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The Effect of the Geometrical Non-Linearity on the Stress
Distribution in the Infinite Elastic Body with a Periodically

Curved Row of Fibers

Surkay D. Akbarov1,2, Resat Kosker3 and Yasemen Ucan3

Abstract: In the framework of the piecewise homogeneous body model with the
use of the three-dimensional geometrically non-linear exact equations of the the-
ory of elasticity, the method for determination of the stress-strain state in the infinite
body containing periodically located row of periodically curved fibers is developed.
It is assumed that the midlines of the fibers are in the same plane. With respect to
the location of the fibers according to each other the sinphase and antiphase curv-
ing cases are considered. Numerical results on the effect of the geometrical non-
linearity to the values of the self balanced shear and normal stresses are presented.
In particular, it is established that this effect causes to increase (to decrease) the
absolute values of these stresses in compression (in tension) along the fibers.

Keywords: Row of fibers, Self balanced stresses, geometrical non-linear, period-
ical curving, unidirectional fibrous composites.

1 Introduction

It is known that in the structure of the unidirectional fibrous composites the fibers
have an initial curving or bending. These curvatures may be due to design features
(see: Akbarov and Guz (2000), Chou, Cullough and Pipes (1986), Feng, Allen and
Moy (1998), Ganesh and Naik (1996), Tarnopolsky, Jigun and Polyakov (1987))
or to various technological processes resulting from the action of various factors
(see: Corten (1967), Tomashevskii and Yakovlev (2004)). Normally, the curvature
caused by design features is modeled as a periodical, whereas the curvature caused
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by the technological process is modeled as a local one. The successful practical use
of artificially created composite materials are associated, to a considerable extend,
with the determination of the stress-strain state in these materials, taking the above
mentioned curvature (or distortion) into account. As a result of the curvature of the
fibers, the self-balanced stresses arise and these stresses can lead to the separation
of the fibers from matrix under uniaxial tension or compression along the fibers
(see: Akbarov and Guz (2000), Corten (1967), Guz (1990), Tarnopolsky and Rose
(1969)). This separation causes the formation of macrocracks that is the accumu-
lation of which can change significantly the stiffness and strength properties of the
composites (Kashtalyan (2005)). Besides these, the initial insignificant curving of
the reinforcing fibers is taken as a model for the investigation of the various fracture
or stability loss problems of unidirectional composite materials (see: Akbarov and
Kosker (2004), Akbarov, Cilli and Guz (1999), Akbarov, Sisman and Yahnioglu
(1997), Akbarov and Mamedov (2009)). Consequently, establishing the mechanics
of composite materials with curved structures is urgent both from the viewpoint of
fundamental developments in the mechanics of a solid deformable body and from
the viewpoint of applications to specific composite material components used in
modern engineering.

There are two basic approaches to the study of the aforementioned problems. The
first one is the continuum approach that may be used to calculate the components
of the stress-strain state for the areas considerably greater in size than the curving;
the influence of fibers curving in the structure is taken into account by means of
quantitative variation in the normalized mechanical characteristics. Note that the
investigations carried out in Bazhant (1968), Bolotin (1966), Mansfied and Purslow
(1974), Swift (1975), Witney (1966) and many others relate to the first type ap-
proaches.

The second approach, which can be named the “local approach”, was developed
considerably later than the first one; it enables one to take into account the influ-
ence of reinforcing fibers curving in calculating the components of the stress-strain
state in areas comparable to or smaller than that of the curving. This approach was
developed both in the framework of the continuum theories and in that of a piece-
wise homogeneous body model. These methods are essential for estimating the
influence of curving on the local distribution of the stress-strain state, which may
determine local failure.

The systematic consideration of the results of the investigations regarding to the
second approach was made in the monograph Akbarov and Guz (2000), and the
review of those was given in the paper Akbarov and Guz (2004). It follows from
this review that the considerable part of these investigations was made for layered
composites. Up to recent years the investigations of the stress-strain state in the
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unidirectional fibrous composites with curved fibers are carried out for only small
concentration of fibers and in this case composite material is modeled as an infinite
elastic body containing a single periodical curved fiber. For investigation of such
a problem in the framework of the piecewise homogeneous body model with the
use of three-dimensional linear theory of elasticity, a method is developed and the
corresponding numerical results are analyzed in Akbarov and Guz (1985a, 1985b).

It is evident that the investigation on how the stress distribution mentioned above
is effected by the reciprocal effect between fibers, as volume ratio of fibers gets
bigger in composites, is very important. For this purpose in Akbarov and Kosker
(2003a, 2003b), Kosker and Akbarov (2003) the aforementioned method and inves-
tigations were extended to the corresponding problem for two neighboring fibers in
an infinite elastic matrix and numerical results obtained are analyzed. But, in fact,
the inquiry into the interaction of such fibers requires a more complicated model.
Therefore, in Akbarov, Kosker and Ucan (2004, 2006) the foregoing approach was
developed for a periodically located row of fibers in an infinite matrix and corre-
sponding numerical results were presented. In the paper Akbarov, Kosker and Ucan
(2004) (Akbarov, Kosker and Ucan (2006)) it was assumed that the curving of the
fibers relative to each other is sinphase (antiphase) one and the investigations were
made within the framework of the linear theory of elasticity.

According to the mechanical consideration and to the investigations carried out for
layered composites with curved structures and analyzed in the monograph Akbarov
and Guz (2000), there are some combinations of geometric and curvature param-
eters of the fibers and of the values of external force intensities under which it is
necessary to investigate of the considered problems within the framework of the
geometrical non-linear statement. Using the results of such investigations, it can
be determined the limit of the intensity of the external forces for which the results
obtained in the linear statement are acceptable. Furthermore, using these results it
can be determined to the character of the influence of the geometrical non-linearity
on the mechanical behaviour of the unidirectional fibrous composites with curved
structure. In connection with this in the present paper the investigation carried out
in Akbarov, Kosker and Ucan (2004, 2006) is developed for the geometrical non-
linear statement. In this case the stress distribution is studied when the body is
loaded at infinity by uniformly distributed normal forces with intensity p acting in
the direction of the fibers. The investigation is carried out in the scope of the three-
dimensional geometrical non-linear exact equations of the theory of elasticity.

Throughout the investigations, repeated indices are summed over their ranges; how-
ever, underlined repeated indices are not summed. Furthermore, to simplify the
consideration we will use the tensor notation and physical components of tensors
simultaneously.
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2 Formulation of the problem

We consider the infinite body (matrix) containing periodically located row of fibers,
which have initial periodically curving. With respect to the location of the fibers ac-
cording to each other the following two cases are considered: (I) sinphase curving
in plane and (II) antiphase curving in plane. Here under “in plane” it is understood
that the midlines of the fibers lie in the same plane. With the middle line of each
fiber we associate Lagrangian rectilinear Okx1kx2kx3k and cylindrical Okrkθkzk sys-
tem of coordinates (Fig. 1) where k (= −∞, ...,−2,−1, 0, 1, 2, ...,+∞) shows the
fiber number. According to Fig.1,

x2k = x20, x3k = x30 = x3, x1k = kR12 + x10

r0eiθ0 = kR12 + rkeiθk , zk = z0 = z. (1)

The midlines of the fibres are given by the equations

for the sinphase curving

x1k = Lsin(
2π

`
x3k), x2k = 0 (2)

for the antiphase curving.

x1k = (−1)kLsin(
2π

`
x3k), x2k = 0 (3)

We assume that the cross-section of each fibre perpendicular to its midline is a circle
with constant radius R along the entire length of the fibres. Moreover we assume
that, the curving amplitude L is smaller than the curving period ` and introduce a
small parameter

ε =
L
`
, (0 < ε � 1) (4)

In what follows, the values related to the fibres will be denoted by the superscripts
(2k), but those related to the matrix by the superscript (1). The materials of the
fibers and matrix are isotropic and homogeneous. We investigate the stress-strain
state in the considered body in the case where the body loaded, at infinity, by uni-
formly distributed normal forces with an intensity p acting in the direction of the
fibers. For this purpose, within the fibers and infinite matrix in the geometrical non-
linear statement and in the cylindrical system of coordinates, we write governing
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 Figure 1: The geometry of material structure and chosen coordinates: (a) sinphase
curving; (b) antiphase curving.
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field equations.

∇i

[
σ

(m)in
(

g j
n +∇nu(m) j

)]
= 0,

2ε
(m)
jn = ∇ ju

(m)
n +∇nu(m)

j +∇ ju(m)i
∇nu(m)

i ,

σ
(m)
(i j)

= λ
(m)(e(m)

δ
j

i )+2µ
(m)

ε
(m)
(i j) ,

e(m) = ε
(m)
rr + ε

(m)
θθ

+ ε
(m)
zz .

(5)

It is assumed that on the interfaces between the fibers and matrix (denote them
by Sq, where q =−∞, ...,−1, 0, 1, ...,+∞) the completely cohesion conditions are
satisfied.

σ
(2q)in

(
g j

n +∇nu(2q) j
)∣∣∣

Sq
nq( j) = σ

(1)in
(

g j
n +∇nu(1) j

)∣∣∣
Sq

nq( j),

u
(2q)
j

∣∣∣
Sq

= u(1)
j

∣∣∣
Sq

(6)

where nq j are the components of the unit normal vector to the surfaces Sq.

In the considered case it is also assumed that the conditions∣∣∣σ (2k)
(i j)

∣∣∣< ∞,
∣∣∣u(2k)

(i)

∣∣∣< ∞, σ
(1)
zz −−−−→

|x20|→∞

p, σ
(1)
(i j) −−−−−→|x20|→∞0

for (i j) 6= zz (7)

are satisfied.

According to the geometry of the structure of the considered body we can also write
the following symmetry conditions with respect to the x20 = 0 plane (Fig. 1).

σ
(m)
(i j) (x1k,x2k,x3k) = σ

(m)
(i j) (x1k,−x2k,x3k),

u(m)
(i) (x1k,x2k,x3k) = u(m)

(i) (x1k,−x2k,x3k). (8)

Moreover, the periodical location of the row of fibers along the Ox1 axis requires
the satisfaction of the following conditions in the case where the materials of the
fibers are the same.

For the sinphase curving case

σ
(20)
(i j) (x10,x20,x30) = σ

(2k)
(i j) (x1k,x2k,x3k) = σ

(2k)
(i j) (x10 + kR12,x2k,x3k),

u(20)
(i) (x10,x20,x30) = u(2k)

(i) (x1k,x2k,x3k) = u(2k)
(i) (x10 + kR12,x2k,x3k),

σ
(1)
(i j)(x10,x20,x30) = σ

(1)
(i j)(x10 + kR12,x20,x30),
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u(1)
(i) (x10,x20,x30) = u(1)

(i) (x10 + kR12,x20,x30). (9)

For the antiphase curving case

σ
(20)
(i j) (x10,x20,x30) = (−1)k

σ
(2k)
(i j) (x1k,x2k,x3k) = (−1)k

σ
(2k)
(i j) (x10 + kR12,x2k,x3k),

u(20)
(i) (x10,x20,x30) = (−1)ku(2k)

(i) (x1k,x2k,x3k) = (−1)ku(2k)
(i) (x10 + kR12,x2k,x3k),

σ
(1)
(i j)(x10,x20,x30) = (−1)k

σ
(1)
(i j)(x10 + kR12,x20,x30),

u(1)
(i) (x10,x20,x30) = (−1)ku(1)

(i) (x10 + kR12,x20,x30). (10)

In equations (5)-(10) the conventional tensor notation is used and subscripts in
parantheses show the physical components of the corresponding tensors. It is
known that

σ(i j) = σ
i jHiH j = σi j

1
H iH j

, ε(i j) = ε
i jHiH j = εi j

1
HiH j

,

u(i) = uiHi = ui
1
Hi

, (11)

where (i j) = rr,θθ ,zz,rθ ,rz,zθ ; (i) = r,θ ,z. Here and in the previous equations
the contravariant (covariant) components of corresponding tensors or vectors are
indicated by upper (lower) indices. Also, in equation (11) the Lamé’s coefficients
are denoted by Hi. Writing the expression of the Lamé’s coefficients in the cylindri-
cal coordinate system and after some rearrangements we can obtain the expression
of the equations (5)-(10) in the cylindrical system of coordinates in explicit form.

Thus, with the above-stated, the formulation of the considered problem is ex-
hausted.

3 Method of solution

For investigation of this problem we use the version of the boundary shape pertur-
bation method developed in Akbarov and Guz (2000). In this case, using equations
of midlines of the fibers and the condition of fiber cross-section, the equations of
the interfaces S1 and S2 are derived as follows:

rk = (1+ ε
2(δ ′k(t3))

2 sin2
θk)−1.

(εδk(t3)+ ε3δk(t3)(δ ′k(t3))
2)sinθk+[

R2− ε2(δk(t3))2−
ε4(δ ′k(t3))

2(δk(t3))2(1+ ε2(δ ′k(t3))
2)sin2

θk

]1/2


zk = t3− εδ

′
k(t3)rk(t3,θk)sinθk + ε

2
δk(t3)δ ′k(t3),
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δ
′
k(t3) =

dδk(t3)
dt3

(12)

where

δk(t3) = `sin(
2π

`
t3) for sinphase curving (13)

δk(t3) = (−1)k`sin(
2π

`
t3) for antiphase curving (14)

and t3 is a parameter and t3 ∈ (−∞,+∞).
After certain transformations, we obtain the following expressions from equation
(12) for the components of the unit normal vector to the surfaces Sk:

nkr = rk(θk, t3)
∂ zk(θk, t3)

∂ t3

[
Ak(θk, t3)

]−1
,

nkθ =
[

∂ zk(θk, t3)
∂θk

∂ rk(θk, t3)
∂ t3

−
∂ rk(θk, t3)

∂θk

∂ zk(θk, t3)
∂ t3

]
.
[
Ak(θk, t3)

]−1
,

nkz =−rk(θk, t3)
∂ rk(θk, t3)

∂ t3

[
Ak(θk, t3)

]−1
, (15)

where

Ak(θk, t3) =

[(
rk(θk, t3)

∂ zk(θk, t3)
∂ t3

)2

+(
∂ zk(θk, t3)

∂θk

∂ rk(θk, t3)
∂ t3

−
∂ zk(θk, t3)

∂ t3

∂ rk(θk, t3)
∂θk

)2

+

(
rk(θk, t3)

∂ rk(θk, t3)
∂ t3

)2
]1/2

(16)

According to Akbarov and Guz (2000), the unknowns are presented in series form
in ε{

σ
(m)
(i j) ; ε

(m)
(i j) ;u(m)

(i)

}
=

∞

∑
q=0

ε
q
{

σ
(m),q
(i j) ; ε

(m),q
(i j) ;u(m),q

(i)

}
,

(17)

Moreover, the expressions (15), (16) are also presented in the series form in ε as
follows:

rq = R+
∞

∑
k=1

ε
kaqk(θq, t3) , zq = t3 +

∞

∑
k=1

ε
kbqk(θq, t3),
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nqr = 1+
∞

∑
k=1

ε
kcqk(θq, t3), nqθ =

∞

∑
k=1

ε
kdqk(θq, t3),

nqz =
∞

∑
k=1

ε
kgqk(θq, t3). (18)

The expressions of the functions aqk(θq, t3), ...,gqk(θq, t3) in equation (18) can eas-
ily be obtained from equations (15) and (16); therefore these expressions are not
given here.

Substituting equation (17) in equation (5), we obtain a set of equations for each ap-
proximation in equation (17). Using expressions (18) we expand the values of each
approximation (17) in the series form in the vicinity of (rk = R, zq = t3). Substitut-
ing these last expressions in contact condition (6) and using the expressions of nqr,
nqθ and nqz given in (12), after some manipulations we obtain contact conditions
satisfied in rk = R, zq = t3 for each approach in equation (17).

It is evident that, for the zeroth approximation the equation (5) is valid and the
conditions (6) are replaced by the same ones satisfied in rk = R, zq = t3. We assume
that ∇nu(k) j,0 << 1 and therefore we replace the terms g j

n +∇nu(k) j,0 by δ
j

n where δ
j

n

are Kronecker symbols. According to this assumption, for the zeroth approximation
we obtain the following system of equations.

∇iσ
(k)i j,0 = 0, 2ε

(k),0
i j = ∇ ju

(k),0
i +∇iu

(k),0
j (19)

and contact conditions

σ
(2q),0
(i j)

∣∣∣
rq=R

= σ
(1),0
(i j)

∣∣∣
rq=R

, u(2q),0
(i)

∣∣∣
rq=R

= u(1),0
(i)

∣∣∣
rq=R

; (20)

(i j) = rr,rθ ,rz; (i) = r,θ ,z

The conditions (7) are valid for zeroth approximation. Moreover, the conditions
(8)-(10) are valid for each approximation separately.

Taking aforementioned assumption into account, for the subsequent approxima-
tions we obtain the following system of equations:

∇i

[
σ

(m)i j,q +σ
(m)in,0

∇nu(m) j,q
]

=−
q−1

∑
k=1

∇i

(
σ

(m)in,q−k
∇nu(m) j,k

)
,

2ε
(m),q
i j = ∇ ju

(m),q
i +∇iu

(m),q
j +

q−1

∑
k=1

∇ ju(m)n,q−k
∇iu

(m),k
n . (21)
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Note that the underlined terms in equations (21) are equal to zero for the first ap-
proximation. Moreover note that the conditions (7) for the subsequent approxima-
tions are replaced by the following ones∣∣∣σ (2k),q

(i j)

∣∣∣< ∞,
∣∣∣u(2k),q

(i)

∣∣∣< ∞, σ
(1),q
(i j) −−−−→|x2|→∞

0 for (i j) 6= zz (22)

It is necessary to add the mechanical relations to these equations

σ
(m),q
(in) = λ

(m)e(m),q
δ

n
i +2µ

(m)
ε

(m),q
(in) ,

e(m),q = ε
(m),q
rr + ε

(m),q
θθ

+ ε
(m),q
zz (23)

which are satisfied for each approximation separately.

Now we write the contact conditions for the first approximation by physical com-
ponents of the stress tensor and displacement vector.

[
σ(i)r

]2k,1
1,1 + f1k

[
∂σ(i)r

∂ r

]2k,0

1,0
+ϕ1k

[
∂σ(i)r

∂ z

]2k,0

1,0
+ γrk

[
σ(i)r

]2k,0
1,0 +

γθk
[
σ(i)θ

]2k,0
1,0 + γzk

[
σ(i)z

]2k,0
1,0 = 0

[
u(i)
]2k,1

1,1 + f1k

[
∂u(i)

∂ r

]2k,0

1,0
+ϕ1k

[
∂u(i)

∂ z

]2k,0

1,0
= 0 (24)

where (i) = r,θ ,z.

In equation (24) replacing (i) with r, θ and z we obtain the explicit form of the
corresponding contact conditions (24). Moreover, in equation (24) the following
notation is used:

[ϕ]2k,s
1,s = ϕ

(2k),s−ϕ
(1),s; f1k = δk(t3)cosθk; ϕ1k =−Rδ

′
k(t3)cosθk,

γrk =
(

δk(t3)
R
−δ

′′
k (t3)R

)
cosθk;

γθk =−
δk(t3)

R
sinθk;

γzk =−δ
′
k(t3)cosθk; δ

′
k(t3) =

dδk(t3)
dt3

. (25)

Note that, similar contact conditions are obtained for the second and subsequent ap-
proximations. According to the regarding investigations reviewed in Akbarov and
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Guz (2004), the main effect of the fibres curving on the stress distribution arises
within the framework of the first approximation. The second and subsequent ap-
proximations give only some insignificant quantitative corrections to these results.
Since, the determinations of these approximations is very complicated and cumber-
some, the investigations in the present paper are made only within the framework
of the zeroth and the first approximations.

Now, we determine the unknown values belonging to these approximations. As-
sume that the materials of each fiber are the same. The Young’s moduli and Pois-
son coefficient for fibers (matrix) material we denote as E(2) and ν(2) (E(1) and
ν(1)) respectively. We will suppose that ν(2) = ν(1). Note that this supposition only
slightly affects numerical results and is introduced to simplify the solution proce-
dure. Because in this case the stress state regarding to the zeroth approximation is
homogeneous state and is determined by the following relations:

σ
(1),0
zz = p; σ

(2k),0
zz = σ

(2),0
zz =

E(2)

E(1) p; ε
(2k),0
zz = ε

(1),0
zz =

p
E(1) ,

u(2k),0
z = u(1),0

z = ε
(1),0
zz z, σ

(2k),0
(i j) = σ

(1),0
(i j) = 0 for (i j) = rr,θθ ,rθ ,θz,rz (26)

Now we consider the determination of the first approximation. According to the
expression (26), we obtain the following equations from (21) for the first approxi-
mation:

∂σ
(m),1
rr

∂ r
+

1
r

∂σ
(m),1
rθ

∂θ
+

∂σ
(m),1
rz

∂ z
+

1
r

(
σ

(m),1
rr −σ

(m),1
θθ

)
+σ

(m),0
zz

∂ 2u(m),1
r

∂ z2 = 0

∂σ
(m),1
rθ

∂ r
+

1
r

∂σ
(m),1
θθ

∂θ
+

∂σ
(m),1
θz

∂ z
+

2
r

σ
(m),1
rθ

+σ
(m),0
zz

∂ 2u(m),1
θ

∂ z2 = 0,

∂σ
(m),1
rz

∂ r
+

1
r

∂σ
(m),1
θz

∂θ
+

∂σ
(m),1
zz

∂ z
+

1
r

σ
(m),1
rz +σ

(m),0
zz

∂ 2u(m),1
z

∂ z2 = 0. (27)

The mechanical relations remain as in equation (23) for q = 1. Moreover, the
geometrical relations have the following form:

ε
(m),1
rr =

∂u(m),1
r

∂ r
, ε

(m),1
θθ

=
∂u(m),1

θ

r∂θ
+

u(m),1
r

r
, ε

(m),1
zz =

∂u(m),1
z

∂ z
,

ε
(m),1
rθ

=
1
2

(
∂u(m),1

r

r∂θ
+

∂u(m),1
θ

∂ r
−

u(m),1
θ

r

)
,

ε
(m),1
θz =

1
2

(
∂u(m),1

θ

∂ z
+

∂u(m),1
z

r∂θ

)
,ε

(m),1
zr =

1
2

(
∂u(m),1

z

∂ r
+

∂u(m),1
r

∂ z

)
. (28)
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Taking the expression (26) into account the contact conditions (24) can be rewritten
as follows:

[σrr]
2k,1
1,1 = 0, [σrθ ]2k,1

1,1 = 0,

[σrz]
2k,1
1,1 = δ

′
k(t3)

(
σ

(1),0
zz −σ

(2),0
zz

)
cosθk,

[ur]
2k,1
1,1 = 0, [uθ ]2k,1

1,1 = 0, [uz]
2k,1
1,1 = 0. (29)

By direct verification it is obtained that the equations (27) coincide with the equa-
tions of the Three-Dimensional Linearized Theory of Deformable Bodies (Biot
(1965), Guz (1999)). Therefore, according to Guz (1999), we can use the follow-
ing representations in the cylindrical system of coordinates to solve the equation
systems (27), (28), (23).

ur =
1
r

∂

∂θ
ψ− ∂ 2

∂ r∂ z
χ , uθ =− ∂

∂ r
ψ− 1

r
∂ 2

∂θ∂ z
χ,

u3 = (λ + µ)−1
(

(λ +2µ)∆1 +(µ +σ
0
zz)

∂ 2

∂ z2

)
χ,

∆1 =
∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

∂ 2

∂θ 2 . (30)

The functions ψ and χ are determined from the equations(
∆1 +ξ

2
1

∂ 2

∂ z2

)
ψ = 0,

(
∆1 +ξ

2
2

∂ 2

∂ z2

)(
∆1 +ξ

2
3

∂ 2

∂ z2

)
χ = 0 (31)

where

ξ1 =

√
µ +σ0

zz

µ
, ξ2 =

√
µ +σ0

zz

µ
, ξ3 =

√
λ +2µ +σ0

zz

λ +2µ
. (32)

In equations (30)-(32) we replace the quantities u(i), λ , µ , ζi (i=1,2,3) and σ0
zz with

u(1),1
(i) , λ (1), µ(1), ζ

(1)
i and σ

(1),0
zz , respectively for the matrix and with u(2k),1

(i) , λ (2),

µ(2), ζ
(2k)
i and σ

(2k),0
zz respectively for the fiber. Taking the expression of the contact

conditions (29) and the conditions (22) into account the solutions to equations (30)
are found as follows:

ψ
(2k) = α sinαz

∞

∑
n=−∞

C(2k)
n In(ξ

(2k)
1 αrk)exp(inθk),
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χ
(2k) = cosαz

∞

∑
n=−∞

[
A(2k)

n In(ξ
(2k)
2 αrk)

+B(2k)
n In(ξ

(2k)
3 αrk)

]
exp(inθk), (33)

ψ
(1) = α sinαz

+∞

∑
m=−∞

+∞

∑
n=−∞

C(1)m
n Kn(ξ

(1)
1 αrm)exp(inθm),

χ
(1) = cosαz

+∞

∑
m=−∞

+∞

∑
n=−∞

[
A(1)m

n Kn(ξ
(1)
2 αrm)

+B(1)m
n Kn(ξ

(1)
3 αrm)

]
exp(inθm), (34)

where α = 2π/`; In(x) and Kn(x) are the Bessel functions of a purely imaginary
argument and the Macdonald functions, respectively. The unknowns C(2k)

n , A(2k)
n ,

B(2k)
n , C(1)m

n , A(1)m
n and B(1)m

n are the complex constants and satisfy the relations

A(2k)
n = A(2k)

−n , B(2k)
n = B(2k)

−n , C(2k)
n = C(2k)

−n ,

Im A(2k)
0 = Im B(2k)

0 = Im C(2k)
0 = 0,

A(1)m
n = A(1)m

−n , B(1)m
n = B(1)m

−n , C(1)
n = C(1)m

−n ,

Im A(1)m
0 = Im B(1)m

0 = Im C(1)m
0 = 0. (35)

Next, contact conditions (29) must be satisfied. For this purpose, we represent
expressions (33) and (34) in a m-th (m =−∞, ...,−2,−1,0,1,2, ...,+∞) cylindrical
coordinate system. In this case, we use the summation theorem (Watson (1962))
for the Kn(x) function, which can be written as follows for the considered case.

rm exp iθm = (n−m)R12 exp iϕmn + rn exp iθn,

Kν(crn)exp iνθn =
∞

∑
k=−∞

(−1)ν Ik(crm)Kν−k(c |n−m|R12)exp [i(ν− k)ϕmn]exp ikθm
,

ϕmn = 0 for n > m, ϕmn = π for m > n,

c = const. r < R12; (36)

Using equations (33)-(36), we obtain from (23), (28) and (29) an infinite system
of algebraic equations for the unknown constants in (33) and (34). Introducing the
notation

C(1)m
n Kn(ξ

(1)
1 κ) = y(1)m

n1 + iz(1)m
n1 , A(1)m

n Kn(ξ
(1)
2 κ) = z(1)m

n2 + iy(1)m
n2 ,
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B(1)m
n Kn(ξ

(1)
3 κ) = z(1)m

n3 + iy(1)m
n3 , C(2m)

n In(ξ
(2)
1 κ) = y(2)m

n1 + iz(2)m
n1 ,

A(2m)
n In(ξ

(2)
2 κ) = z(2)m

n2 + iy(2)m
n2 , B(2m)

n In(ξ
(2)
3 κ) = z(2)m

n3 + iy(2)m
n3 ,

Z(k)q
n =

∥∥∥∥∥∥∥
z(k)q

n1

z(k)q
n2

z(k)q
n3

∥∥∥∥∥∥∥ ,Y (k)q
n =

∥∥∥∥∥∥∥
y(k)q

n1

y(k)q
n2

y(k)q
n3

∥∥∥∥∥∥∥ ;

D(1)q
nν =

∥∥∥d(1)q
ts (n,ν)

∥∥∥ , D(2)q
n =

∥∥∥d(2)q
ts (n)

∥∥∥ , F(1)q
nν =

∥∥∥ f (1)q
ts (n,ν)

∥∥∥ ,

F(2)q
n =

∥∥∥ f (2)q
ts (n)

∥∥∥ , m;q =−∞, ...,−2,−1,0,1,2, ...,+∞;

i =
√
−1, t,s = 1,2,3, ...,+∞, κ = 2πR/` (37)

we have

Z(1)k
n +

∞

∑
ν=0

+∞

∑
q=−∞

D(1)q
nν Z(1)q

ν +D(2)k
n Z(2)k

n = 0, (38)

Y (1)k
n +

∞

∑
ν=0

+∞

∑
q=−∞

F(1)q
nν Y (1)q

ν +F(2)k
n Y (2)k

n = 2πδ
3
n (σ (1),0

zz −σ
(2),0
zz ) (39)

where n = 1,2, ...,∞, δ 3
3 = 1 and δ 3

n = 0 for n 6= 3, k =−∞, ...,−2,−1,0,1,2, ...,+∞.
Note that under obtaining the equations (37) and (38) the symmetry conditions (8)
are used. Moreover, the quantities D(1)q

nν , F(1)q
nν and D(2)k

n , F(2)k
n are obtained from

the corresponding formulas mentioned above. Their detailed expressions are rather
cumbersome and therefore they are omitted here.

It is seen from equations (38) that Z(1)q
n = Z(2)q

n = 0. Moreover, it follows from the
periodicity conditions (9) and (10) that the folllowing relations must be satisfied:

for sinphase curving case of the fibers

Y (1)k
n = Y (1)0

n , k =−∞, ...,−2,−1,0,1,2, ...,+∞ (40)

for antiphase curving case of the fibers

Y (1)k
n = (−1)kY (1)0

n , k =−∞, ...,−2,−1,0,1,2, ...,+∞ (41)

Taking the relations, (40) and (41) into account from (39) we obtain for sinphase
curving case

Y (1)0
n +

∞

∑
ν=0

Y (1)0
ν

(
+∞

∑
q=1

2F(1)q
nν

)
+F(2)0

n Y (2)0
n =

2πδ
3
n (σ (1),0

zz −σ
(2),0
zz )

, (42)
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and for antiphase curving case

Y (1)0
n +

∞

∑
ν=0

(−1)νY (1)0
ν

(
+∞

∑
q=1

F(1)q
nν

)
+F(2)0

n Y (2)0
n =

2πδ
3
n (σ (1),0

zz −σ
(2),0
zz )

. (43)

For numerical investigations the infinite system of algebraic equations (42) and
(43) must be approximated by corresponding finite system. To validate of such a
replacement, it must be shown that the determinant of the infinite system of equa-
tions is of normal type (Kantarovich and Krilov (1962)). Such is the case if the
series

M =
∞

∑
n=0

∞

∑
ν=0

∣∣∣∣∣+∞

∑
q=1

F(1)q
nν

∣∣∣∣∣ (44)

converges. For investigating this series, we use the following asymptotic estimates
of the functions In(x) and Kn(x):

In(x) < c1
1
n!

(
|x|
2

)n

, c1 = const.; Kn(x)≈ c2 (n−1)!
(

2
|x|

)n

,

c2 = const. (45)

These relations hold for large n and fixed x. Let

R
R12−2L

>
R

R12
,

R12

R
> 2 (46)

which means that the fibres do not contact with each other. Then, taking into ac-
count equations (45) and (46) and analysing the expressions of F(1)q

nν , we obtain the
following estimate for series (44):

M < c3

∞

∑
n=0

nc4 (ρ−1)−n; c3,c4 = const., ρ =
R12

R
(47)

As the series on the right hand side converges, so does series (44). Note that such a
proof was also performed in Guz (1990), Babaev, Guz and Cherevko (1985), Guz
and Chekhov (2007), Guz, Rushchitsky and Guz (2007).

Consequently, for numerical investigations, the infinite system of algebraic equa-
tions (42) and (43) can be replaced with

Y (1)0
n +

Nν

∑
ν=0

Y (1)0
ν

(
Nq

∑
q=1

2F(1)q
nν

)
+F(2)0

n Y (2)0
n =

2πδ
3
n (σ (1),0

zz −σ
(2),0
zz )

(48)
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for the sinphase curving case and with

Y (1)0
n +

Nν

∑
ν=0

(−1)νY (1)0
ν

(
Nq

∑
q=1

2F(1)q
nν

)
+F(2)0

n Y (2)0
n = 2πδ

3
n (σ (1),0

zz −σ
(2),0
zz ) (49)

for the antiphase curving case, where n = 1,2, ...,Nν in equations (48) and (49).
The values of Nν and Nq in these equations are determined from the convergence
requirement of numerical results.

It should be noted that the second and subsecond approximations can be determined
in a similar way.

4 Numerical results and discussions

Assume that ν(1) = ν(2) = 0.3 and introduce the parameter ∈= p/E(1) for esti-
mation of the influence of the geometrical non-linearity to the values of the self-
balanced normal and shear stresses acting on the interface betweeen the fibers and
matrix. Note that these self-balanced stresses arise as a result of the curving of the
fibers and the adhesion strength of the material depends mainly on the values of
these stresses. In this case taking into account the periodicity of the curving form
and the periodicity of the location of the row of fibers, we consider the distribution
of these stresses on the surface S0 only (Fig. 1). We denote the aforementioned
normal stress by σnn and shear stress by σnτ . Note that the stresses σnn and σnτ act
along the normal n and tangent τττ vectors to the surface S0 (Fig. 1). If ε = 0 (i.e.
the curving is absent), the stresses σnn and σnτ coincide with the stresses σrr and
σrz, respectively.

Let us also introduce the parameters κ = 2πR/` and ρ = R12/R, where R is a ra-
dius of the cross-section of the fibers, ` is a length of the periodicity of the fibers
curving, R12 is a distance between two neighboring fibers (Fig. 1). As follows from
the present investigations and those carried out in the monograph Akbarov and Guz
(2000) that the stress σnn has a maximum at the point of S0 determined by equa-
tion (12) at θ0 = 0, αt3 = π/2, but the stress σnτ has a maximum in the vicinity
of the point of S0corresponding to θ0 = 0, αt3 = 0 (α = 2π/`). These points are
denoted by N1 (for σnn) and N2 (for σnτ ) in Fig.1. Moreover, the aforementioned
investigations show that in the sinphase (antiphase) curving case the shear (normal)
stress σnτ (σnn) has dominating values. Taking above-stated into account we con-
sider the influence of the problem parameter to the values of σnτ in the sinphase
curving case. But in the antiphase curving case we investigate this influence for the
normal stress σnn. For all numerical investigations presented below it is assumed
that ε = 0.015.
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Thus, consider the graphs given in Figs. 2, 3 and 4 which show the dependencies
between the σnτ/|p| and the parameter κ for ρ = 2.1, 2.5 and 5, respectively, for
various suitible values of the parameter ∈ and for E(2)/E(1) = 50. The graphs of
the dependencies between σnn/|p| and κ with the same sequencies of the problem
parameters are given in Figs. 5, 6 and 7. In these figures the graphs denoted
by (a) and (b) correspond to the tension and compression of the consireded body,
respectively. Note that under the consideration of compression we assume that
|∈| < |∈cr.| , where ∈cr. is the critical values of the parameter ∈ obtained for the
stability loss problem of the row of fibers in an infinite matrix. The investigations
of this stability loss problem and the values of ∈cr. are given in Guz (1990), Babaev,
Guz and Cherevko (2007).

Thus, the numerical results given in the foregoing figures show that the dependen-
cies among σnτ , σnn and κ have non-monotonic character, i.e. there is such value of
the parameter κ (denote it by κ∗) under which the absolute values of the considered
stresses have its absolute maximum. According to the numerical results the values
of κ∗ decrease with increasing ρ (i.e. with increasing the distance between the
two neighboring fibers). Absolute maximum values of σnτ in the sinphase curving
case, and absolute maximum values of σnn in the antiphase curving case increase
with decreasing ρ . In this case, as a result of the geometrical non-linearity the
absolute values of σnτ and σnn decrease (increase) under tension (compression)
with the parameter ∈. It follows clearly from the foregoing numerical results that
the maximum effect of the influence of the geometrical non-linearity arise for the
cases where κ = κ∗. Moreover, this effect increases with increasing ρ . Note that
the numerical results obtained under compression and tension in the case where
∈= ±5.10−5 coincide with each other and with the corresponding ones obtained
in Akbarov, Kosker and Ucan (2004) (for sinphase curving) and in Kosker and
Ucan (2006) (for antiphase curving)). Moreover, with increasing ρ and decreas-
ing ∈ these results approach to the corresponding ones obtained in Akbarov and
Guz (1985b) for a single periodically curved fiber and treated in the monograph
Akbarov and Guz (2000). This situation also agree well with the mechanical con-
sideration and confirm the trustness of the algorithm and programms used in the
present numerical investigations.

Consider Tables 1 and 2 which show the values of σnτ/|p| (for the sinphase curving
case) and σnn/|p| (for the antiphase curving case) respectively obtained for various
∈ and E(2)/E(1) under ρ = 2.1 and κ = κ∗. It follows from these tables that the
influence of the geometrical non-linearity to the values of the considered stresses
increase with E(2)/E(1).

Note that the foregoing numerical results are obtained in the case where Nν = 130
and Nq = 17 in the equations (48) and (49). For illustration of the convergence
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Figure 2: The graphs of the dependencies between σnτ/|p| and parameter κ for
various values of ∈ under ρ = 2.1
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(a)                                                 (b) 

 

Figure 3: The graphs of the dependencies between σnτ/|p| and parameter κ for
various values of ∈ under ρ = 2.5
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Figure 4: The graphs of the dependencies between σnτ/|p| and parameter κ for
various values of ∈ under ρ = 5.0
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(a)                                                    (b) 

 

Figure 5: The graphs of the dependencies between σnn/|p| and parameter κ for
various values of ∈ under ρ = 2.1

of the numerical results with respect to the number of the Nν and Nq in Tables 3
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Figure 6: The graphs of the dependencies between σnn/|p| and parameter κ for
various values of ∈ under ρ = 2.5
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Figure 7: The graphs of the dependencies between σnn/|p| and parameter κ for
various values of ∈ under ρ = 5.0
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and 4 the values of σnτ/|p| and σnn/|p| obtained for various Nν and Nq are given,
respectively. These values of σnτ/|p| and σnn/|p| are calculated in the case where
E(2)/E(1) = 50, ρ = 2.1, ∈= 5.10−2 for various κ . The convergence of the results
obtained for various Nq and Nν confirm that the used solution method is also highly
effective in the convergence sense.

Table 1: The values of σnτ/|p| obtained in the sinphase curving case for various
values of E(2)/E(1) and ∈ under ρ = 2.1

∈ E(2)/E(1)

10
(κ = 0.4)

20
(κ = 0.4)

50
(κ = 0.3)

100
(κ = 0.2)

5.10−5 -1.1545 -2.2484 -5.2264 -5.1913
5.10−4 -1.1540 -2.2459 -5.2119 -5.1780
5.10−3 -1.1485 -2.2214 -5.0731 -5.0501
3.10−2 -1.1208 -2.1020 -4.4581 -4.4773
5.10−2 -1.1015 -2.0232 -4.0995 -4.1386
-5.10−5 1.1546 2.2490 5.2296 5.1942
-5.10−4 1.1552 2.2515 5.2442 5.2077
-5.10−3 1.1609 2.2774 5.3969 5.3476
-3.10−2 1.2287 2.6183 8.0753 7.7063

Table 2: The values of σnn/|p| obtained in the antiphase curving case for various
values of E(2)/E(1) and ∈ under ρ = 2.1

∈ E(2)/E(1)

10
(κ∗ = 0.8)

20
(κ∗ = 0.8)

50
(κ∗ = 0.6)

100
(κ∗ = 0.6)

5.10−5 0.6056 1.4401 3.7514 7.2484
5.10−4 0.6052 1.4389 3.7482 7.2384
5.10−3 0.6015 1.4270 3.7162 7.1398
3.10−2 0.5818 1.3638 3.5467 6.6336
5.10−2 0.5667 1.3164 3.4204 6.2732
-5.10−5 -0.6057 -1.4404 -3.7521 -7.2506
-5.10−4 -0.6060 -1.4416 -3.7554 -7.2606
-5.10−3 -0.6097 -1.4536 -3.7879 -7.3623
-3.10−2 -0.6487 -1.5837 -4.1424 -8.5407
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Table
3:T

he
values

of
σ

n
τ / |p |obtained

in
the

sinphase
curving

case
forvarious

values
ofN

q
and

N
ν

in
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-3.8436
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N
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q
=
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-4.1354

-4.1386
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-3.7655
-3.9283

-4.0123
-4.0558

-4.0784
-4.0901

-4.0963
-4.0995

0.4
-3.5306

-3.6832
-3.7619

-3.8026
-3.8237

-3.8347
-3.8405

-3.8435
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5 Conclusions

In the present paper, in the framework of the piecewise homogeneous body model
with the use of the three-dimensional geometrically non linear exact equations of
the theory of elasticity, the method for determination of the stress-strain state in
the infinite body containing periodically located row of periodically curved fibers
is developed. It is assumed that the midlines of the fibers are in the same plane and
with respect to the location of the fibers according to each other the sinphase and
antiphase curving cases are considered.

The numerical results, related to the self-balanced shear (for the sinphase curving
case) and normal (for the antiphase curving case) stresses which act on the interface
and arises as a result of the fiber curving, are given. In this case, the influence of
the geometrical non-linearity to these stresses is analyzed. From the analyses of
these results are derived the following conclusions:

1. As a result of the geometrical non-linearity, the absolute values of the con-
sidered stresses increase in compression but decrease in tension.

2. The maximum effect of the geometrical non-linearity to the stresses arises
under certain values of κ = 2πR/` (where R is a radius of the fiber cross-
section, ` is a length of the periodicity of the curving form).

3. The effect of the geometrical non-linearity to the considered stresses in-
creases with E(2)/E(1) (where E(2) (E(1)) Young’s moduli of the fibers (ma-
trix) material).

4. The aforementioned effect of the geometrical non-linearity also increase with
increasing of the distance between the neighboring fibers.

5. Obtained numerical results agree well with the well-known mechanical con-
sideration and in the particular cases coincide with the corresponding known
results.
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