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Interface Effect on the Dynamic Stress around an Elliptical
Nano-Inhomogeneity Subjected to Anti-Plane Shear Waves

Xue-Qian Fang1,2, Xiao-Hua Wang1 and Le-Le Zhang3

Abstract: In the design of advanced micro- and nanosized materials and devices
containing inclusions, the effects of surfaces/interfaces on the stress concentration
become prominent. In this paper, based on the surface/interface elasticity theory,
a two-dimensional problem of an elliptical nano-inhomogeneity under anti-plane
shear waves is considered. The conformal mapping method is then applied to solve
the formulated boundary value problem. The analytical solutions of displacement
fields are expressed by employing wave function expansion method, the expanded
mode coefficients are determined by satisfying the boundary conditions at the in-
terfaces of the nano-inhomogeneity. Analyses show that the effect of the interfacial
properties on the dynamic stress is significantly related to the wave frequency of
incident waves, the shear modulus ratio of the nano-inhomogeneity and the ma-
trix, and the dimensions of the elliptical nano-inhomogeneity. Comparison with
the previous results is also presented.

Keywords: Elliptical nano-inhomogeneity, Interface, Wave scattering, Dynamic
stress concentration.

1 Introduction

Nanomaterials are categorized as those which have structured components with at
least one dimension less than 100 nm. With the development of micro-fabrication
and nanofabrication techniques, nanomaterials have found wide applications in
electromechanical systems, bioengineering, optics and photonics, etc (Xie and Long,
2006) .

The classical theories of inclusions and inhomogeneities have been successfully ap-
plied to study the mechanical behavior of heterogeneous materials including piezo-
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electricity problems (Chen et al., 2009). With the wide applications of nanocom-
posites in recent years, nanoscale inclusion/inhomogeneity theories have attracting
more interests in recent years. Due to the increasing ratio of surface/interface area
to the volume of nanocomposites, the surfaces and interfaces may have significant
effects on the physical and mechanical properties of solids.

The effect of the mechanical behavior of surfaces and interfaces has been exten-
sively studied in the past. Based on thermodynamics of solid surfaces, Gibbs (1906)
took into consideration the effects of surface and interfacial energies. Subsequently,
Gurtin and Murdoch (1975), Murdoch (1976) and Gurtin et al. (1998) developed a
general theoretical framework for a continuum with surface stresses and proposed
a linear surface stress-strain constitutive relation. The surface domain is assumed
to be very thin and has different elastic moduli from the bulk, and the surface ad-
heres to the bulk without slipping. In the following years, several other researchers
have contributed to further development of the surface stress theory (e.g., Cahn and
Larché, 1982; Cammarata, 1994; Nix and Gao, 1998, Sharma et al., 2003; Duan et
al., 2005).

Recently, the stress concentration around the nano-inhomogeneity with surface/interface
effect has attracted lots of interests. Wu et al. (2004) have studied the stress concen-
tration near a nano-hole and the influence of a nano-hole on the elastic properties
of a single crystal Ag from both atomistic and continuum viewpoints. A spherical
nanocavity under a unidirectional remote tension (He and Li, 2006), a spherical
nanoinclusion under a nonshear eigenstrain (Lim et al., 2006), and a cylindrical
nanoinclusion under either a 2D dilatational eigenstrain or far-field loading (Tian
and Rajapakse, 2007)were also studied. Cheng et al. (2009) investigated the ef-
fects of atomistic defects on the nanomechanical properties and fracture behaviors
of single-walled CNTs (SWCNTs) using molecular dynamics (MD) simulation.
For ellipsoidal inclusion, Liang et al. (2009) presented the solutions of the stress
field around an ellipsoidal inclusion in the film/substrate half-space via the Fourier
transforms and Stroh eigenrelation equations, and the effect of thin film’s thick-
ness on the stress field was analyzed. Using a tensor virial method of moments,
an approximate solution to the relaxed elastic state of embedded ellipsoidal inclu-
sions was given, and the surface/interface energies were considered (Sharma and
Wheeler, 2007).

It can be found that most investigations focused on the nanocomposites under static
loading. Due to the increasing demand of an understanding of dynamic processes
in nanocomposites, it is highly desirable to study the stress in a fully dynamic
framework. Recently, Wang et al. (2006) have investigated the diffraction of plane
compressional waves by a nanosized circular hole with interface effects, and the
dynamic stress around the hole was analyzed. Subsequently, this work was ex-
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tended to the case of a spherical inclusion (Wang et al., 2007). However, no work
treating the scattering of waves resulting from elliptical nano-inhomogeneities has
been done. The solution for a nanoscale elliptical inhomogeneity in an infinite ma-
trix is a very important fundamental problem in nanoscale solid mechanics as it
is practically more useful than the solution for the idealized case of a circular or
spherical inhomogeneity.

The objective of this paper is to investigate analytically the scattering of anti-plane
shear waves from an elliptical nano-inhomogeneity with interface effects, and the
dynamic stress around the nano-inhomogeneity is obtained. The wave fields around
the nano-inhomogeneity are treated by complex function method. The displace-
ment potentials are expressed by using wave function expansion method. The ex-
panded mode coefficients are determined by satisfying the boundary conditions at
the interface. The numerical solutions of the dynamic stress concentration factor
are graphically illustrated. The effects of the incident wave frequency, the material
properties of the inhomogeneities and the interface, and the shape of the elliptical
nano-inhomogeneities on the dynamic stress around the nano-inhomogeneity are
analyzed.

2 Problem formulation

Consider an infinite matrix material containing an elliptical nano-inhomogeneity
with the semi-axis being a and b, respectively, as depicted in Fig.1. The origin of
the Cartesian and polar coordinates is selected at the center of the elliptical nano-
inhomogeneity. It is assumed that the matrix and the nano-inhomogeneity are both
isotropic. The shear modulus and mass density of the nano-inhomogeneity are
denoted by µ0 and ρ0, which are, in general, different from those (µm and ρm) of the
matrix. In the surface/interface elasticity theory, a surface or interface is regarded
as a negligibly thin layer adhered to the underlying matrix material. No slipping of
the layer is permitted, and its elastic constants are different from those of the nano-
inhomogeneity and matrix. The material properties of the surface/interface are
denoted by µs and ρs. The matrix and inhomogeneity are denoted as the bulk. The
elastic fields within the bulk solids satisfy the classical equilibrium equations, while
the interface has its own elastic constants and is characterized by an additional
constitutive law.

The dynamic excitation is provided by an anti-plane shear wave with frequency
ω . The wave propagates along the x-direction. For the anti-plane problem in this
study, only the displacement component in the zdirection exists, i.e.,

ux = uy = 0, uz = w(x,y) (1)

In the absence of body force, the anti-plane governing equation in the matrix is
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Figure 1: Geometry and coordinate systems of the problem

described as

∂τzx

∂x
+

∂τzy

∂y
= ρ

∂ 2w
∂ t2 (2)

where τzx and τzy are the shear stresses in the bulk.

The constitutive relations of anti-plane shear displacement are

τxz = µ
∂w
∂x

, τyz = µ
∂w
∂y

(3)

Substituting Eq.(3) into Eq.(2), the following equation can be obtained

∂ 2w
∂x2 +

∂ 2w
∂y2 =

ρ

µ

∂ 2w
∂ t2 (4)

The steady solution of this problem is considered. It is supposed that w = We - iωt ,
then Eq.(4) is expressed as

∇
2W + k2W = 0 (5)

where ∇2 = ∂ 2/∂x2 +∂ 2/∂y2 is the two-dimensional Laplacian operator, and k =
ω/c with c =

√
µm/ρmis the wave number of shear waves in the matrix.

To apply complex function method, the complex variable z = x+ iy and its complex
conjugate z̄ = x− iy are introduced. Then the following relations can be obtained

∂

∂x
=

∂

∂ z
+

∂

∂ z̄
,

∂

∂y
= i
(

∂

∂ z
− ∂

∂ z̄

)
(6)

The wave equation (5) can be expressed with respect to the variables z and z̄, i.e.,

4
∂ 2W
∂ z∂ z̄

+ k2W = 0 (7)
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Then the displacement W , shear stresses τxz, τyz, τnz,τtz in the matrix and nano-
inhomogeneity can be expressed in terms of the analytical function f (z) as

W =
f (z)+ f (z)

2
(8)

τxz− iτyz = µ f ′(z) (9)

τnz− iτtz = µeiθ f ′(z) (10)

where f ′(z) denotes the derivative with respect to the argument z.

3 Micromechanical framework for surface/interface stress

An elastically isotropic interface is considered. According to the theory of Gurtin
and Murdoch (1975) and Gurtin et al. (1998), the elastic field within the interface
has its own elastic constants and is described by an additional constitutive law.

As the current problem is of anti-plane nature, the equilibrium equations and the
surface/interface stresses for an isotropic surface/interface are given by

τ
(M)
nz − τ

(I)
nz +

∂τS
tz

∂ t
= 0 (11)

τ
S
tz = 2(µs− τ0)εS

tz (12)

where µs is the shear modulus of the interface, t is the unit tangent of the boundary
Γ, n is the outward unit normal at the interface. τS

tz is the interfacial stress compo-
nents, εS

tz is the interfacial strain component, and τ0 is the residual surface stress
under unstrained conditions. It should be noted that for all the quantities below,
the superscripts I, M, and S denote the nano-inhomogeneity, the matrix and the
interface, respectively.

In this paper, a coherent interface is considered. For a coherent interface, the inter-
face strain is equal to the tangential strain in the abutting bulk materials, i.e.,

ε
S
tz(zΓ) = ε

M
tz (zΓ) = ε

I
tz(zΓ), zΓ ∈ Γ (13)

where zΓ = xΓ + iyΓ denotes the points at the interface.

Thus, Eq.(11) can be rewritten as

τ
(I)
nz − τ

(M)
nz =

µs− τ0

µM

∂τM
tz

∂ t
(14)

Eq. (14) forms a non-classical boundary condition at the inhomogeneity-matrix
interface. Since the residual surface stress τ0 always induces an additional defor-
mation filed, and is independent of the external loading, it is assumed the residual
surface stress is zero.
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4 Conformal mapping method

In this section, the mapping function of transforming the elliptical boundary be-
tween the nano-inhomogeneity and the matrix into a unit circle is introduced, shown
in Fig.1. The expression of z is written as

z = g(ξ ) = c(ξ +d/ξ ), ξ = ς + iη = reiθ (15)

Here eiθ = g(ξ )
|g(ξ )| , c = (a+b)/2, d = (a−b)/(a+b) and 0≤ d ≤ 1. The mapping

function transforms the region SMinto the exterior region of a unit circle |ξ | = 1,
and region S1into an annular region between the unit circle and a circle of radius
|ξ |=

√
d. Here the region S1 is imagined to be cut along the line L = {(x,0)|− l ≤

x≤ l}, which is transformed into a circle of radius
√

d.

From Eq.(10), the shear stress in the (z, z̄) plane can be rewritten as

τnz =
µ

2

(
ξ

∂W
∂ z

+ ξ̄
∂W
∂ z̄

)
, τtz =

iµ
2

(
ξ

∂W
∂ z
− ξ̄

∂W
∂ z̄

)
(16)

The derivatives with respect to the tangential direction t can be expressed as

∂

∂ t
=

∂

∂ z
∂ z
∂ t

+
∂

∂ z̄
∂ z̄
∂ t

,
∂ z
∂ t

= ieiθ ,
∂ z̄
∂ t

=−ie−iθ (17)

5 The wave fields around the elliptical inhomogeneity in the nano-sized ma-
terial

Following the standard wave function expansion method, the wave fields in the
nano-sized material can be expressed.

5.1 Incident waves

Consider an anti-plane shear wave propagating along the positivexdirection. It is
convenient for us to express the displacement in the cylindrical coordinate system,
i.e.,

W (in) = W0eikx = W0

∞

∑
n=−∞

inJn(k|g(ξ )|)
[

g(ξ )
|g(ξ )|

]n

(18)

where W0 is the amplitude of incident waves, and Jn(•) is the nth Bessel function of
the first kind. It is noted that all field quantities have the same time variation e−iωt

which is suppressed in all subsequent representations for notational convenience.
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5.2 The scattered field of anti-plane shear waves

When the incident waves propagate in the small-sized material with nano-inhomogeneities,
the scattered waves around the nano-inhomogeneities come into being. The dis-
placement field of the scattered waves is given by

W (s) = W0

∞

∑
n=−∞

AnH(1)
n (k|g(ξ )|)

[
g(ξ )
|g(ξ )|

]n

(19)

where An are the mode coefficients of scattered waves around the nan-ohomogeneity,
H(1)

n (•) is the nth Hankel function of the first kind, and denotes the outgoing prop-
agating waves.

5.3 The refracted field inside the nano-inhomogeneity

The refracted waves, being confined inside the elliptical nano-inhomogeneity, are
standing waves, and represented by

W (r) = W0

∞

∑
n=−∞

BnJn(k0|g(ξ )|)
[

g(ξ )
|g(ξ )|

]n

(20)

where k0 = ω/c0 with c0 =
√

µ0/ρ0 is the wave number in the inhomogeneity,
and the cylindrical Bessel functions of the first kind are used to obtain the standing
waves.

The total wave field in the matrix material is produced by the superposition of the
incident and the scattered waves resulting from the nano-inhomogeneties,

W (t) = W (in) +W (s) (21)

Then, in the complex plane (z, z̄), the shear stresses in the normal direction resulting
from the incident, the scattered, and the refracted waves are expressed as

τ
(in)
nz =

µmkW0

2
∞

∑
n=−∞

in
[

Jn−1(k0|g(ξ )|)
(

g(ξ )
|g(ξ )|

)n−1

− Jn+1(k|g(ξ )|)
(

g(ξ )
|g(ξ )|

)−(n+1)
]

ξ g′(ξ )
|g′(ξ )|[

Jn−1(k0|g(ξ )|)
(

g(ξ )
|g(ξ )|

)n−1

− Jn+1(k|g(ξ )|)
(

g(ξ )
|g(ξ )|

)n+1
]

ξ̄ g′(ξ )
|g′(ξ )|

(22)
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τ
(s)
nz =

µmkW0

2
∞

∑
n=−∞

An

[
H(1)

n−1(k|g(ξ )|)
(

g(ξ )
|g(ξ )|

)n−1
ξ g′(ξ )
|g′(ξ )|

−H(1)
n+1(k|g(ξ )|)

(
g(ξ )
|g(ξ )|

)n+1
ξ̄ g′(ξ )
|g′(ξ )|

]
(23)

τ
(r)
nz =

µ0k0W0

2
∞

∑
n=−∞

Bn

[
Jn−1(k0|g(ξ )|)

(
g(ξ )
|g(ξ )|

)n−1
ξ g′(ξ )
|g′(ξ )|

− Jn+1(k|g(ξ )|)
(

g(ξ )
|g(ξ )|

)n+1
ξ̄ g′(ξ )
|g′(ξ )|

]
(24)

τ
(in)
tz =

µmkW0

2
∞

∑
n=−∞

in+1

[
Jn−1(k|g(ξ )|)

(
g(ξ )
|g(ξ )|

)n−1
ξ g′(ξ )
|g′(ξ )|

+ Jn+1(k|g(ξ )|)
(

g(ξ )
|g(ξ )|

)n+1
ξ̄ g′(ξ )
|g′(ξ )|

]
(25)

τ
(s)
tz =

iµmkW0

2
∞

∑
n=−∞

An

[
H(1)

n−1(k|g(ξ )|)
(

g(ξ )
|g(ξ )|

)n−1
ξ g′(ξ )
|g′(ξ )|

+H(1)
n+1(k|g(ξ )|)

(
g(ξ )
|g(ξ )|

)n+1
ξ̄ g′(ξ )
|g′(ξ )|

]
(26)

6 The boundary conditions of the elliptical nano-inhomogeneity

On the interface (ξ = eiθ ), the displacements around the elliptical nano-inhomogeneity
should be continuous, i.e.,

W (t)|z=g(ξ ) = W (r)|z=g(ξ ) (27)

The equilibrium equations with interface effects around the elliptical nano-inhomogeneity
is rewritten as[

ξ
∂W (t)

∂ z
+ ξ̄

∂W (t)

∂ z̄

]
− f0

[
ξ

∂W (r)

∂ z
+ ξ̄

∂W (r)

∂ z̄

]
= fs

[
ξ

∂∆

∂ z
− ξ̄

∂∆

∂ z̄

]
(28)
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where f0 = µ0/µm, fs = µs/µm, and ∆ = ξ
∂W (t)

∂ z − ξ̄
∂W (t)

∂ z̄ .

Substituting Eqs.(18)-(20) into Eqs.(27)-(28), the mode coefficients An and Bn can
be determined. In the surface elasticity theory, the parameter fs is an important in-
dex standing for the surface effects. The surface elastic modulus can be determined
by molecular dynamics simulations or experiments. Atomic simulations of fcc Al,
diamond Si, and some other materials showed that surface elastic modulus can be
either positive or negative, depending on the crystallographic structure, and that
the absolute values of fs is on the order of angstroms (Miller and Shenoy, 2000;
Sharma et al., 2003). Therefore, for a macroscopic inclusion with a big values of
aandb and k� 1, the surface effects can be neglected and then Eqs.(27) and (28)
reduce to the boundary conditions in classical elasticity. However, when the radius
of hole shrinks to nanometers, fs becomes noticeable and the surface effects should
be taken into consideration.

7 Determination of mode coefficients and dynamic stress concentration fac-
tor

By satisfying the boundary conditions (27)-(28) at the interface of the nano-inhomogeneity,
the mode coefficients of scattered and refracted waves are determined. Substitut-
ing Eqs.(18)-(24) into Eqs.(27)-(28), and making use of the orthogonal relation of
e - isθ , a set of algebraic equations is obtained. After arrangement, the equations
can be simplified as

[Es]{Xs}= { fs} , s = 0,±1,±2, ...,∝ (29)

where [Es] is a matrix, {Xs}= {As,Bs}T . Using Eq.(28), the scattering and refract-
ing coefficients are determined.

In the presence of nano-inhomogeneity, the stress field shows significantly differ-
ence due to the refraction and scattering of waves. According to the definition of
the dynamic stress concentration factor (DSCF), the DSCF is the ratio of the tan-
gent stress around the nano-inhomogeneity to the maximum stress of the incident
waves (Pao and Mow, 1973). Thus, the dimensionless DSCF around the cylindrical
nano-inhomogeneity is expressed as

DSCF =
τtz

τ0
(30)

where τtz = τ
(in)
tz +τ

(s)
tz , τ0 = µmkW0 denotes the maximum stress resulting from the

incident waves. The results have the general form of DSCF = (R+ iI)e−iωt , whose
absolute value (R+ iI)1/2 is the maximum dynamic stress concentration factor.
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8 Numerical examples and analysis

Fatigue failures often occur in the regions with high stress concentration, so an un-
derstanding of the distribution of the dynamic stress around the nano-inhomogeneity
is very useful in structural design. Due to the symmetry about the x-axis of the el-
liptical nano-inhomogeneity and the incident direction of shear waves, only the
dynamic stress distribution at the positions of y ≥ 0 is illustrated in the following
numerical analysis.

In the numerical analysis, it is convenient to make the variables dimensionless.
To this end, we may introduce a characteristic length a, where a is the semi-axis
length of the elliptical nano-inhomogeneity. The following dimensionless variables
and quantities have been chosen for computation: the incident wave number is k∗ =
ka = 0.01−2.0, the shear modulus ratio of the nano-inhomogeneity and the matrix
is f0 = µ0/µm = 0.1−10, the shear modulus ratio of the nano-inhomogeneity and
the matrix is fs = µs/µm = 0.1−10, the density ratio is ρ = ρ0/ρm = 1.0−3.0 and
the values of bis b∗ = b/a = 0.1−6.0.
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Figure 2: Dynamic stress concentration factor around the elliptic nano-
inhomogeneity (k∗ = 0.05,b∗ = 1.0, f0 = 3.0,ρ = 2.0) 1 and 2-obtained from this
paper; 3- obtained from Tian and Rajapakse (2007)

In order to validate the present dynamical model, comparison with the previous lit-
eratures is given. Fig.2 shows the angular distribution of the dynamic stress around
the nano-inhomogeneity with parameters: k∗ = 0.05, b∗ = 1.0, f0 = 3.0, ρ = 2.0,
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and b∗= 1.0. When k∗= 0.05, the dynamic excitation is reduced to the steady case.
If the values of aand b are the same, i.e., b∗= 1.0, the elliptical nano-inhomogeneity
becomes a circular nano-inhomogeneity. fs = 0 means that the interface effect is
ignored. It can be seen that the angular distribution of DSCFs is symmetric about
the two axes. In the case of fs = 0, the maximum dynamic stress occurs at the
position of θ = π/2, and the maximum value of dimensionless dynamic stress is
about 1.95. These conclusions are consistent with those in Pao and Mow (1973).
In Pao and Mow (1973), no interface effect is considered. Through comparison, it
is also found that when the interface effect is considered, the dynamic stresses at
the positions near θ = 0,π increase greatly. The variation of dynamic stresses at
other positions is little. Comparing with the results in Tian and Rajapakse (2007),
the good agreements can be found in Fig.2.
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Figure 3: Dynamic stress concentration factor around the elliptic nano-
inhomogeneity with different values of b∗ (k∗ = 0.1, f0 = 3.0, fs = 2.0,ρ = 2.0)

Fig.3 illustrates the distribution of DSCF around the elliptical nano-inhomogeneity
when the value of b∗ is different in the region of low frequency. It can be seen
that when the value of b∗ is greater than 1.0, namely b is the long semi-axis, the
maximum dynamic stress increases greatly with the increase of b∗. At the positions
near θ = π/2,3π/2, the variation of dynamic stress in the greatest. When the
value of b∗ is less than 1.0, namely a is the long semi-axis, the maximum dynamic
stress occurs at the positions near θ = 0,π . However, comparing with the case of
b∗ > 1.0, the variation of dynamic stress around the elliptical nano-inhomogeneity
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Figure 4: Dynamic stress concentration factor around the elliptic nano-
inhomogeneity with different values of b∗ (k∗ = 1.5, f0 = 3.0, fs = 2.0,ρ = 2.0)

is less.

Fig.4 illustrates the distribution of DSCF around the elliptical nano-inhomogeneity
when the value of b∗ is different in the region of high frequency. It can be seen that
when the value of b∗ is greater than 1.0, namely b is the long semi-axis, the maxi-
mum dynamic stress increases greatly with the increase of b∗. However, more peaks
of dynamic stress occur when the frequency of waves is high. Comparing with the
results in Fig.3, it is found that the shape of the elliptical nano-inhomogeneity de-
creases in the region of high frequency. When the value of b∗ is less than 1.0, the
dynamic stress around the elliptical nano-inhomogeneity shows little variation with
the value of b∗.

Fig.5 illustrates the distribution of DSCF around the elliptical nano-inhomogeneity
with different wave frequencies of incident waves. It can be seen that in the re-
gion of low frequency, the variation of the dynamic stress around the elliptical
nano-inhomogeneity is great, especially at the positions near θ = π/2,3π/2. The
maximum dynamic stress increases with the increase of wave frequency. How-
ever, in the region of high frequency, more peaks occur around the elliptical nano-
inhomogeneity. The dynamic stress around the nano-inhomogeneity decreases.
The variation of dynamic stress around the nano-inhomogeneity is also less than
that in low frequencies. This phenomenon is due to the scattering and refraction of
shear waves around the nano-inhomogeneity. With the increase of wave frequency,
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the scattering and refraction of shear waves around the nano-inhomogeneity be-
come stronger. The interference between the incident and scattering waves be-
comes more important. 
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Figure 5: Dynamic stress concentration factor around the elliptic nano-
inhomogeneity with different values of k∗ (b∗ = 2.0, f0 = 3.0, fs = 2.0,ρ = 2.0)

Figs.6 and 7 illustrate the distribution of DSCF around the elliptical nano-inhomogeneity
with different values of f0. It can be seen that in the region of low frequency, the
dynamic stress around the elliptical nano-inhomogeneity increases when the nano-
inhomogeneity is stiffer than the matrix. In the region of high frequency, the value
of f0 expresses greater effect on the dynamic stress at the positions near θ = π .
This phenomenon results from the strong scattering and refraction of waves.

To find the interface effect on the dynamic stress around the elliptical nano-inhomogeneity
with different wave frequencies of incident waves, Figs.8 and 9are given. Fig.8
shows the dynamic stress around the elliptical nano-inhomogeneity in the region of
low frequency. It can be seen that the dynamic stress increases with the increase
of the value of fs. At the positions near θ = π/2,3π/2, the effect of interface on
the dynamic stress is greater. Fig.9 shows the dynamic stress around the elliptical
nano-inhomogeneity in the region of high frequency. Comparing with the results
in Fig.8 it is clear that the interface effect on the dynamic stress decreases in the
region of high frequency. At the positions near θ = 0, the variation of dynamic
stress is little. This phenomenon results from the strong scattering and refraction of
waves at this position. However, at the positions near θ = 0, with the decrease of
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Figure 6: Dynamic stress concentration factor around the elliptic nano-
inhomogeneity with different values of f0 (k∗ = 0.1,b∗ = 2.0, fs = 2.0,ρ = 2.0)
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Figure 7: Dynamic stress concentration factor around the elliptic nano-
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Figure 8: Dynamic stress concentration factor around the elliptic nano-
inhomogeneity with different values of fs (k∗ = 0.2,b∗ = 2.0, f0 = 3.0,ρ = 2.0)
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Figure 9: Dynamic stress concentration factor around the elliptic nano-
inhomogeneity with different values of fs (k∗ = 1.5,b∗ = 2.0, f0 = 3.0,ρ = 2.0)
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scattering and refraction effects of waves, the interface effect on the dynamic stress
is great.

9 Conclusion

In this study, the interface model of Gurtin and Murdoch Gurtin’s has been adopted
to investigate the diffraction of anti-plane shear wave by an elliptical nanosized in-
homogeneities, and the effect of interfacial properties on the dynamic stress around
the nano-inhomogeneities under different region of frequencies is analyzed. Com-
parison with the previous investigations validates this present model. Through ana-
lyzing the interface effect on the dynamic stress of nanosized material under shear
waves, the methods of reducing the dynamic stress and increasing the strength of
nanosized structures are found.

It has been found that the surface/interface elasticity shows significant effects on
the dynamic stress around the nano-inhomogeneity. In the region of lower fre-
quencies, the effects are greater. The effect of the shear modulus ratio on the dy-
namic stress is also related to the surface/interface elasticity when the inclusion
size shrinks to nanometers. If the nano-inhomogeneties are stiffer than the matrix,
the effect is greater. When b is the long semi-axis, the maximum dynamic stress
increases greatly with the increase of b∗. When a is the long semi-axis, variation
of dynamic stress around the elliptical nano-inhomogeneity is less. In the region of
high frequency, the interference between the incident and scattering waves becomes
distinct. The effects of the interface properties and the shape of the elliptical nano-
inhomogeneity on the dynamic stress decrease with the increase of wave frequency.
The variation of the dynamic stress around the elliptical nano-inhomogeneity also
decreases when the wave frequency is higher.
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