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In-plane Crushing Analysis of Cellular Materials Using
Vector Form Intrinsic Finite Element

T.Y. Wu1, W.C. Tsai2 and J.J. Lee2

Abstract: The crushing of cellular materials is a highly nonlinear problem, for
which geometrical, material, and contact/impact must be treated in one analysis.
In order to develop a framework able to solve it efficiently and accurately, in this
paper procedures for in-plane crushing analysis of cellular materials using vector
form intrinsic finite element (VFIFE) is performed. A beam element of VFIFE is
employed to handle large rotation and large deflection in the cell walls. An elastic-
plastic material model with mixed hardening rule is adopted to account for material
nonlinearity. In addition, an efficient contact/impact algorithm is designed to treat
the complex contact/impact encountered in crushed cellular materials. Numerical
results performed reveals that the procedures proposed in this paper are sound and
reliable to simulate crushing of diverse cellular materials.
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1 Introduction

Cellular materials extensively exit in diverse plants or creatures in nature, such as
in wood, bone, coral, and honeycomb and so forth. With the advancement of ma-
terial science and engineering, many artificial cellular materials, such as polymer,
metallic, and ceramic foams, had also been successfully developed and massively
produced. They not only have the advantages of light weight and impact energy ab-
sorbing, but capable of isolating heat, noise, and vibration with respect to practical
engineering needs. Therefore understanding of cellular material properties and me-
chanical behaviors is crucial to the quality and safety control when applying those
cellular materials to engineering practices. Extensive theoretical and experimental
works have been conducted for cellular materials under quasi-static and dynamic
loading conditions. Good summaries in these works can be found in the references
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of Gibson and Ashby (1997); Reid, Reddy and Peng (1993).

In the past 3 decades, many research works touched cellular materials on crushing
and failure characteristics using analytical or numerical tools have been published.
Gibson and his co-workers [Gibson, Ashby, Schajer, and Robertson (1982); Gib-
son and Ashby (1982, 1997)] conducted analyses on mechanics of two- and three-
dimensional cellular materials. In their elaborations, mechanical behaviors of local
single cell were examined to predict the material properties in macro scale. Exper-
iments were also conducted to verify their analysis results. It had been proven to
be useful in understanding the mechanical behavior of cellular materials through
studying two-dimensional cellular materials with regular and periodic microstruc-
tures. Many works have revealed that using numerical procedures to predict prop-
erties and failure responses of cellular materials under diverse loading conditions
has been extensively accepted by researchers. Papka and Kyriakides (1994, 1998)
investigated in-plane crushing of a honeycomb using full scale simulations via com-
mercial finite element code. Their results demonstrate that once the key geomet-
ric, material and processing parameters are incorporated in the models, numeri-
cal simulation is able to reproduce the experimental results both qualitatively as
well as quantitatively. Nearly at the same time, Silva and Gibson (1997); Guo
and Gibson (1997) analyzed the effects of removed cells on the elastic and plas-
tic behaviors of honeycombs. However, their simulation scale and depth are very
finite. Hönig and Stronge (2002a, 2002b) studied in-plane dynamic crushing of
honeycombs, in which crush band initiation and wave trapping of honeycomb re-
sulting from in-plane impact are simulated via implicit and explicit finite element
approaches. In their works, both beam and shell elements were employed in re-
spective analyses. Ruan, Lu, Wang and Yu (2003) studied the in-plane dynamic
behavior of honeycombs using explicit finite element code. They found the de-
formation modes change significantly with different values of cell wall thickness
and impact velocity. In addition, three and two localized deformation modes are
respectively observed in x1 and x2 directions. Zheng, Yu, and Li (2005) employed
two irregularity-generating approaches to create irregular honeycomb models, the
crushing behaviors of which were also explored using explicit finite element code.
They found the deformation modes of irregular honeycomb are more complicate
than those of regular honeycomb. In order to explore the dynamic response of cel-
lular materials and to investigate the features of the crushing front, and to examine
the assumptions employed in one-dimensional shock theory [Reid and Peng (1997);
Tan, Reid, Harrigan, Zou, and Li (2005)] , Zou, Reid, Tan, Li, and Harrigan (2009)
conducted an in-plane dynamic crushing analysis of 2D hexagon-cell honeycombs
using explicit finite element code. The references with finite element simulations
cited above used commercial code, ABAQUS as a numerical tool. Other renowned
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commercial codes also had been employed. For instance, Liu and Zhang (2009) in-
vestigated the influence of cell micro-topology on the in-plane dynamics crushing
honeycombs by LS-DYNA. Nakamoto, Tadaharu, Araki (2009a, 2009b) explored
the in-plane impact behavior of honeycomb structures filled with rigid inclusions.
In their work, explicit finite element code, RADIOSS was employed.

The crushing of cellular materials is highly nonlinear. Namely, all the nonlinearities
of geometry, material, contact/impact, and even fragmentation must be treated in
one analysis. In the author’s point of view, a computational framework suitable for
crushing analysis of cellular material at least must have following capabilities:

(a) The element for modeling the deformations of cell walls must be able to ac-
count for geometric nonlinearity. The internal force evaluations must be effi-
cient and accurate.

(b) Generalized elastic-plastic material model must be included to simulate the
material nonlinearity in cell walls.

(c) Automatic contact search algorithm is a must to treat the complex contact be-
havior encountered in crushed material. The search algorithm should be linear
both in the senses of memory storage and CPU cost.

(d) The numerical algorithms in (a.-c.) must be able to be parallelized easily.

The geometrically nonlinear effect mentioned in item (a) can be treated by many
ways, such as the elaborations [Iura, Suetake and Atluri (2003); Cai, Paik, and
Atluri (2010); Zhu, Cai, Paik and Atluri (2010); Cai, Paik, and Atluri (2009a);
Cai, Paik and Atluri (2009b)] recently published. However, cumbersome matrix
manipulations should be avoided because it may be detrimental to the requisitions
listed in items (c) and (d).

In order to achieve the requisitions listed in items (a-d), a framework centered at
vector form intrinsic finite element (VFIFE), originally proposed by Ting and his
co-workers [Ting, Shi and Wang (2004a, 2004b); Shi, Wang, and Ting (2004);
Ting, Wang, Wu, Wang and Chuang (2006)] and with the capabilities mentioned
above, for crushing analysis of cellular materials is developed and presented in
this paper. The method of VFIFE is a set of solution procedures designed based
on vector mechanics. In the past decade, elements for 2D solids [Ting, Shi and
Wang (2004a); Wu, Lee and Ting (2008)], 3D solids [Wu and Ting (2004)], 3D
membranes [Wu, Wang, Chuang and Ting (2007); Wu and Ting (2008)], 2D beams
[Ting, Shi and Wang (2004b); Wu, Wang and Wang (2006); Wu, Tsai and Lee
(2009)], and 3D beams [Ting, Wang, Wu, Wang, and Chuang (2006)] had been
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successfully developed. It had been proved that all the elements can pass the tests
with large overall motion and large deformation or large deflection.

In this work, a beam element of VFIFE incorporated with a nonlinear material
model and an efficient contact/impact procedure is used to analyze in-plane crush-
ing of cellular materials. The remainder of this paper is organized as follows.
Section 2 introduces the concept and theory of vector form intrinsic finite ele-
ment. Section 3 introduces the nonlinear material model used. Section 4 intro-
duces a contact/impact procedure. In Section 5, numerical examples are illustrated
to demonstrate the performance of the framework proposed. Finally, in Section 6,
conclusions are made.

2 Vector form intrinsic finite element (VFIFE)

VFIFE is a method developed following the theory of vector form analysis pro-
posed by Ting (2008). Rather than function, point value description is used as
fundamental parameter for description. The point value description is achieved
by allocating mass points (particles) for structural configuration and defining path
elements for particle motion. Then properly selecting and using constitutive condi-
tions complete the formulation. The constitutive conditions linking the mass points
in deformable solids or structures are primarily complemented by the generalized
forces evaluated from solid or structural units (the so-called element). Along each
path element, particle motion can be described by Newton’s law for free particles
or by prescribed path for constrained particles [Ting (2008)].

2.1 Allocation of particles

Figure 1 illustrates a frame structure whose configuration and motion are repre-
sented by positions and trajectories of a particle set. The symbol mβ denotes the
mass of an arbitrary particle β . The position vector of particle mβ at initial time t0,
and at any time t are respectively denoted by x0 and x(t). At time t0, both the initial
position x0 and initial velocity v0 are given.

The determination of particle mass in VFIFE is a modeling procedure, neither the
results of variational principles nor ad-hoc numerical algorithms. In this paper, the
total mass and total moment inertia of mass of an arbitrary particle β is defined as

mβ = Mβ +
nc

∑
K=1

mKβ

Jβ = Jβ +
nc

∑
K=1

JKβ

(1)

whereMβ and Jβ are the mass and moment inertia of mass attached to particle β ;



In-plane Crushing Analysis of Cellular Materials 179

x

y

0x

x
particle path

mβ

mβ

0t t=

t t=

 
Figure 1: Point mass of structure and trajectory of a particle.

nc is the number of elements connected with particle β . mKβ denotes the mass
contributed from element K, which can be evaluated by

mKβ = 1
2 ρ̄K lK (2)

where ρ̄K denotes the mass per unit length, and lK the element length, of element
K. JKβ is the moment inertia of mass contributed from element K, which can be
calculated by

JKβ = mKβ γ
2 (3)

in which γ denotes the radius of gyration of the cross section at the node (on element
K) connected to particle β . The proof of Eq. (3) can be found in the reference by
Ting, Wang, Wu, Wang, and Chuang (2006).

The interaction forces between particle mβ and its neighbors are the element forces
of the elements connected to the particle. The interaction forces must satisfy New-
ton’s third law. The properties of each element are defined by nodal displacements
and equivalent nodal forces. In addition, the element displacement functions must
satisfy continuity conditions. Namely, the element nodal displacements are deter-
mined by particle motion and the resistant forces induced by element deformations
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Figure 2: Particle trajectory consisted of path element.

are represented by element internal nodal forces that are applied to those particles
connected with the element.

The external forces are prescribed time functions, which commonly include two
types: one is the concentrated forces directly applied to particle; and the other is on
the element, which must be transformed equivalently into nodal external forces.

The element doesn’t carry any mass. Mass, external and internal nodal forces are
lumped at particles. The planar motion of the continuum can be analyzed by New-
ton’s law for particle motion.

2.2 Path element and governing equation

Figure 2 illustrates a particle with a motion from time t0 to t. Its position vector
continuously changes from x0 to x(t). Such a motion path in VFIFE is modeled via
a series of consecutively jointed path elements, as illustrated in Figure 2. Within
each path element, computational procedures are canonical and simplified. The
basic assumptions for the simplified procedure are:

Assume an analysis time, say from t0 to tN , can be properly split into N- discrete
time segments, t0 < t1 < t2 < · · · < ta < tb · · · < tN . The trajectory of particle cor-
responding to time ta ≤ t ≤ tb is called a path element, within which the reference
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configuration for stress analysis of a structural or solid unit for internal force eval-
uation is that at time ta.

Within path element ta ≤ t ≤ tb, deformation of structural element is infinitesimal.
Namely, the effect due to geometrical change within the time interval t− ta can be
neglected. In each path element, standardized computation procedures including
the process of displacement and deformation, the calculations for equivalent inter-
nal and external forces, and the solution of the equation of motion of each particle.
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Figure 3: Free body of a particle.

Figure 3 shows a free body of an arbitrary particle with mass m. The equation of
motion of particles at time t can be formulated according to Newton’s second law,

md̈ = P+
nc

∑
i=1

pi−
nc

∑
i=1

fi, ta ≤ t≤ tb (4a)

or rewritten in the following explicit form,m 0 0
0 m 0
0 0 J

d̈x

d̈y

θ̈z

=

Px

Py

Qz

+
nc

∑
i=1

pix

piy

qiz

− nc

∑
i=1

 fix

fiy

miz

, ta ≤ t ≤ tb (4b)

where m denotes the particle mass, and J the moment inertia of mass. d repre-
sents the particle displacement vector on plane (x,y), including the translational
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components dx, dy, and the rotationθz; P is the concentrated external force vector,
including the force components Px, Py, and the moment Qz, directly applied at the
particle; pi is the equivalent nodal force vector, including the force pix, piy and
moment component qiz, contributed from the distributed loads on element i; fi is
the equivalent nodal force vector, including the force fix, fiy and the moment miz,
due to the deformations in element i; nc is the number of elements connected with
particle m at time ta. The translational displacement components can be expressed
as[

dx

dy

]
= x(t)−xa (5)

where xa is the particle position vector at time ta.

Eq. 4 needs initial conditions to get unique solution. Thus, at t = ta.

d = da

ḋ = va
(6)

va denotes the particle velocity vector at time ta.

It should be noted that both the particle mass and the number of connecting ele-
ments (nc) are kept in constant within a path element. Fragmentation of structural
components or the merging of particles is only allowable at the beginning of path
element, namely, ta or tb.

2.3 Evaluation of internal forces

In this subsection, a 2-node beam element of VFIFE for internal force evaluation is
performed. Figure 4 illustrates a planar beam element with nodal numbers (1,2).
At time ta, the position and displacement vectors of node I are xIa and uIa. And, at
time t they are respectively xI and uI . The displacement increment from ta to t is

∆uI = xI−xIa = uI−uIa, I = 1,2 (7)

The configuration, nodal positions, nodal internal forces and material properties of
the element must be given at time ta. Both configuration and material properties
are assumed to be unchanged from time ta to t. In other word, the material frame
for internal force computation is at time ta.

2.3.1 Reverse rigid body motion

Within path element, ta ≤ t ≤ tb the material frame of the element is the configu-
ration and position at time ta. In this material frame, the displacement vector of
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Figure 4: Nodal displacements and orientations of beam element.

an arbitrary particle is denoted by ua; the element nodes are designated as (1a,2a).
Let the nodal displacement increment within time segment t− ta be ∆uI , I =1, 2,
as illustrated in Figure 4. To extract pure deformation and to get consistent rela-
tionship between stress and strain, a fictitious reverse rigid body motion, including
translation and rotation, is imposed on the element.

Let the element at time t undergo a fictitious reverse rigid body translation (−∆uI),
the element moves to the state with nodes designated as (1′′,2′′), as shown in Fig-
ure 5. Then, the relative nodal displacements are

∆ηηη 1 = 0

∆ηηη 2 = ∆u2−∆u1
(8a)

In addition, the nodal rotation angles of the element within time segment t- ta are

∆θIz = θIz−θIza, I = 1,2 (8b)

Then a reverse rigid body rotation is imposed and the nodal labels change to (1′,2′),
as shown in Figure 6. Before imposing the reverse rotation, the angle of element
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Figure 5: Nodal rotations and relative displacements.

rigid body rotation can be measured by

∆ϕ = cos−1(ea · et) (9)

where

et =
x2−x1

‖x2−x1‖
; ea =

x2a−x1a

‖x2a−x1a‖
(10)

represent the element orientation vectors at time t and ta, as illustrated in Figures
4. Thus, the displacement due to rigid body rotation ∆θ of each node I can be
evaluated,

∆ηηη
r
1 = 0

∆ηηη
r
2 = (RT − I)(x2−x1)

(11)

where R is a rotation matrix, and is explicitly expressed as

R =
[

cos(∆ϕ) sin(∆ϕ)
−sin(∆ϕ) cos(∆ϕ)

]
(12)

and where I denotes a 2×2 identity matrix.
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When the reverse motion is completed, the nodal deformation displacements can
be obtained by comparing the position and configuration in the fictitious state with
that in the material frame, as shown in Figure 6, i.e.

∆ηηη
d
1 = 0

∆ηηη
d
2 = ∆ηηη2−∆ηηη

r
2

(13)

in which, ∆ηηηd
I is the deformation vector of node I within the time segment t− ta.

In addition, the deformation nodal rotations are

θI = ∆θIz−∆ϕ, I = 1,2 (14)

From Figure 6, one can find

∆ηηη
d
2 = ∆ea = (l− la)ea (15)

where ∆ is the axial stretch, l and la is the element length at time t and ta.
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Figure 6: Reverse rotation of an element.

2.3.2 Deformation coordinate

The definition of element internal forces in VFIFE resembles that of a traditional
finite element, except that the nodal variables used in VFIFE is deformations, rather
than displacements. Therefore, three redundant DOFs’ corresponding to the rigid
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Figure 7: Deformation coordinate and Euler beam kinematics.

body modes must be eliminated. Otherwise, the variation of nodal displacements
can not be arbitrary.

The elimination approach in VFIFE is defining a set of coordinate system x̂ = (x̂, ŷ),
referred to as deformation coordinate, for describing shape functions, as shown in
Figure 7. Thus, a set of rectangular coordinates (x̂, ŷ) is defined, withx̂-axis parallel
to the orientation vector, ea and the origin at node 1. The orientation vectors of the
coordinates are

ê1 = ea =
[

l1
m1

]
, ê2 =

[
−m1

l1

]
(16)
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Thus the transformation matrix from global to deformation coordinate is

Q =
[

êT
1

êT
2

]
=
[

l1 m1
−m1 l1

]
(17)

The relationship between deformation coordinatex̂ and global coordinate x can be
written as

x̂ = Q(x−x1) (18)

In what follows, any variable with a hat, e.g., λ̂λλ , denotes that λλλ is described by a
deformation coordinate, i.e., λ̂λλ = Qλλλ .

2.3.3 Internal nodal forces

Let û(û, v̂) be the deformation vector of a point along the neutral axis x̂, according
to the Euler beam theory,

û = ûm− ŷ
dv̂
dx̂

(19)

where ûm is the deformation along the neutral axis (see Figure 7). In deformation
coordinate, it satisfies

at x̂ = 0, ûm = 0, v̂ = 0 (20a)

at x̂ = la, ûm = ∆, v̂ = 0 (20b)

The compatibility conditions at the nodes for deformation are

at x̂ = 0, dv̂/dx̂ = θ1 (21a)

at x̂ = la, dv̂/dx̂ = θ2, ûm = ∆ (21b)

Two polynomial functions that satisfying the six conditions above are

ûm = a1 +a2x̂ (22a)

v̂ = a3 +a4x̂+a5x̂2 +a6x̂3 (22b)

Coefficients ai, i = 1 ∼ 6 can be solved by the conditions in Eq. 20-21. Thus a
simple substitution yields

û = s∆−
{
(1−4s+3s2)θ1 +(−2s+3s2)θ2

}
ŷ (23)
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Figure 8: Element nodal forces and moments.

wheres = x̂/la.

Assume that there is a set of nodal internal forces at nodes (1, 2), including the
axial forces ( f̂1x, f̂2x), the shear forces( f̂1y, f̂2y), and the moments (m1z,m2z), as
shown in Figure 8. The evaluation of internal force is based on that the virtual
work induced by nodal internal forces and virtual deformations must be equivalent
to that by element stresses and virtual deformations. Namely,

δU1 = δU2 (24)

in which,

δU1 =
∫

Va

δ (∆ε̂εε)T
σ̂σσdVa (25a)

δU2 = δ (û∗)f̂∗ =
[
δ∆ δθ1 δθ2

] f̂2x

m1z

m2z

 (25b)
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where, ∆ε̂ denotes the axial fiber deformation, σ̂ the total stress at an arbitrary point
(x̂, ŷ) within the element at time t, and Va the volume of element (1a−2a).
The element configuration at time ta is the material frame, deformations (û, v̂)
within t− ta is small, compared to the element geometries at time ta, such as the
length laor cross section area Aa. Therefore, ∆ε̂ can be defined by infinitesimal
strain, i.e.,

∆ε̂ =
∂ û
∂ x̂

=
1
la

∂ û
∂ s

(26)

Or written in the matrix form,

∆ε̂ = Bû∗ =
1
la

[
1 (4−6s)ŷ (2−6s)ŷ

]∆

θ1
θ2

 (27)

Substituting Eq. 27 into Eq. 25, and from Eq. 24, yields a set of nodal forces

f̂∗ =

 f̂2x

m1z

m2z

=
∫

Va

BT
σ̂σσ dVa (28)

where σ̂σσ is the axial stress at the fictitious state (1′− 2′). According to the basic
assumption of mechanics of material, it can be written as

σ̂σσ = σ̂σσa +∆σ̂σσ (29)

σ̂σσa is the stress at time ta. The difference between states (1′,2′) and (1a,2a) is
small, thus the incremental stress ∆σ̂ can be defined by engineering stress.

Substituting Eq. 29 into 28, we have

f̂∗ = f∗a +∆f̂∗ =
∫

Va

BT
σ̂σσadVa +

∫
Va

BT (∆σ̂σσ)dVa (30)

In the work presented, the integral in Eq. 30 is carried out using Lobatto’s and
Gaussian integration rule respectively through the depth and along axis of element.
Because of the procedure of reverse motion, the particular stress update algorithms
for satisfying the principle of objectivity are not required in VFIFE [Ting (2008)].

In Eq. 30 only yields three components of internal forces of the element are avail-
able. The other three components must be calculated using three static equilibrium
conditions of element:

∑Fx̂ = 0 f̂1x =− f̂2x

∑M1a = 0 f̂2y =−(m1z +m2z)/la

∑Fŷ = 0 f̂1y =− f̂2y

(31)
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Consequently, Newton’s third law is automatically satisfied.

2.3.4 Forward motion

The internal nodal forces calculated in Eq. 30 and 31 are not consistent with the
orientation of the state at time t, thus a forward motion, including a translation
(+∆û1) and a rotation (+∆ϕ), must be imposed. Therefore, internal nodal forces
in global orientation are obtained as follows. fIx

fIy

mIz

=
[

RQT 0
0 1

] f̂Ix

f̂Iy

m̂Iz

 , I = 1,2 (32)

Through the formulation presented above, one can found that the evaluation of
internal nodal forces in VFIFE is simple and efficient.

3 Material model

In Eq. 30, the bending stress must be calculated from a stress-strain relationship. In
this section, a bilinear elastic-plastic material model for numerical implementations
is used. The yielding function is written as

σy = σ
0
y +βH ε̄p (33)

in which the symbols σ0
y , σy, H and ε̄p respectively denote initial yielding stress,

subsequent yielding stress, plastic hardening modulus and effective plastic strain.
The combination of isotropic and kinematic hardening can be achieved via intro-
ducing a parameter, β (−1 < β ≤ 1). β = 1 and β = 0 respectively stand for
isotropic and kinematic hardening rule.

An algorithm degenerated from radial return mapping [Krieg and Key (1976)] is
employed herein. Let the trial stress σ̂∗ be the stress in material frame plus an
increment of elastic stress, i.e.

σ̂
∗ = σ̂a +Ea∆ε̂ (34)

where Ea is the elastic tangent modulus at stress state σ̂a. To account for kinematic
hardening, the reduced stress ξ is included as follows,

ξ = σ̂
∗−α (35)

where α denotes the back stress due to the movement of yielding surface. Com-
paring reduced stress ξ with yielding stress σy provided by Eq. 33, if ξ < σy then
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the response is elastic, otherwise it is in plastic phase and the trial stress must be
modified as

σ̂ = σ̂
∗−Φ ·ξ (36)

where Φ is a scale factor due to radial return,

Φ = Ea · ˙̄εp/|ξ | (37)

in which,

˙̄εp =
|ξ |−σy

Ea +H
(38)

is the increment of effective plastic strain. The back stress can be updated by the
increment of back stress,

α̇ = (1−β )H ˙̄εpξ/|ξ | (39)

The verification and validation the plasticity algorithm incorperated with VFIFE
can be found in the work by Wu, Tsai and Lee (2009).

4 Contact algorithms

The contact search algorithm in this work is designed according to a global-local
search strategy [Zhong (1993)]. The global search filters out most of contact can-
didates impossible to come into contact. The local search algorithm is built on a
ball-to-segment contact methodology. In addition, penalty approach is employed
for contact force evaluation. The details are specified as follows.

4.1 Contact search algorithm

Figure 9a shows a cellular structure that simply consists of 5 cells. The cell walls
are modeled by several particles linked by beam elements. To achieve the balance
between accuracy and computational efficiency, ball and segment are adopted as
the basic contact features in the presented crushing analysis. The center of ball
coincides with position of particle, and the segment body is represented by the
neutral axis of beam element with a specified thickness, as illustrated in Figure 9b.

The contact search implementation consists of 2 phases, i.e. the global and local
search phases. In the phase of global search, a background grid is used for sorting.
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The sorting of particle is carried out using the integerized particle position. For
instance, for an arbitrary particle i, its integerized position is (ix, iy).

ix = int(xi/B)+1

iy = int(yi/B)+1
(40)

where B denotes of the size of the bucket in the grid, which is determined according
to the size of beam element. Thus the total number of buckets is (Lx×Ly/B2). Lx

and Ly are the dimensions of the grid (see Figure 9a). The integerized position is
also the coordinate of a bucket. Thus with the integerized position of each particle,
for any segment located in a bucket, only the balls (particles) in the bucket and its
neighbors are checked for local contact search, as shown in Figure 9b.

xL

yL

B

B

( , )x yi i

( , 1)x yi i +( 1, 1)x yi i− +

( 1, )x yi i−

( 1, 1)x yi i− − ( , 1)x yi i −

( 1, 1)x yi i+ +

( 1, )x yi i+

( 1, 1)x yi i+ −  

(a) (b) 

 Figure 9: (a) Background grid for sorting (b) Segment body and its neighbors for
contact.

The memory requirement for the storage of sorting result is commonly not linear.
In this work, the NBS contact detection algorithm [Munjiza and Andrew (1998)]
is adopted, rather than linked-list. The NBS algorithm was originally developed
for discrete element method (DEM). It only posses the complexity of O(N) both
in the senses of computation speed and memory storage. In this work, only the
ball-to-segment contact search is checked in analysis, i.e. the segment-to-ball con-
tact search is neglected. Consequently, all the particles in the 9 buckets must be
checked, as shown in Figure 9b.

Figure 10 illustrates the methodology of the local search used in this work. The
basic contact features are a ball with radius R and a beam segment with a thickness
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h. The contact between the ball and segment is true if and only if the following
conditions are met,

0≤ xp1 · et ≤ l (41a)

|xp1−xp1 · et |< R+h/2 (41b)

in which, xp1 is the relative position vector of ball p to node 1. et and l respectively
denote the orientation vector of the segment, and the segment length.

h

a

1 2

p
R

1px
1 1p p t− ⋅x x e

1p t⋅x e

b  
Figure 10: The ball and segment for checking local contact.

4.2 Contact force evaluation

When the ball comes into contact with the segment, a depth of penetration, D is
evaluated. Namely,

D = |xp1−xp1 · et |− (R+h/2)≤ 0 (42)

A normal contact force is estimated using the penalty approach,

fn =
(
k ·D+ c · Ḋ

)
Ac (43)

where c is the coefficient of viscosity, Ḋ is the rate of penetration, and k is the
penalty parameter.



194 Copyright © 2010 Tech Science Press CMC, vol.17, no.3, pp.175-214, 2010

The friction force is calculated using a bilinear Coulomb model. The algorithm
incrementally evaluate the friction force at each new step. Let the trial frictional
force be written as

ftr
s = ft−∆t

s − k∆d (44)

where ft−∆t
s is the friction force at time t−∆t, ∆d is the relative sliding displace-

ment of ball to segment. If the magnitude of trial frictional force is less than that
calculated by Coulomb’s law,

fu = µ|fn| (45)

in which µ is the frictional coefficient, then the friction force at time t is the trial
frictional force,

ft
s = ftr

s (46)

Otherwise,

ft
s = fu ·

ftr
s

|ftr
s |

(47)

5 Numerical examples

Numerical examples are performed in this section to demonstrate the proposed pro-
cedures introduced in sections 2, 3 and 4. All the numerical examples are imple-
mented on a FORTRAN 90 code, VFIFE2D.

5.1 Example 1: Quasi-static compression of honeycomb

This example considers a honeycomb consisting of 10×15 single cells and made
of AL-5052-H39 aluminum alloy, as shown in Figure 11-12. The honeycomb is
installed between 2 plates, A and B. The plate A is fixed but plate B is slowly
moved down to compress the honeycomb. The honeycomb doesn’t stick to the
plates. The thickness of vertical cell wall is 2 times larger than those of other 4’s.
In Figure 12, two types of single cells with distinct dimensions are analyzed. The
experiments for these 2 types of honeycombs had been conducted by Papka and
Kyriakides (1998).

In analysis, the material of AL-5052-H39 aluminum alloy is modeled by a bilin-
ear elastic-plastic model with isotropic hardening rule. The material properties are
also specified in Figure 12. A frictional coefficient of 0.2 [Papka and Kyriakides
(1998)] is used to account for the frictions between plates and honeycomb. Three
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particles and 2 beam elements are allocated for a single cell wall, thus totally 814
particles are used for the entire honeycomb. In each element, 2 and 6 integration
points are allocated along beam axis and through sectional depth for internal force
evaluation. In addition, a size of time step ∆t= 2.0×10−6sec is used for time inte-
gration. To achieve the quasi-static solution, the approach of dynamic relaxation is
used.

Figure 13 plots the stress-strain curves from the case of Dimensions 1, in which the
strain is the ratio of plate displacement to the original length of the honeycomb, and
the stress is the averaged contact pressure acting on plate B. It can be observed that
the cell wall of honeycomb starts to buckle as the strain is around 7%, then a stress
plateau is developed until the strain reaching about 70 %. Over 70 % of strain, the
cell walls of honeycomb holistically collapsed and contact one another, making the
honeycomb densification and contact stress steeply ascending. Comparing VFIFE’s
result to those of 2 experiments conducted by Papka and Kyriakides (1998), the
presented stress plateau is slightly larger than those form experiments, but good
agreement can be observed.

Similar to the case of Dimension 1, Papka and Kyriakides (1998) conducted the
other honeycomb with cell properties, termed Dimensions 2 in Figure 12. In this
case, the thickness of cell wall is reduced. Figure 14 is the results from VFIFE and
experiment. As expected, the plateau stress also reduces. In this case, the result of
VFIFE also shows good agreement with that of experiment.

5.2 Example 2: Dynamic crushing of cellular materials

This example analyzes dynamic crushing of three types of cellular materials, which
respectively consist of 74×21 hexagonal (Type I), 128×32 quadratic (Type II), and
128×37 regular triangular (Type III) cells, as illustrated in Figure 15. The geome-
try and dimensions of each type of single cell and material properties are illustrated
and specified in Figure 16. The three materials have the same length of 512 mm,
width of 128 mm, and weight of 70.77 g. In addition, the same relative density of
0.1 is used according to following Eqs,

ρ∗Q
ρ

= 2
hQ

LQ

(
1− 1

2
hQ

LQ

)
for quadratic cell (48)

ρ∗T
ρ

= 2
√

3
hT

LT

(
1−
√

3
2

hT

LT

)
for triangular cell (49)

ρ∗H
ρ

=
√

3
2

hH

LH for hexagonal cell (50)
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Figure 11: The honeycomb for in-plane compression test.
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Figure 12: Dimensions and material properties of a single cell in Figure 11.
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Figure 13: Stress-strain curves from the case of Dimensions 1.
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Figure 14: Stress-strain curves from the case of Dimensions 2.
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Figure 15: Three types of cellular materials compressed by a plate with velocity V .

Each single cell wall is modeled by three particles and 2 beam elements. Thus to-
tally 8099, 4125, and 6364 particles are respectively required for the entire structure
of Type I, II, and III. In each element, 2 and 6 integration points are respectively
allocated along beam axis and through section depth to evaluate internal forces. In
addition, a size of time step ∆t = 2×10−7 sec is used for time integration.

The material model of cell wall is elastic-perfect-plastic. The contact interfaces
between cell walls are assumed to be frictionless. In addition, the adherence on the
interfaces between cellular material and plate is neglected. In dynamic crushing
tests, the plate B is fixed but the plate A is imposed by a prescribed moving velocity,
V . In this example, the materials under velocities, 2, 10, 25, 50, 75, 100, 150, and
200 m/sec are respectively examined.

Figure 17 plots the deformation process of Type I (hexagon) material under com-
pression velocities, 2, 10, 50, and 100 m/sec, resepectively. In the cases under
slower velocities, 2 and 10 m/sec, the ‘V’ and ‘X’ crush modes [Ruan, Lu, Wang
and Yu (2003)] appears near both the moving and fixed ends. For the cases under
higher velocities, 50 and 100 m/sec, the cells near moving end are progressively
collapsed and highly condensed, which also form a front of crush similar to the
shock front in wave propagation [Zou, Reid, Tan, Li, and Harrigan (2009)]. The
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Figure 16: Dimensions and material properties of each single cell in Figure 15.

same analyses had been conducted by Zou, Reid, Tan, Li, and Harrigan (2009)
using commercial code and comparing their results with 2 one-dimensional shock
theories. The first one can be found in the references by Reid and Peng, (1997);
Tan, Reid, Harrigan, Zou, and Li (2005); Tan, Harrigan, and Reid (2002),

σ = σ0 +
ρV 2

εd
(51)

where, σ0 and σ denote the quasi-static and dynamic plateau stress, ρ the initial
density of the cellular material εd the densification strain. The second one further
incorporates the Rankine-Hugoniot jump conditions,

σ = σA +
ρ[V ]2

[ε]
(52)
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(a) V = 2 m/sec                                                    (b) V = 10 m/sec  

 

(c) V = 50 m/sec                                                   (d) V = 100 m/sec  
 

Figure 17: Deformation process of Type I cellular material
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Figure 18: Plateau stress vs. compression velocity of Type I cellular material.

where σA and is the stress just ahead of the shock and [ ] denotes a change in the
value across the shock [Harrigan, Reid, Tan and Reddy (2005)].

Figure 18 plots the plateau stress versus compression velocity of Type I cellular
material. It can be found that the result of VFIFE is more close to theory consider-
ing the Rankine-Hugoniot jump conditions.

Figure 19 and 20 respectively plots the deformation process of Type II and III
materials under compression velocities, 2, 10, 50, and 100 m/sec. In these results,
only the ‘I’ crush mode appears under each compression velocity. For the case of
Type II, largely vertical dislocations due to the shear instability on cell walls therein
are found, when compression velocities are 2 and 10 m/sec. Under the velocities
of 50, and 100 m/sec, the dislocations disappear but some cells are distorted before
crushing (see Figure 19). For the case of Type III, the deformation process is
smoother than the other two.

Figure 21 shows the plateau stresses versus compression velocity of the three ma-
terials, in which the curves fitted by quadratic polynomial function are also plotted.
It can be observed that the Type III has higher plateau stress as compression veloc-
ity is slower than around 40 m/sec. As the compression velocity is greater than 40
m/sec, the plateau stress of Type II and III are almost the same, but significantly
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(a) V = 2 m/sec                                                    (b) V = 10 

m/sec  

 

(c) V = 50 m/sec                                                   (d) V = 100 
m/sec  

 Figure 19: Deformation process of Type II material.

smaller than that of Type I.

5.3 Example 3: Crushing of honeycombs with stiff inclusions

In this example, crushing behaviors of honeycombs with stiff inclusions are exam-
ined. Figure 22 illustrates a honeycomb consisting of 20×21 single cells, which
is installed between 2 plates, A and B. The geometric and material properties are
also illustrated and specified in Figure 22. The plate A is driven by a constant ve-
locity 1 m/s to compress the honeycomb. In order to explore the influence of stiff
inclusions on the honeycomb, 2 and 6 lines of inclusions are respectively arranged
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(a) V = 2 m/sec                                                    (b) V = 10 m/sec  

 

(c) V = 50 m/sec                                                   (d) V = 100 m/sec  
 

Figure 20: Deformation process of Type III material.
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Figure 21: Plateau stresses vs. compression velocity of the three types of materials.

into the honeycomb illustrated in Figure 22, as shown in Figure 23. In analysis, a
single cell wall is modeled by 11 particles and 10 beam elements. 2 and 6 integra-
tion points are respectively allocated along the axis and through section depth of
the beam element to evaluate internal forces. The inclusions are modeled via using
relative stiff elements. In addition, a size of time step ∆t = 2×10−8 sec is used for
time integration.

Figure 24 and Figure 25 plot the stress-displacement curves of the two honey-
combs with inclusions and compared with that without inclusion. It is found the
stiff inclusions significantly affect the densification displacement (strain) and com-
pression stress. The densification displacements are around 120 mm for the hon-
eycomb without inclusion, around 100 mm for that with 2 lines of inclusions, and
around 85 mm for that with 6 lines of inclusions. Furthermore, 2 and 6 salient peaks
before densification can be observed in Figure 24 and Figure 25 respectively. They
are consistent with the number of lines of inclusions. In fact, Nakamoto, Adachi,
and Araki (2009) had conducted this example using commercial code. In their re-
sults, 2 salient peaks appear in the curve of the case with 2 lines of inclusions.
However, none of salient peaks in the case with 6 lines of inclusions are found.
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Figure 22: The honeycomb without stiff inclusions and the properties of a single
cell.
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Figure 23: The honeycombs inserted (a) 2 lines and (b) 6 lines of inclusions.
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Figure 24: The stress vs. displacement curves (w/o and w/ 2 lines of inclusions).
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Figure 25: The stress vs. displacement curves (w/o and w/ 6 lines of inclusions).

Figure 26 shows the deformation process of the honeycomb without inclusions.
An X-mode of crushing appears when the compression displacement is around 40
mm. This is a common phenomenon in honeycomb compression test [Papka and
Kyriakides (1998)]. Figure 27 shows the deformation process of the honeycomb
with 2 lines of inclusions. Firstly, a V-mode of crushing arises as the plate displace-
ment is around 21 mm. Then it is turned into C-mode due to hitting the first line of
inclusions as the plate displacement is around 40.3 mm. The crushing mode of the
cells locating between the 2 lines of inclusions is in the form of I-mode. Figure 28
shows the deformation process of the honeycomb with 6 lines of inclusions. Only
I-mode of crushing is found in each phase of compression.

6 Conclusions

In this paper, an analysis framework centered at VFIFE to simulate crushing of cel-
lular materials has been established. The method of VFIFE is developed based on
vector mechanics. It is suitable to solve the problems with multiple nonlinearities.
Its algorithm does not involve any matrix operation. In the proposed framework
the memory requisition and CPU cost can be controlled in linear range via incorpo-
rating the NBS contact detection approach. Thus the algorithm is very suitable for
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(a) displacement = 40 mm                                 (b) displacement = 80 mm 

 
(c) displacement = 120 mm                                 (d) displacement = 150 mm 

 

Figure 26: The deformation process of the honeycomb without inclusions.
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(a) displacement = 21 mm                                          (b) displacement = 40.3 mm 

  
(c) displacement = 80.6  mm                                      (d) displacement = 134.9 mm 

 

Figure 27: The deformation process of the honeycomb with 2 lines of inclusions.
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(a) displacement = 10.5 mm          (b) displacement = 24.5 mm          (c) displacement = 35 mm 

 

(d) displacement = 50.8 mm           (e) displacement = 61.3 mm         (f) displacement = 80.6 mm 

 

(g) displacement = 108.6 mm 

 
Figure 28: The deformation process of the honeycomb with 6 lines of inclusions.
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parallel computing to treat large scale simulations, which will be explored and pre-
sented in the subsequently published papers. Numerical results performed reveals
that the procedures proposed in this paper are sound and reliable to simulate failure
and crushing of diverse cellular materials.
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