectively.

The space of traces of functions from H1(Ω) to ∂Ω is denoted by H1/2(∂Ω), while
the restrictions of the functions belonging to the space H1/2(∂Ω) to the subset Γi ⊂
∂Ω, i = 1,2, define the space H1/2(Γi), i = 1,2. The set of real valued functions
in ∂Ω with compact support in Γi, i = 1,2, and bounded first-order derivatives are
dense in H1/2(Γi), i = 1,2. Furthermore, we also define the space H1/2

00 (Γi), i = 1,2,
that consists of functions from H1/2(∂Ω) and vanishing on Γ3−i, i = 1,2. The space
H1/2

00 (Γi), i = 1,2, is a subspace of H1/2(∂Ω) with the norm given by:

‖ f‖
H1/2

00 (Γi)
=
(∫

Γi

f 2(x)
dist(x,Γi)

dΓ(x)+
∫

Γi

∫
Γi

| f (x)− f (y)|2

|x−y|d
dΓ(x)dΓ(y)

)1/2

. (1)

It should be mentioned that the space of restrictions from H1/2
00 (Γi) to Γi, i = 1,2, is

dense in H1/2(Γi), i = 1,2. Nonetheless, H1/2
00 (Γi) 6= H1/2(Γi). Finally, we denote

by
(
H1/2

00 (Γi)
)∗ the dual space of H1/2

00 (Γi), i = 1,2.

In this paper, we refer to steady-state heat conduction applications in anisotropic
homogeneous media in the absence of heat sources. Consequently, the function
u(x) denotes the temperature at a point x∈Ω and satisfies the heat balance equation

−∇ · (K∇u(x))≡−
2

∑
i, j=1

Ki j ∂i∂ ju(x) = 0, x ∈Ω, (2)

where ∂i ≡ ∂/∂xi. In the following, we let n(x) be the unit outward normal vector
at ∂Ω and q(x) be the normal heat flux at a point x ∈ ∂Ω defined by

q(x)≡−n(x) · (K∇u(x)) =−
2

∑
i, j=1

ni(x)Ki j ∂ ju(x), x ∈ ∂Ω. (3)

In the direct problem formulation, the knowledge of the thermal conductivity ma-
trix K, the location, shape and size of the entire boundary ∂Ω, the temperature
and/or normal heat flux on the entire boundary ∂Ω gives the corresponding Dirich-
let, Neumann, or Robin conditions which enable us to determine the unknown
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boundary conditions, as well as the temperature distribution in the solution domain.
A different and more interesting situation occurs when both the temperature and
normal heat flux are prescribed on a part of the boundary, say Γ1, whilst no bound-
ary conditions are supplied on the remaining part of the boundary Γ2 = ∂Ω \Γ1.
More precisely, we consider the following Cauchy problem for steady heat conduc-
tion in an anisotropic homogeneous medium:

−∇ · (K∇u(x)) = 0, x ∈Ω, (4a)

u(x) = ũ(x), x ∈ Γ1, (4b)

q(x) = q̃(x), x ∈ Γ1, (4c)

where ũ ∈ H1/2(Γ1) and q̃ ∈
(
H1/2

00 (Γ1)
)∗ are prescribed Dirichlet and Neumann

boundary conditions, respectively.

If we denote by |Γi|, i = 1,2, the measure of the boundary Γi ⊂ ∂Ω then a neces-
sary condition for the Cauchy problem given by Eqs. (4a)–(4c) to be identifiable
is that |Γ1| > 0, see Isakov (2006). However, in the discretised version of the
aforementioned Cauchy problem, the corresponding identifiability condition re-
duces to |Γ1| ≥ |Γ2|, see e.g. Lesnic, Elliott and Ingham (1997). This inverse
problem is much more difficult to solve both analytically and numerically than the
direct problem, since the solution does not satisfy the general conditions of well-
posedness. Although the problem may have a unique solution, it is well known
that this solution is unstable with respect to small perturbations into the data on Γ1,
see Hadamard (1923). Thus the problem is ill-posed and, therefore, regularization
methods are required in order to solve accurately the inverse problem (4a)–(4c)
associated with the steady-state anisotropic heat conduction.

3 Alternating iterative algorithms with relaxation

In the following, we present two alternating iterative algorithms with relaxation,
originally proposed by Jourhmane, Lesnic and Mera (2004), which aim to reduce
the computational time of the alternating iterative algorithm introduced by Kozlov,
Maz′ya and Fomin (1991) for the simultaneous and stable reconstruction of the
unknown temperature u

∣∣
Γ2

and normal heat flux q
∣∣
Γ2

.

Alternating iterative algorithm with relaxation I:
Step 1. (i) If k = 1 then specify an initial guess for the normal heat flux on Γ2,
namely q(1) ∈

(
H1/2

00 (Γ2)
)∗.

(ii) If k ≥ 2 then solve the following mixed, well-posed, direct problem:

−∇ ·
(
K∇u(2k−1)(x)

)
= 0, x ∈Ω, (5a)
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q(2k−1)(x) = q̃(x), x ∈ Γ1, (5b)

u(2k−1)(x) = u(2k−2)(x), x ∈ Γ2, (5c)

to determine u(2k−1)(x), x ∈Ω, and q(2k−1)(x)≡−n(x) ·
(
K∇u(2k−1)(x)

)
, x ∈ Γ2.

Step 2. Update the unknown Neumann data on Γ2 by setting

ξ(k)(x) =


q(2k−1)(x) for k = 1

ωq(2k−1)(x)+(1−ω)ξ(k−1)(x) for k ≥ 2
, x ∈ Γ2, (6)

whereω ∈ (0,2) is a fixed relaxation factor.

Having constructed the approximation u(2k−1), k ≥ 1, the following mixed, well-
posed, direct problem:

−∇ ·
(
K∇u(2k)(x)

)
= 0, x ∈Ω, (7a)

u(2k)(x) = ũ(x), x ∈ Γ1, (7b)

q(2k)(x) = ξ(k)(x), x ∈ Γ2, (7c)

is solved in order to determine u(2k)(x), x ∈Ω, and u(2k)(x), x ∈ Γ2.

Step 3. Repeat steps 1 and 2 until a prescribed stopping criterion is satisfied.

Remark 3.1 The value ω = 1 in Eq. (6) corresponds to the alternating iterative
algorithm introduced by Kozlov, Maz′ya and Fomin (1991) with an initial guess for
the Neumann data, while the valuesω∈ (0,1) andω∈ (1,2) in Eq. (6) correspond
to the alternating iterative algorithm introduced by Kozlov, Maz′ya and Fomin
(1991) with an initial guess for the Neumann data and a constant under- and over-
relaxation factor, respectively.

Alternating iterative algorithm with relaxation II:
Step 1. (i) If k = 1 then specify an initial guess for the boundary temperature on Γ2,
namely u(1) ∈ H1/2(Γ2).
(ii) If k ≥ 2 then solve the following mixed, well-posed, direct problem:

−∇ ·
(
K∇u(2k−1)(x)

)
= 0, x ∈Ω, (8a)

u(2k−1)(x) = ũ(x), x ∈ Γ1, (8b)

q(2k−1)(x) = q(2k−2)(x), x ∈ Γ2, (8c)

to determine u(2k−1)(x), x ∈Ω, and u(2k−1)(x), x ∈ Γ2.
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Step 2. Update the unknown Dirichlet data on Γ2 by setting

η(k)(x) =


u(2k−1)(x) for k = 1

ωu(2k−1)(x)+(1−ω)η(k−1)(x) for k ≥ 2
, x ∈ Γ2, (9)

whereω ∈ (0,2) is a fixed relaxation factor.

Having constructed the approximation u(2k−1), k ≥ 1, the following mixed, well-
posed, direct problem:

−∇ ·
(
K∇u(2k)(x)

)
= 0, x ∈Ω, (10a)

q(2k)(x) = q̃(x), x ∈ Γ1, (10b)

u(2k)(x) = η(k)(x), x ∈ Γ2, (10c)

is solved in order to determine u(2k)(x), x∈Ω, and q(2k)(x)≡−n(x)·
(
K∇u(2k)(x)

)
,

x ∈ Γ2.

Step 3. Repeat steps 1 and 2 until a prescribed stopping criterion is satisfied.

Remark 3.2 The value ω = 1 in Eq. (9) corresponds to the alternating iterative
algorithm introduced by Kozlov, Maz′ya and Fomin (1991) with an initial guess for
the Dirichlet data, while the valuesω∈ (0,1) andω∈ (1,2) in Eq. (9) correspond
to the alternating iterative algorithm introduced by Kozlov, Maz′ya and Fomin
(1991) with an initial guess for the Dirichlet data and a constant under- and over-
relaxation factor, respectively.

The convergence of the alternating iterative algorithm with relaxation II presented
above can be recast in the following convergence theorem, with the mention that
a similar result can also be obtained for the alternating iterative algorithm with
relaxation I:

Theorem 3.1 Let ũ ∈ H1/2(Γ1) and q̃ ∈
(
H1/2

00 (Γ1)
)∗, and assume that the Cauchy

problem (4a)–(4c) has a solution u ∈ H1(Ω). Let u(k) be the k-th approximate so-
lution in the alternating procedure II described above. Then there exists a number
1 < b ≤ 2 such that when the relaxation parameter ω is chosen with 1 ≤ω ≤ b,
then

lim
k→∞

∥∥u−u(k)∥∥
H1(Ω) = 0 (11)

for any initial data element η(1) ∈ H1/2(Γ2).
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The proof for this theorem in the case of the proposed relaxation algorithms asso-
ciated with the Cauchy problem for the steady-state anisotropic heat conduction is
similar to that for the corresponding relaxation algorithms for the Cauchy problem
in elasticity, see Marin and Johansson (2010a). The proof given by Marin and
Johansson (2010a) is based on the reformulation of the Cauchy problem (4a)–(4c)
as a fixed point operator equation with a self-adjoint, injective, positive definite and
non-expansive operator, while the scheme is shown to be a fixed point iteration for
that equation. An alternative proof for the convergence result can also be found in
Jourhmane, Lesnic and Mera (2004). As reported by Marin and Johansson (2010a)
for Cauchy problems associated with the Navier-Lamé system of elasticity, it was
also found for two-dimensional steady-state anisotropic heat conduction Cauchy
problems that a relaxation factor ω > 2 cannot be employed since the iterative
process becomes divergent in such a situation.

4 The method of fundamental solutions

The fundamental solution G of the heat balance equation (2) or (4a) for two-
dimensional steady heat conduction in anisotropic homogeneous media is given
by, see e.g. Fairweather and Karageorghis (1998)

G(x,ξ) =
1

2π
√

detK
log
(

1
R

)
, x ∈Ω, ξ ∈ R2 \Ω, (12)

where R =
√

(x−ξ) ·K−1 (x−ξ) and ξ is a singularity or source point. The main
idea of the MFS consists of the approximation of the temperature in the solution
domain by a linear combination of fundamental solutions with respect to M singu-
larities ξ( j), j = 1, . . . ,M, in the form

u(x)≈ uM(c,ξ;x) =
M

∑
j=1

c j G(x,ξ( j)), x ∈Ω, (13)

where c = [c1, . . . ,cM]T and ξ ∈ R2M is a vector containing the coordinates of the
singularities ξ( j), j = 1, . . . ,M. On taking into account the definitions of the normal
heat flux (3) and the fundamental solution (12) then the normal heat flux, through a
curve defined by the outward unit normal vector n(x), can be approximated on the
boundary ∂Ω by

q(x)≈ qM(c,ξ;x) =
M

∑
j=1

c j H(x,ξ( j)), x ∈ ∂Ω, (14)
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where

H(x,ξ) =−n(x) · (K∇xG(x,ξ)) =
1

2πR
√

detK

[
x−ξ

R
·n(x)

]
, (15)

x ∈ ∂Ω, ξ ∈ R2 \Ω.

Next, we select N1 MFS collocation points x(i), i = 1, . . . ,N1, on the boundary Γ1
and N2 MFS collocation points x(N1+i), i = 1, . . . ,N2, on the boundary Γ2, such that
the total number of MFS collocation points used to discretise the boundary ∂Ω of
the solution domain Ω is given by N = N1 +N2.

According to the MFS approximations (13) and (14), the discretised versions of the
the boundary value problems (5a)–(5c) and (7a)–(7c) recast as

A(1) c(2k−1) = b(2k−1), k ≥ 2, (16)

and

A(2) c(2k) = b(2k), k ≥ 1, (17)

respectively. Here the components of the MFS matrices and right-hand side vectors
corresponding to Eqs. (16) and (17) are given by

A(1)
i j =

{
H(x(i),ξ( j)), i = 1, . . . ,N1, j = 1, . . . ,M,

G(x(i),ξ( j)), i = N1 +1, . . . ,N1 +N2, j = 1, . . . ,M,
(18a)

b(2k−1)
i =

{
q̃(x(i)), i = 1, . . . ,N1,

u(2k−2)(x(i)), i = N1 +1, . . . ,N1 +N2,
(18b)

and

A(2)
i j =

{
G(x(i),ξ( j)), i = 1, . . . ,N1, j = 1, . . . ,M,

H(x(i),ξ( j)), i = N1 +1, . . . ,N1 +N2, j = 1, . . . ,M,
(19a)

b(2k)
i =

{
ũ(x(i)), i = 1, . . . ,N1,

ξ(k)(x(i)), i = N1 +1, . . . ,N1 +N2,
(19b)

respectively.

Each of Eqs. (16) and (17) represents a system of N linear algebraic equations with

M unknowns, namely the MFS coefficients c(2k−1) =
[
c(2k−1)

1 , . . . ,c(2k−1)
M

]T
and

c(2k) =
[
c(2k)

1 , . . . ,c(2k)
M

]T
, respectively. It should be noted that in order to uniquely
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determine the solutions c(2k−1) ∈ RM and c(2k) ∈ RM to the systems of linear alge-
braic equations (16) and (17), respectively, the number N of MFS boundary collo-
cation points on the boundary ∂Ω and the number M of singularities must satisfy
the inequality M ≤ N. However, the systems of linear algebraic equations (16) and
(17) cannot be solved by direct methods, such as the least-squares method, since
such an approach would produce a highly unstable solution in the case of noisy
Cauchy data on Γ1.

In order to implement the MFS, the location of the singularities has to be deter-
mined and this is usually achieved by considering either the static or the dynamic
approach. In the static approach, the singularities are pre-assigned and kept fixed
throughout the solution process, whilst in the dynamic approach, the singularities
and the unknown coefficients are determined simultaneously during the solution
process, see Fairweather and Karageorghis (1998). Thus the dynamic approach
transforms the inverse problem into a more difficult nonlinear ill-posed problem
which is also computationally much more expensive. The advantages and disad-
vantages of the MFS with respect to the location of the fictitious sources are de-
scribed at length in Heise (1978) and Burgess and Maharejin (1984). Recently,
Gorzelańczyk and Kołodziej (2008) thoroughly investigated the performance of the
MFS with respect to the shape of the pseudo-boundary on which the source points
are situated, proving that, for the same number of boundary collocation points and
sources, more accurate results are obtained if the shape of the pseudo-boundary is
similar to that of the boundary of the solution domain. Therefore, we employ the
static approach in our computations, at the same time accounting for the findings
of Gorzelańczyk and Kołodziej (2008).

5 The Tikhonov regularization method

Since the right-hand sides of the systems of linear algebraic equations (16) and (17)
are in general polluted by noise, the retrieval of accurate and stable solutions to Eqs.
(16) and (17) is very important for obtaining physically meaningful numerical re-
sults. For perturbed right-hand sides in Eqs. (16) and (17), the direct inversion of
these equations or, equivalently, a least-squares minimization applied to Eqs. (16)
and (17) will fail to produce stable, accurate and physically meaningful numeri-
cal solutions. It is the purpose of this section to present a classical regularization
procedure for obtaining such solutions to the systems of linear algebraic equations
(16) and (17), as well as details regarding the optimal choice of the regularization
parameter.

Several regularization techniques used for the stable solution of systems of linear
and nonlinear algebraic equations are available in the literature, such as the sin-
gular value decomposition (Hansen , 1998), the Tikhonov regularization method
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(Tikhonov and Arsenin , 1986), the fictitious time integration method (FTIM) (Liu,
2008b) and various iterative methods (Kunisch and Zou , 1998). In this study, we
employ the Tikhonov regularization method. Consider the following system of lin-
ear algebraic equations

Ac = b, (20)

where N ≥M, A ∈ RN×M, c ∈ RM and b ∈ RN . Note that Eq. (20) may describe
each of the MFS systems of linear equations (16) and (17), provided that

A = A(1), c = c(2k−1), b = b(2k−1), k ≥ 2, (21)

and

A = A(2), c = c(2k), b = b(2k), k ≥ 1, (22)

respectively. The Tikhonov regularized solution to the generically written system
of linear algebraic equations (20) is sought as, see Tikhonov and Arsenin (1986)

cλ ∈ RM : Fλ (cλ) = min
c∈RM

Fλ (c) , (23)

where Fλ represents the Tikhonov regularization functional given by, see Tikhonov
and Arsenin (1986)

Fλ(·) : RM −→ [0,∞), Fλ (c) =
∥∥Ac−b

∥∥2 +λ2∥∥c
∥∥2

, (24)

and λ> 0 is the regularization parameter to be prescribed. Formally, the Tikhonov
regularized solution cλ of the problem (20) is given as the solution of the normal
equation(

ATA+λ2IM

)
c = AT b, (25)

where IM ∈ RM×M is the identity matrix, namely

cλ = A† b, A† ≡
(

ATA+λ2IM

)−1
AT. (26)

To summarize, the Tikhonov regularization method solves a constrained minimiza-
tion problem using a smoothness norm in order to provide a stable solution which
fits the data and also has a minimum structure.

The performance of regularization methods depends crucially on the suitable choice
of the regularization parameter. One extensively studied criterion is the discrepancy



Stable Boundary and Internal Data Reconstruction 245

principle (Morozov , 1966). Although this criterion is mathematically rigorous, it
requires a reliable estimation of the amount of noise added into the data which may
not be available in practical problems. Heuristic approaches are preferable in the
case when no a priori information about the noise is available. For the Tikhonov
regularization method, several heuristic approaches have been proposed, including
the L-curve criterion (Hansen , 1998) and the GCV (Wahba , 1977). In this paper,
we employ the GCV criterion to determine the optimal regularization parameter,
λopt, for the Tikhonov regularization method, namely

λopt : G
(
λopt
)

= min
λ>0

G (λ) . (27)

Here

G (·) : (0,∞)−→ [0,∞), G (λ) =

∥∥Acλ−bε
∥∥2[

trace
(
IN−AA†)]2 , (28)

where cλ is given by Eq. (26) with b = bε, while bε is a perturbation of the right-
hand side, b, of Eq. (20) such that

∥∥bε−b
∥∥≤ ε.

6 Numerical results

In this section, we present the performance of the proposed numerical method,
namely the alternating iterative MFS algorithms with relaxation presented in Sec-
tion 3. To do so, we solve numerically the Cauchy problem given by Eqs. (4a)–(4c)
for the steady-state anisotropic heat conduction in the two-dimensional geometries
described below and analyse the numerical convergence and stability of this proce-
dure, as well as the influence of the constant relaxation parameter,ω.

6.1 Examples

Example 1. (Simply connected domain with a smooth boundary, see Fig. 1(a)) We
consider the following analytical solutions for the temperature and normal heat flux

u(an)(x) = x2
1−4x1x2 +x2

2, x = (x1,x2) ∈Ω, (29a)

q(an)(x) = 3 [x2 n1(x)+x1 n2(x)] , x = (x1,x2) ∈ ∂Ω, (29b)

respectively, in the unit disk Ω =
{

x ∈ R2
∣∣ρ(x) < r

}
, where ρ(x) =

√
x2

1 +x2
2 is

the radial polar coordinate of x and r = 1.0. Here K11 = 1.0, K12 = K21 = 0.5,
K22 = 1.0, Γ1 =

{
x ∈ ∂Ω

∣∣0≤ θ(x)≤ 3π/2
}

and Γ2 = {x ∈ ∂Ω
∣∣3π/2 < θ(x) <

2π}, where θ(x) is the angular polar coordinate of x.
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Annulus, |Γ1|/|Γ2|= 2/3

Figure 1: Schematic diagram of the domain, Ω, over-determined boundary,
Γ1 (- - -), under-determined boundary, Γ2 (- - -), and pseudo-boundary, ∂ΩS (- - -),
for the inverse problems investigated, namely (a) Example 1 (disk), |Γ1|/|Γ2|= 3,
(b) Example 2 (annulus), |Γ1|/|Γ2|= 3/2, (c) Example 3 (rectangle), |Γ1|/|Γ2|= 5,
(d) Example 3 (rectangle), |Γ1|/|Γ2|= 1, and (e) Example 4 (annulus), |Γ1|/|Γ2|=
2/3, respectively.

Example 2. (Doubly connected domain with a smooth boundary, see Fig. 1(b))
Consider the following analytical solutions for the temperature and normal heat
flux

u(an)(x) =
1
5

x3
1−x2

1x2 +x1x2
2 +

1
3

x3
2, x = (x1,x2) ∈Ω, (30a)

q(an)(x) =−
(
x2

1−6x1x2 +6x2
2
)

n1(x)−
(

1
5

x2
1−2x1x2 +3x2

2

)
n2(x), (30b)

x = (x1,x2) ∈ ∂Ω,
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respectively, in the annular domain Ω =
{

x ∈ R2
∣∣ rint < ρ(x) < rout

}
, where rint =

2.0 and rout = 3.0. Here K11 = 5.0, K12 = K21 = 2.0, K22 = 1.0, Γ1 = Γout ={
x ∈ ∂Ω

∣∣ρ(x) = rout
}

and Γ2 = Γint =
{

x ∈ ∂Ω
∣∣ρ(x) = rint

}
such that |Γ1|/|Γ2|=

3/2.

Example 3. (Simply connected domain with a piecewise smooth boundary, see
Figs. 1(c) and 1(d)) We consider the rectangle Ω = (−r, r)×

(
−r
/

2, r
/

2
)
, where

r = 1.0, and the same analytical solutions for the temperature and normal heat flux
on the boundary ∂Ω as those corresponding to Example 2, namely Eqs. (30a) and
(30b), respectively, with K11 = 5.0, K12 = K21 = 2.0, K22 = 1.0. Here two situ-
ations are considered, namely (i) Γ1 = [−r, r]×

{
±r
/

2
}
∪{r}×

(
−r
/

2, r
/

2
)

and
Γ2 = {−r}×

(
−r
/

2, r
/

2
)

such that |Γ1|/|Γ2|= 5; and (ii) Γ1 = {r}×
[
−r
/

2, r
/

2
]
∪

[−r, r]×
{

r
/

2
}

and Γ2 = {−r}×(−r
/

2, r
/

2)∪[−r, r)×{−r
/

2} such that |Γ1|/|Γ2|=
1.

Example 4. (Doubly connected domain with a smooth boundary, see Fig. 1(e))
Consider the temperature distribution in the annular domain Ω = {x ∈ R2

∣∣ rint <
ρ(x) < rout} (rint = 2.0 and rout = 3.0) and the corresponding normal heat fluxes on
the boundary associated with the following exact boundary temperatures

u(an)(x) = u0, x = (x1,x2) ∈ Γout =
{

x ∈ ∂Ω
∣∣ρ(x) = rout

}
, (31a)

u(an)(x) = u0
(
1−x1

/
rint
)
, x = (x1,x2) ∈ Γint =

{
x ∈ ∂Ω

∣∣ρ(x) = rint
}

. (31b)

Here u0 = 1.0, K11 = 2.0, K12 = K21 = 0.5, K22 = 1.0, Γ1 = Γint and Γ2 = Γout
such that |Γ1|/|Γ2|= 2/3.

Although not presented herein, it is reported that the numerical results obtained for
the unknown temperature and normal heat flux on the boundary Γ2 are convergent
with respect to increasing the distance dS between the physical boundary ∂Ω and
the pseudo-boundary ∂ΩS. However, it should be noted that for the geometries
considered herein the value dS = 1.0 was found to be sufficiently large such that
any further increase of the distance between the singularities and the boundary of
the solution domain did not significantly improve the accuracy of the numerical
solutions for the examples tested in this paper.

The Cauchy problems investigated in this paper have been solved using the uniform
distribution of both the MFS boundary collocation points x(i), i = 1, . . . ,N, and the
singularities ξ( j), j = 1, . . . ,M. Furthermore, the numbers of MFS boundary collo-
cation points N1 and N2 corresponding to the over- and under-specified boundaries
Γ1 and Γ2, respectively, the number of singularities M and the distance dS between
the physical boundary ∂Ω and the pseudo-boundary ∂ΩS on which the singularities
are situated, were set to:

(i) N1/3 = N2 = N/4 = 20, M = N/2 and dS = 3.0, for Example 1;
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(ii) N1/3 = N2/2 = N/5 = 20, M = N1 +N2/2 = 4N/5, while dS = 1.0 and dS =
3.0 for the inner and outer boundaries, respectively, in the case of Example
2;

(iii) N1 = 72, N2 = 14 (N1 = N2 = 43), M = N1 + N2 = N and dS = 2.0, for
Example 3 with |Γ1|/|Γ2|= 5 (|Γ1|/|Γ2|= 1);

(iv) N1/2 = N2/3 = N/5 = 20, M = N1 +N2/2 = 4N/5, while dS = 1.0 and dS =
3.0 for the inner and outer boundaries, respectively, in the case of Example
4.

It should be noted that all of the numerical computations related to the Cauchy
problems analysed in this paper have been performed using a set of uniformly dis-
tributed collocation points z(`), ` = 1, . . . ,L, on the boundary ∂Ω, where the num-
bers of collocation points L1 and L2 (L1 + L2 = L) corresponding to the over- and
under-specified boundaries Γ1 and Γ2, respectively, were set to:

(i) L1/3 = L2 = L/4 = 50 for Example 1;

(ii) L1/3 = L2/2 = L/5 = 60 in the case of Example 2;

(iii) L1/5 = L2 = L/6 = 50 for Example 3;

(iv) L1/2 = L2/3 = L/5 = 60 in the case of Example 4.

It is important to mention that the two mixed, well-posed, direct problems (5a)–(5c)
and (7a)–(7c), and (8a)–(8c) and (10a)–(10c), corresponding to every iteration of
the algorithm with relaxation I and II, respectively, have been solved numerically
using the aforementioned MFS discretisations, in conjunction with the Tikhonov
regularization method presented in Section 5. The optimal value of the regular-
ization parameter, λopt, corresponding to every direct problem considered in the
algorithms with relaxation I and II has automatically been chosen according to the
GCV criterion (27) and (28). For the inverse problems investigated in this paper,
as well as the alternating iterative algorithms I and II, we have taken homogeneous
initial guesses for both the normal heat flux, q(1), and the temperature, u(1). More-
over, all numerical computations have been performed in FORTRAN 90 in double
precision on a 3.00 GHz Intel Pentium 4 machine.

6.2 Results obtained with exact data: Convergence of the algorithms

If Li collocation points, z(`), ` = 1, . . . ,Li, are considered on the boundary Γi ⊂
∂Ω then the root mean square error (RMS error) associated with the real valued
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function f (·) : Γi −→ R on Γi is defined by

RMSΓi ( f ) =

√
1
Li

Li

∑
`=1

f
(
z(`))2

, (32)

In order to investigate the convergence of the algorithm, at every iteration, k ≥ 1,
we evaluate the following accuracy errors corresponding to the temperature and
normal heat flux on the under-specified boundary, Γ2, which are defined as relative
RMS errors, i.e.

eu(k) =

RMSΓ2

(
u(2k)−u(an))

RMSΓ2

(
u(an)) for the alternating iterative algorithm with relaxation I

RMSΓ2

(
u(2k−1)−u(an))

RMSΓ2

(
u(an)) for the alternating iterative algorithm with relaxation II

(33a)

and

eq(k) =

RMSΓ2

(
q(2k−1)−q(an))

RMSΓ2

(
q(an)) for the alternating iterative algorithm with relaxation I

RMSΓ2

(
q(2k)−q(an))

RMSΓ2

(
q(an)) for the alternating iterative algorithm with relaxation II.

(33b)

Here u(2k)
(
u(2k−1)

)
and q(2k−1)

(
q(2k)

)
are the temperature and normal heat flux on

the boundary Γ2 retrieved after k iterations using the alternating iterative algorithm
with relaxation I (II), respectively, with the mention that each iteration consists of
solving two direct well-posed mixed boundary value problems, namely Eqs. (5a)–
(5c) and (7a)–(7c) for the alternating iterative algorithm with relaxation I (Eqs.
(8a)–(8c) and (10a)–(10c) for the alternating iterative algorithm with relaxation II).

Figs. 2(a) and 2(b) show, on a logarithmic scale, the accuracy errors eu and eq,
as functions of the number of iterations, k, obtained using the alternating iterative
algorithm II, exact Cauchy data and various values of the relaxation parameter ω,
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Figure 2: The accuracy errors (a) eu, and (b) eq, as functions of the number of
iterations, k, obtained using the alternating iterative algorithm with relaxation II,
exact Cauchy data on Γ1 and various values of the relaxation parameter,ω, namely
ω ∈ {0.20,0.50,1.00,1.50,1.80}, for Example 1.
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Figure 3: The analytical and numerical (a) temperatures u, and (b) normal heat
fluxes q, on the under-specified boundary Γ2, obtained using the alternating itera-
tive algorithm II, exact Cauchy data on Γ1, ω = 1.80 and k = 1000 iterations, for
Example 1.
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in the case of Example 1. It can be seen from these figures that, for all values of the
relaxation parameter used in this paper, both errors eu and eq keep decreasing until
a specific number of iterations, after which they slightly increase until the conver-
gence rate of the aforementioned accuracy errors becomes very slow so that they
reach a plateau. As expected, for each value of the relaxation parameter employed,
eu(k) < eq(k) for all k ≥ 1, i.e. temperatures are more accurate than normal heat
fluxes; also, the larger the parameter ω, the lower the number of iterations and,
consequently, the computational time are required for obtaining accurate numerical
results for both the temperature and the normal heat flux on Γ2. Therefore, choos-
ing ω ∈ (1,2) in the alternating iterative algorithms I and II results in a significant
reduction of the number of iterations as compared with the corresponding original
alternating iterative algorithms proposed by Kozlov, Maz′ya and Fomin (1991), i.e.
for ω = 1. Furthermore, it can also be noticed from Figs. 2(a) and 2(b) that, for
exact Cauchy data on Γ1 and all the values of the relaxation factor employed, the
errors in the numerical temperature, eu, and normal heat flux, eq, retrieved on Γ2
corresponding to the plateau region mentioned above have almost the same values,
i.e. the numerical results obtained using various values of the constant relaxation
parameter,ω, are consistent.

The same conclusions can be drawn from Figs. 3(a) and 3(b), which illustrate the
analytical and numerical temperature and normal heat flux, respectively, obtained
with ω = 1.80 after k = 1000 iterations. From Figs. 2 and 3, it can be concluded
that the alternating iterative algorithm with relaxation II described in Section 3
provides excellent approximations for the unknown Cauchy data on Γ2 and is con-
vergent with respect to increasing the number of iterations, k, if exact Cauchy data
are prescribed on the over-specified boundary Γ1. Although not presented, it is
reported that similar results have been obtained for Examples 2−4 and all admissi-
ble values of the relaxation parameter, as well as the alternating iterative algorithm
with relaxation I applied to all examples investigated in this study.

6.3 Regularizing stopping criterion

Once the convergence of the numerical solution to the exact solution, with respect
to number of iterations performed, k, has been established, we investigate the sta-
bility of the numerical solution for the examples considered. In what follows, the
temperature, u

∣∣
Γ1

= u(an)
∣∣
Γ1

, and/or the normal heat flux, q
∣∣
Γ1

= q(an)
∣∣
Γ1

, on the
over-specified boundary have been perturbed as

ũε
∣∣
Γ1

= u
∣∣
Γ1

+δu, δu = G05DDF(0,σu), σu = max
Γ1
|u|× (pu/100) , (34)
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and

q̃ε
∣∣
Γ1

= q
∣∣
Γ1

+δq, δq = G05DDF(0,σq), σq = max
Γ1
|q|×

(
pq/100

)
, (35)

respectively. Here δu and δq are Gaussian random variables with mean zero and
standard deviations σu and σq, respectively, generated by the NAG subroutine
G05DDF (NAG Library Mark 21 , 2007), while pu% and pq% are the percentages of
additive noise included into the input boundary temperature, u

∣∣
Γ1

, and normal heat
flux, q

∣∣
Γ1

, respectively, in order to simulate the inherent measurement errors.
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(b) Example 1: Accuracy error eq

Figure 4: The accuracy errors (a) eu, and (b) eq, as functions of the number of
iterations, k, obtained using the alternating iterative algorithm I, pq = 5% noise
added into the Neumann data on Γ1 and various values of the relaxation parameter,
ω, namelyω ∈ {0.20,0.50,1.00,1.50,1.80}, for Example 1.

The evolution of the accuracy errors, eu and eq, as functions of the number of
iterations, k, obtained using the alternating iterative algorithm I, pq = 5% and
ω ∈ {0.20,0.50,1.00,1.50,1.80}, for Example 1, are displayed, on a logarithmic
scale, in Figs. 4(a) and 4(b), respectively. From these figures it can be noted
that the number of iterations required for both errors eu and eq to attain their cor-
responding minimum values (i.e. to obtain the optimal numerical solution to the
Cauchy problem) decreases with respect to increasing the value of the relaxation
parameter, ω. Similar to the case of exact Cauchy data on Γ1, the inaccuracies in
the numerical solutions for both the temperature and normal heat flux on the under-
determined boundary Γ2, obtained using various values of the relaxation parameter,
have almost the same value, therefore emphasising the consistency of the proposed
MFS-based iterative algorithms with relaxation with respect to the values of the
relaxation parameter,ω ∈ (0,2).
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(c) Example 1: Convergence error Eu

Figure 5: The accuracy errors (a) eu, and (b) eq, and (c) the convergence error, Eu,
as functions of the number of iterations, k, obtained using the alternating iterative
algorithm I, ω= 1.50 and various levels of noise added into the Neumann data on
Γ1, namely pq ∈ {1%,3%,5%}, for Example 1.

Figs. 5(a) and 5(b) present, on a logarithmic scale, the accuracy errors eu and
eq, respectively, as functions of the number of iterations, k, obtained using the
alternating iterative algorithm I,ω= 1.50 and pq ∈ {1%,3%,5%}, for the Cauchy
problem given by Example 1. From these figures it can be seen that, for each fixed
value of pq, the errors in predicting the temperature and normal heat flux on the
under-specified boundary Γ2 decrease up to a certain iteration number and after
that they start increasing. If the iterative process is continued beyond this point
then the numerical solutions lose their smoothness and become highly oscillatory
and unbounded, i.e. unstable. Therefore, a regularizing stopping criterion must
be used in order to cease the iterative process at the point where the errors in the
numerical solutions start increasing.



254 Copyright © 2010 Tech Science Press CMC, vol.17, no.3, pp.233-272, 2010

To define the stopping criterion required for regularizing/stabilizing the iterative
methods analysed in this paper, after each iteration, k, we evaluate the following
convergence error which is associated with the temperature on the over-specified
boundary, Γ1, namely

Eu(k) =

RMSΓ1

(
u(2k−1)− ũε

)
RMSΓ1

(
ũε
) for the alternating iterative algorithm with relaxation I

RMSΓ1

(
u(2k)− ũε

)
RMSΓ1

(
ũε
) for the alternating iterative algorithm with relaxation II.

(36)

Here u(2k−1)
(
u(2k)

)
is the temperature on the boundary Γ1, retrieved numerically

after k iterations by solving the well-posed mixed direct boundary value problem
(5a)–(5c) [(10a)–(10c)], in the case of the alternating iterative algorithm I (II), while
ũε is the perturbed Dirichlet data (boundary temperature) on the over-specified
boundary Γ1, as given by Eq. (34). This error Eu should tend to zero as the se-
quences

{
u(2k−1)

}
k≥1 and

{
u(2k)

}
k≥1 tend to the analytical solution, u(an), in the

space H1(Ω) and hence it is expected to provide an appropriate stopping criterion.
Indeed, if we investigate the error Eu obtained at each iteration for Example 1, using
the alternating iterative algorithm I, ω = 1.50 and pq ∈ {1%,3%,5%}, we obtain
the curves graphically represented in Fig. 5(c). By comparing Figs. 5(a)–(c), it
can be noticed that the convergence error Eu, as well as the accuracy errors eu and
eq, attain their corresponding minimum at around the same number of iterations.
Therefore, for noisy Cauchy data a natural stopping criterion terminates the MFS
iterative algorithms with relaxation I and II at the optimal number of iterations, kopt,
given by:

kopt : Eu(kopt) = min
k≥1

Eu(k). (37)

Although not illustrated, it is important to mention that similar results and con-
clusions have been obtained for the other examples considered, ω ∈ (0,2) and the
MFS-based iterative algorithm with relaxation II.

As mentioned in the previous section, for exact data the iterative process is con-
vergent with respect to increasing the number of iterations, k, see e.g. Fig. 2 for
Example 1, and hence a stopping criterion is not necessary in this case. However,
even in this situation the errors Eu, eu and eq have a similar behaviour and, conse-
quently, the error Eu may be used to stop the iterative process at the point where
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the rate of convergence is very small and no substantial improvement in the numer-
ical solution is obtained even if the iterative process is continued. Therefore, it can
be concluded that the regularizing stopping criterion (37) proposed for the MFS-
based iterative algorithms with relaxation I and II is very efficient in locating the
point where the errors start increasing and the iterative process should be stopped.

6.4 Results obtained with noisy data: Stability of the algorithms

Based on the stopping criterion (37) described in Section 6.3, the analytical and
numerical values for the temperature, u, and normal heat flux , q, on the under-
specified boundary Γ2, obtained using the alternating iterative algorithm I, ω =
1.50 and pu ∈ {1%,3%,5%}, for Example 1, are illustrated in Figs. 6(a) and 6(b),
respectively. From these figures it can be seen that the numerical solution is a stable
approximation for the exact solution, free of unbounded and rapid oscillations. It
should also be noted from Figs. 6(a) and 6(b) that the numerical solution converges
to the exact solution as pu −→ 0.
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Figure 6: The analytical and numerical (a) temperatures u, and (b) normal heat
fluxes q, on the under-specified boundary Γ2, obtained using the alternating iterative
algorithm I, ω = 1.50 and various levels of noise added into the Dirichlet data on
Γ1, namely pu ∈ {1%,3%,5%}, for Example 1.

The values of the optimal iteration number, kopt, the corresponding accuracy er-
rors, eu(kopt) and eq(kopt), and the CPU time, obtained using the alternating itera-
tive algorithm I, the stopping criterion (37), various levels of noise added into the
Dirichlet data on Γ1 and various values of the relaxation parameter, ω ∈ (0,2), for
the Cauchy problem given by Example 1, are presented in Table 1. The following
major conclusions can be drawn from this table:



256 Copyright © 2010 Tech Science Press CMC, vol.17, no.3, pp.233-272, 2010

0.0 0.2 0.4 0.6

/2

-1

0

1

2

3

u

Analytical

pu = 1%

pu = 3%

pu = 5%

(a) Example 1: Temperatures on Γ1

0.0 0.2 0.4 0.6

/2

-2

0

2

q

Analytical

pu = 1%

pu = 3%

pu = 5%

(b) Example 1: Normal heat fluxes on Γ1

Figure 7: The analytical and numerical (a) temperatures u, and (b) normal heat
fluxes q, on the over-specified boundary Γ1, obtained using the alternating iterative
algorithm I, ω = 1.50 and various levels of noise added into the Dirichlet data on
Γ1, namely pu ∈ {1%,3%,5%}, for Example 1.

(i) For all fixed values of the relaxation parameter ω ∈ (0,2), both accuracy
errors eu(kopt) and eq(kopt) decrease as pu decreases (i.e. the algorithm I is
stable with respect to decreasing the level of noise added into the Dirichlet
data on Γ1), while the optimal number of iterations kopt and, consequently,
the CPU time required for the alternating iterative algorithm I to reach the
numerical solutions for the unknown temperature and normal heat flux on Γ1
increase as pu decreases;

(ii) For all fixed amounts of noise added into the temperature on the over-specified
boundary Γ1, pu ∈ {1%,3%,5%}, the accuracy errors eu(kopt) and eq(kopt)
have the same values regardless the value of the relaxation parameter ω ∈
(0,2), while the optimal number of iterations, kopt and the CPU time required
for the alternating iterative algorithm I to reach the numerical solutions for
the unknown temperature and normal heat flux on Γ1 decrease as ω −→ 2,
i.e. as more over-relaxation is introduced in the algorithm I.

In order to assess the performance of the alternating iterative algorithm I with
under-, no and over-relaxation, we exemplify by considering Example 1 with pu =
1%: In this case, the CPU times needed for the alternating iterative algorithm I
with ω = 0.50 (under-relaxation), ω = 1.00 (no relaxation) and ω = 1.50 (over-
relaxation) to reach the numerical solutions for the temperature and normal heat
flux on Γ2 were found to be 5785.39, 3455.76 and 1674.59 s, respectively, while
the corresponding values for the optimal iteration number required, kopt, were found
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to be 4136, 2755 and 1367, respectively. This means that, to attain the numerical
solutions for the unknown Dirichlet and Neumann data on Γ2, the alternating itera-
tive algorithm I with over-relaxation (ω= 1.50) requires a reduction in the number
of iterations performed and CPU time by approximately 50% and 67% with respect
to those corresponding to the standard iterative algorithm I as proposed by Kozlov,
Maz′ya and Fomin (1991), i.e. without relaxation (ω = 1.00), and the alternating
iterative algorithm I with under-relaxation (ω= 0.50), respectively.

It should be emphasised that the alternating iterative algorithm I provides excellent
numerical approximation for both the boundary temperature and the normal heat
flux on the over-determined boundary Γ1. This fact can be clearly seen from Figs.
7(a) and 7(b), which present a comparison between the analytical and numerical
values for the given Cauchy data on Γ1, ω = 1.50 and pu ∈ {1%,3%,5%}, in
the case of Example 1. Similar results have been obtained for the other inverse
problems analysed and therefore they are not illustrated herein. Also, very good
reconstructions of the temperature distribution in the domain Ω have been retrieved
for Example 1, when using the MFS-based iterative algorithm I, ω = 1.50 and
pu ∈ {1%,3%,5%}, and these are illustrated in Figs. 8(a)–(d).

Similar conclusions to those obtained from Figs. 6 and 8 can be drawn from Figs. 9
and 10, which show the numerical values for the temperature and normal heat flux
obtained on the under-specified boundary Γ2 and the temperature distribution in the
domain Ω, respectively, in comparison with their analytical counterparts, using the
alternating iterative algorithm I, the regularizing stopping criterion (37), ω= 1.50
and pq ∈ {1%,3%,5%}, for Example 1. By comparing Figs. 6, 8− 10, it can be
observed that the alternating iterative algorithm I is more sensitive to noise added
into the temperature u

∣∣
Γ1

than to perturbations of the normal heat flux q
∣∣
Γ1

, in the
case of Example 1.

Table 2 tabulates the values of the optimal iteration number, kopt, according to the
stopping criterion (37), the corresponding accuracy errors given by Eqs. (33a)
and (33b), and the CPU time, obtained using the alternating iterative algorithm I,
various levels of noise added into the Neumann data on Γ1 and various values of
the relaxation parameter, ω ∈ (0,2), for the Cauchy problem given by Example 1.
From Tables 1 and 2 it can be noticed that the sensitivity of the alternating iterative
algorithm I with respect to noisy Dirichlet and Neumann data on Γ1, for Example
1, results in the following:

(i) More inaccurate numerical results for both u
∣∣
Γ2

and q
∣∣
Γ2

are obtained for
perturbed temperature on Γ1 than for noisy normal heat flux on Γ1;

(ii) The optimal number of iterations, kopt, and hence the CPU time required for
the alternating iterative algorithm I to reach the numerical solutions for the
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Figure 8: (a) The analytical, u(an)
∣∣
Ω

, and numerical internal temperatures,
u(num)

∣∣
Ω

, obtained using the alternating iterative algorithm I, ω = 1.50 and var-
ious levels of noise added into the Dirichlet data on Γ1, namely (b) pu = 1%, (c)
pu = 3%, and (d) pu = 5%, for Example 1.
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Figure 9: The analytical and numerical (a) temperatures u, and (b) normal heat
fluxes q, on the under-specified boundary Γ2, obtained using the alternating iterative
algorithm I, ω= 1.50 and various levels of noise added into the Neumann data on
Γ1, namely pq ∈ {1%,3%,5%}, for Example 1 with |Γ1|/|Γ2|= 3.

unknown temperature and normal heat flux on Γ2 for perturbed temperature
on Γ1 are larger that those corresponding to noisy normal heat flux on Γ1.

Accurate, convergent and stable numerical results for both the temperature and the
normal heat flux on Γ2 have also been obtained when using the MFS-based iter-
ative algorithm II, in the case of steady-state anisotropic heat conduction Cauchy
problems in doubly connected domain with a smooth boundary. Figs. 11(a) and
11(b) illustrate the analytical and numerical temperatures and normal heat fluxes
on Γ2, respectively, retrieved using the iterative algorithm II, ω = 1.50 and pu ∈
{1%,3%,5%}, for Example 2 (i.e. annular domain). Similar stable results have
also been obtained for the reconstruction of the internal temperature, u

∣∣
Ω

, and
these are displayed in Fig. 12.

The proposed MFS-alternating iterative algorithm II, in conjunction with the stop-
ping criterion (37), works equally well also for the Cauchy problem (4a)–(4c) as-
sociated with the Laplace-Beltrami equation in a simply connected convex two-
dimensional domain with a piecewise smooth boundary, such as the rectangular
domain considered in Example 3. Figs. 13(a) and 13(b) show the numerical results
for the temperature and normal heat flux on the boundary Γ2, respectively, obtained
using the stopping criterion (37), ω= 1.50, pq ∈ {1%,3%,5%} and |Γ1|/|Γ2|= 5
(i.e. over-determined Cauchy problem), in comparison with their corresponding
analytical values, in the case of Example 3, while the analytical and numerically re-
constructed temperature distributions in the domain Ω are presented in Figs. 14(a)–
(d), respectively.
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Figure 10: (a) The analytical, u(an)
∣∣
Ω

, and numerical internal temperatures,
u(num)

∣∣
Ω

, obtained using the alternating iterative algorithm I, ω = 1.50 and var-
ious levels of noise added into the Neumann data on Γ1, namely (b) pq = 1%, (c)
pq = 3%, and (d) pq = 5%, for Example 1 with |Γ1|/|Γ2|= 3.
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Table 1: The values of the optimal iteration number, kopt, the corresponding ac-
curacy errors, eu(kopt) and eq(kopt), and the computational time, obtained using
the alternating iterative algorithm I, the regularizing stopping criterion (37), vari-
ous amounts of noise added into u

∣∣
Γ1

, i.e. pu ∈ {1%,3%,5%} and pq = 0%, and
various values for the relaxation parameter, ω, for the Cauchy problem given by
Example 1.

ω pu pq kopt eu(kopt) eq(kopt) CPU time [s]
0.20 1% 0% 4958 0.12065×10−1 0.51310×10−1 6845.51

3% 0% 4716 0.36192×10−1 0.15391×100 6029.39
5% 0% 4483 0.60320×10−1 0.25652×100 5228.04

0.50 1% 0% 4136 0.12065×10−1 0.51310×10−1 5785.39
3% 0% 3934 0.36192×10−1 0.15391×100 5306.01
5% 0% 3740 0.60320×10−1 0.25652×100 4327.90

1.00 1% 0% 2755 0.12065×10−1 0.51310×10−1 3455.76
3% 0% 2620 0.36192×10−1 0.15391×100 3269.54
5% 0% 2490 0.60320×10−1 0.25652×100 2868.35

1.50 1% 0% 1367 0.12065×10−1 0.51310×10−1 1674.59
3% 0% 1299 0.36192×10−1 0.15391×100 1560.15
5% 0% 1234 0.60320×10−1 0.25652×100 1396.48

1.80 1% 0% 508 0.12065×10−1 0.51310×10−1 603.45
3% 0% 483 0.36192×10−1 0.15391×100 572.96
5% 0% 458 0.60320×10−1 0.25652×100 523.65

Next, we investigate the sensitivity of the alternating iterative algorithm with relax-
ation II with respect to the measure of the over-specified boundary and hence the
robustness of the proposed numerical method. To do so, we consider again the ge-
ometry described in Example 3 with Γ1 = {r}×

[
−r
/

2, r
/

2
]
∪ [−r, r]×

{
r
/

2
}

and
Γ2 = {−r}×

(
−r
/

2, r
/

2
)
∪ [−r, r)×

{
−r
/

2
}

such that |Γ1|/|Γ2| = 1 (i.e. equally
determined Cauchy problem). The analytical and numerical values for the temper-
ature, u, and normal heat flux, q, on the under-specified boundary Γ2, obtained
using the alternating iterative algorithm II, ω = 1.50, pq ∈ {1%,3%,5%} and
|Γ1|/|Γ2|= 1, for Example 3, are illustrated in Figs. 15(a) and 15(b), respectively,
while the analytical and numerically reconstructed internal temperatures, u

∣∣
Ω

, are
presented in Figs. 16(a)–(d). By comparing Figs. 13−16, it can be noticed that, as
expected, more inaccurate boundary and internal data reconstructions are obtained
when the Cauchy data are available on a smaller part of the boundary, i.e. for lower
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(b) Example 2: Normal heat fluxes on Γ2

Figure 11: The analytical and numerical (a) temperatures u, and (b) normal heat
fluxes q, on the under-specified boundary Γ2, obtained using the alternating iterative
algorithm II, ω= 1.50 and various levels of noise added into the Dirichlet data on
Γ1, namely pu ∈ {1%,3%,5%}, for Example 2 with |Γ1|/|Γ2|= 3/2.

values of the ratio |Γ1|/|Γ2|. However, good approximations for both the bound-
ary, u

∣∣
Γ2

, and the internal temperatures, u
∣∣
Ω

, and reasonable reconstructions of the
normal heat fluxes on Γ2 have been obtained in the case of the equally determined
Cauchy problem associated with Example 3, see Figs. 15 and 16.

Finally, we investigate the robustness of the proposed MFS-based iterative algo-
rithms with relaxation for the most difficult Cauchy problem as described by Ex-
ample 4. In this case, the difficulty of the problem is dual, namely (i) no analytical
solution to the direct problem is available (the Neumann data have been obtained by
solving numerically the Dirichlet problem for the Laplace-Beltrami equation), and,
more importantly (ii) the inverse problem is under-determined (|Γ1|/|Γ2| = 2/3).
Nonetheless, even for this very severe inverse problem the alternating iterative al-
gorithm II with over-relaxation (ω = 1.50), in conjunction with the stopping cri-
terion (37), produces very good numerical approximations for both the boundary
temperature, u

∣∣
Γ2

, and the normal heat flux, q
∣∣
Γ2

, from perturbed Cauchy data on
Γ1 (pu ∈ {1%,3%,5%} and pq = 0%), as shown in Figs. 17(a) and 17(a), respec-
tively. Similar accurate, stable and convergent results have been obtained for the
internal temperature, u

∣∣
Ω

, and these are illustrated in Fig. 18.

From the numerical results presented in this section, it can be concluded that the
stopping criterion developed in Section 6.3 has a regularizing effect and the nu-
merical solutions for both the temperature and the normal heat flux on the under-
determined boundary, Γ2, obtained by the iterative MFS algorithms described in
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Table 2: The values of the optimal iteration number, kopt, the corresponding ac-
curacy errors, eu(kopt) and eq(kopt), and the computational time, obtained using
the alternating iterative algorithm I, the regularizing stopping criterion (37), vari-
ous amounts of noise added into q

∣∣
Γ1

, i.e. pu = 0% and pq ∈ {1%,3%,5%}, and
various values for the relaxation parameter, ω, for the Cauchy problem given by
Example 1.

ω pu pq kopt eu(kopt) eq(kopt) CPU time [s]
0.20 0% 1% 1584 0.48522×10−2 0.26140×10−1 1883.54

0% 3% 1147 0.14558×10−1 0.78556×10−1 1302.14
0% 5% 905 0.24264×10−1 0.13092×100 1088.95

0.50 0% 1% 1323 0.48522×10−2 0.26164×10−1 1549.07
0% 3% 960 0.14558×10−1 0.78571×10−1 1284.92
0% 5% 763 0.24264×10−1 0.13091×100 871.51

1.00 0% 1% 880 0.48522×10−2 0.26163×10−1 1106.43
0% 3% 638 0.14558×10−1 0.78511×10−1 733.87
0% 5% 506 0.24264×10−1 0.13097×100 661.15

1.50 0% 1% 435 0.48522×10−2 0.26152×10−1 585.96
0% 3% 310 0.14558×10−1 0.78789×10−1 445.68
0% 5% 249 0.24264×10−1 0.13084×100 355.50

1.80 0% 1% 162 0.48522×10−2 0.26349×10−1 187.09
0% 3% 116 0.14558×10−1 0.79429×10−1 156.56
0% 5% 92 0.24264×10−1 0.13120×100 115.96

this paper is convergent and stable with respect to increasing the number of itera-
tions and decreasing the level of noise added into the Cauchy input data, respec-
tively.

7 Conclusions

In this paper, we proposed two algorithms involving the relaxation of either the
given Dirichlet data (temperature) or the prescribed Neumann data (normal heat
flux) on the over-specified boundary in the case of the alternating iterative algo-
rithm of Kozlov, Maz′ya and Fomin (1991) applied to two-dimensional steady-
state anisotropic heat conduction Cauchy problems. The two mixed, well-posed
and direct problems corresponding to each iteration of the numerical procedure
were solved using a meshless method, namely the MFS, in conjunction with the
Tikhonov regularization method. For each direct problem considered, the optimal
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Figure 12: (a) The analytical, u(an)
∣∣
Ω

, and numerical internal temperatures,
u(num)

∣∣
Ω

, obtained using the alternating iterative algorithm II, ω = 1.50 and var-
ious levels of noise added into the Dirichlet data on Γ1, namely (b) pu = 1%, (c)
pu = 3%, and (d) pu = 5%, for Example 2 with |Γ1|/|Γ2|= 3/2.

value of the regularization parameter was selected according to the GCV criterion.
An efficient regularizing stopping criterion which ceases the iterative procedure
at the point where the accumulation of noise becomes dominant and the errors in
predicting the exact solutions increase, was also presented. The MFS-based itera-
tive algorithms with relaxation were tested for over-, equally and under-determined
Cauchy problems associated with the Laplace-Beltrami operator in simply and dou-
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Figure 13: The analytical and numerical (a) temperatures u, and (b) normal heat
fluxes q, on the under-specified boundary {−1}× (−0.5,0.5) = Γ2, obtained using
the alternating iterative algorithm II, ω = 1.50 and various levels of noise added
into the Neumann data on Γ1, namely pq ∈ {1%,3%,5%}, for Example 3 with
|Γ1|/|Γ2|= 5.
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Figure 14: (a) The analytical, u(an)
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Ω

, and numerical internal temperatures,
u(num)

∣∣
Ω

, obtained using the alternating iterative algorithm II, ω = 1.50 and vari-
ous levels of noise added into the Neumann data on Γ1, namely (b) pq = 1%, (c)
pq = 3%, and (d) pq = 5%, for Example 3 with |Γ1|/|Γ2|= 5.
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Figure 15: The analytical and numerical (a) temperatures u, and (b) normal heat
fluxes q, on the under-specified boundary {−1}× (−0.5,0.5)⊂ Γ2, obtained using
the alternating iterative algorithm II, ω = 1.50 and various levels of noise added
into the Neumann data on Γ1, namely pq ∈ {1%,3%,5%}, for Example 3 with
|Γ1|/|Γ2|= 1.
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Figure 16: (a) The analytical, u(an)
∣∣
Ω

, and numerical internal temperatures,
u(num)

∣∣
Ω

, obtained using the alternating iterative algorithm II, ω = 1.50 and vari-
ous levels of noise added into the Neumann data on Γ1, namely (b) pq = 1%, (c)
pq = 3%, and (d) pq = 5%, for Example 3 with , |Γ1|/|Γ2|= 1.
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Figure 17: The analytical and numerical (a) temperatures u, and (b) normal heat
fluxes q, on the under-specified boundary Γ2, obtained using the alternating iterative
algorithm II, ω= 1.50 and various levels of noise added into the Dirichlet data on
Γ1, namely pu ∈ {1%,3%,5%}, for Example 4 with |Γ1|/|Γ2|= 2/3.

bly connected with smooth or piecewise smooth boundaries. The numerical results
obtained in this paper showed the numerical stability, convergence, accuracy, con-
sistency and computational efficiency of the proposed methods. One possible dis-
advantage of the MFS-based iterative algorithms is related to the optimal choice of
the regularization parameter associated with the Tikhonov regularization method
which requires, at each step of the alternating iterative algorithm of Kozlov, Maz′ya
and Fomin (1991), additional iterations with respect to the regularization parame-
ter. However, this inconvenience was overcome by employing the relaxation pro-
cedures presented in this study, emphasizing at the same time the computational
efficiency of the relaxation procedures applied to the alternating iterative algorithm
of Kozlov, Maz′ya and Fomin (1991).

Acknowledgement: The financial support received from the Romanian Ministry
of Education, Research and Innovation through IDEI Programme, Exploratory Re-
search Complex Projects, PN II-ID-PCCE-100/2008, is gratefully acknowledged.

References

Andrieux, S.; Baranger, T.; Ben Abda, A. (2006): Solving Cauchy problems by
minimizing an energy-like functional. Inverse Problems, vol. 22, pp. 115–133.

Ang, D. D.; Nghia, H.; Tam, N. C. (1998): Regularized solutions of a Cauchy
problem for the Laplace equation in a n irregular layer: A three-dimensional model.



268 Copyright © 2010 Tech Science Press CMC, vol.17, no.3, pp.233-272, 2010

1.08E+00

1.
17

E
+

00

1.31E+00

1.
64

E
+

00

9.67E-01

9.67E-01

8.27E-01

6.93E-01

3.
55

E-
01

-3 -2 -1 0 1 2 3

x1

-2

0

2

x2

(a) Example 4: u(an)
∣∣
Ω

1.08E+00

1.
17

E
+

00

1.31E+00

1.64E
+

00

9.16E-01

9.57E-01

8.25E-01

5.
38

E-0
1

3.56E-01

-3 -2 -1 0 1 2 3

x1

-2

0

2

x2

(b) Example 4: u(num)
∣∣
Ω

, pu = 1%

1.08E+00

1.08E+00

1.
17

E
+

00

1.46E+00

1.64E
+

00

1.04E+00

9.10E-01

9.10E-01

5.39E-01

5.
39

E-0
1

-3 -2 -1 0 1 2 3

x1

-2

0

2

x2

(c) Example 4: u(num)
∣∣
Ω

, pu = 3%

1.08E+00

1.08E+00

1.16E
+

00

1.45E+00

1.64E
+

00

9.86E-01

9.05E-01

9.05E-01

5.37E-01

5.
37

E-0
1

-3 -2 -1 0 1 2 3

x1

-2

0

2

x2

(d) Example 4: u(num)
∣∣
Ω

, pu = 5%

Figure 18: (a) The analytical, u(an)
∣∣
Ω

, and numerical internal temperatures,
u(num)

∣∣
Ω

, obtained using the alternating iterative algorithm II, ω = 1.50 and var-
ious levels of noise added into the Dirichlet data on Γ1, namely (b) pu = 1%, (c)
pu = 3%, and (d) pu = 5%, for Example 4 with |Γ1|/|Γ2|= 2/3.



Stable Boundary and Internal Data Reconstruction 269

Acta Mathematica Vietnamica, vol. 23, pp. 65–74.

Bourgeois, L. (2005): A mixed formulation of quasi-reversibility to solve the
Cauchy problem for Laplace’s equation. Inverse Problems, vol. 21, pp. 1087–1104.

Burgess, G.; Maharejin, E. (1984): A comparison of the boundary element and
superposition methods. Computers & Structures, vol. 19, pp. 697–705

Chen, C. W.; Young, D. L.; Tsai, C. C.; Murugesan, K. (2005): The method of
fundamental solutions for inverse 2D Stokes problems. Computational Mechanics,
vol. 37, pp. 2–14.

Cheng, J.; Hon, Y. C.; Wei, T.; Yamamoto, M. (2001): Numerical computation
of a Cauchy problem for Laplace’s equation. ZAMM - Zeitschrift für Angewandte
Mathematik und Mechanik, vol. 81, pp. 665–674.

Cimetière, A.; Delvare, F.; Jaoua, M.; Pons, F. (2001): Solution of the Cauchy
problem using iterated Tikhonov regularization. Inverse Problems, vol. 17, pp. 553–
570.

Cimetière, A.; Delvare, F.; Jaoua, M.; Pons, F. (2002): An inversion method for
harmonic functions reconstruction. International Journal of Thermal Sciences, vol.
41, pp. 509–516.

Delvare, F.; Cimetière, A. (2008): A first order method for the Cauchy problem
for the Laplace equation using BEM. Computational Mechanics, vol. 41, pp. 789–
796.

Delvare, F.; Cimetière, A.; Pons, F. (2002): An iterative boundary element
method for Cauchy inverse problems. Computational Mechanics, vol. 28, pp. 291–
302.

Dong, C. F.; Sun, F. Y.; Meng, B. Q. (2007): A method of fundamental solu-
tions for inverse heat conduction problems in an anisotropic medium. Engineering
Analysis with Boundary Elements, vol. 31, pp. 75–82.

Elabib, A.; Nachaoui, A. (2008): An iterative approach to the solution of an
invers problem in elasticity. Mathematics and Computers in Simulation, vol. 77,
pp. 185–201.

Fairweather, G.; Karageorghis, A. (1998): The method of fundamental solutions
for elliptic boundary value problems. Advances in Computational Mathematics,
vol. 9, pp. 69–95.

Fairweather, G.; Karageorghis, A.; Martin, P. A. (2003): The method of funda-
mental solutions for scattering and radiation problems. Engineering Analysis with
Boundary Elements, vol. 27, pp. 759–769.



270 Copyright © 2010 Tech Science Press CMC, vol.17, no.3, pp.233-272, 2010

Golberg, M. A.; Chen, C. S. (1999): The method of fundamental solutions for
potential, Helmholtz and diffusion problems. In: Golberg, M. A. (Ed.), Boundary
Integral Methods: Numerical and Mathematical Aspects. WIT Press and Compu-
tational Mechanics Publications, Boston, pp. 105–176.
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