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Lattice Dynamics and Second and Third Order Elastic
Constants of Iron at Elevated Pressures

Hieu H. Pham1 and Tahir Çaǧın1

Abstract: We analyze the lattice dynamics of Fe in different crystal phases (bcc,
fcc and hcp) by using density-functional theory. The study on equations of states
indicates that bcc Fe is more stable than fcc and hcp Fe at low pressures. However,
dynamical instabilities in lattice vibrations of bcc Fe predict a phase transformation
from bcc to hcp at higher pressures. We reported a complete set of second-order
and third-order elastic constants of Fe in these three phases. We observed a linear
variation in the values of second order elastic constant as a function of increased
pressures. The phonon spectra were also analyzed to understand the stability of Fe
in different phases.
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1 Introduction

Understanding the mechanical properties of iron under high pressure and large
anisotropic loads is essential in order to interpret its behavior beyond elastic re-
sponse regime. When dealing with infinitesimal strains, elasticity is fundamental
for any solid materials. Broadly speaking, it is related to the internal energy and
binding forces [Hull and Bacon (2001)], as the elastic resistance of a substance
emerges as its response to applied loads through repulsive and attractive forces
between atoms. Elastic coefficients may be important quantities to interpret the
structural stability and phase transformations in crystals [Lew, Caspersen, Carter
and Ortiz (2006)]. In general, the second-order elastic constants (SOEC) describe
the response of materials to the linear deformation, whereas the third- and higher-
order elastic constants (TOEC and HOEC) correspond to non-linear elasticity [Hiki
(1981)]. Also, elasticity is essential in evaluating various mechanical and ther-
mal properties, such as equation of state, pressure derivative of elastic constants
[Çaǧın and Pettitt (1989)], thermal expansion, phonon-phonon interaction [Hiki
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(1981)], and acoustic amplification of microwave frequencies [Graham (1972)].
Particularly, studying the elasticity of hexagonal close-packed (hcp) iron is critical
in explaining the elastic anisotropy, seismic behavior and differential rotation of the
Earth’s interior since hcp is the stable form at high pressures [Song and Richards
(1996; Steinle-Neumann, Stixrude, Cohen and Gulseren (2001; Stixrude and Co-
hen (1995; 1995)].

The measurements of elastic coefficients can be conducted by various experimental
techniques. Ultrasonic measurements [Fritz and Graham (1974)] or shock com-
pression experiments [Graham (1972)] are used to obtain SOEC. TOEC can be
experimentally measured through the determination of the change in the acous-
tic velocities under hydrostatic and uniaxial stresses [Brugger (1964); Nakagawa,
Yamanouc.K and Shibayam.K (1973)]. The forth-order elastic constants (FOEC)
could also be determined by using shock-compression methods [Graham (1972)].
However, due to the difficulties in these works, the experimental measurements
on TOEC or HOEC require that many of efforts be made [Graham (1972; Jo-
hal and Dunstan (2006)], especially for those under extreme conditions. Due to
advances in computational techniques and computer resources, several theoreti-
cal approaches are now available to calculate these quantities, including molecular
dynamics [Çaǧın and Pettitt (1989); Çaǧın and Ray (1988); Çaǧın, Karasawa, Das-
gupta and Goddard (1992); Çaǧın (1993); Çaǧın, Kimura, Qi, Ikeda, Johnson and
Goddard(1999)] and first-principle methods [Lopuszynski and Majewski (2007);
Nielsen (1986); Zhao, Winey and Gupta (2007); Uludogan, Çaǧın, (2006); Uludo-
gan, Guarin, Gomez, Çaǧın, Goddard, (2008); Kart, Uludogan, Karaman, Çaǧın,
(2008); Bilge, Kart, Kart, Çaǧın (2008); Chakrabarty, Çaǧın, (2008); Kalay, Kart,
Kart, Çaǧın, (2009); Sevik, Çaǧın, (2009); Ojeda, Çaǧın, (2010)].

In this paper, we describe a method for determining SOEC and TOEC from strain-
energy and applied strain relationships. In addition, we present associated first-
principles calculations for SOEC and TOEC of iron using the Density Functional
Theory (DFT) [Kohn and Sham (1965)], which is implemented in Vienna Ab ini-
tio Simulation Package (VASP) [Kresse and Furthmuller (1996)]. We use the
Projector-Augmented Wave (PAW) methods [Bl ochl (1994)] to simulate the mag-
netic and crystal properties of iron. The PBE Generalized Gradient Approximation
(GGA) exchange-correlation [Perdew, Burke and Ernzerhof (1996)] is employed.
The spin-polarized calculations are adopted to simulate the magnetic phase. In the
k-point sampling, we use a 16 x 16 x 16 Monkhorst-Pack grid [Monkhorst and Pack
(1976)] for the plane wave basis in bcc and fcc Fe unit cells, and 20 x 20 x 20 grid
for hcp cell, respectively. A cut-off energy at 440 eV was used for all simulations,
which in turn yields a convergence of total energy within 1 meV/atom.

The organization of the paper is as follows. In section 2, we review the basics on
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theory of elasticity and the calculation methods employed to elastic constants. In
section 3, we report and discuss our results on iron equation of state (EOS), elastic
constants, phonon spectra and phase stability of various crystal forms of Iron. The
conclusion will be delivered in the last section.

2 Theoretical approach

The relationship between strain energy, elastic constants and strains can be de-
scribed in terms of the elasticity theory () [Murnaghan (1967)]. For a crystal do-
main, X= (I+ ε)A is the deformed lattice under the application of a strain matrix ε

to the initial lattice vectors A (where I is the 3 x 3 unit matrix). Also, the transfor-
mation from a certain point A (a1, a2, a3) in initial unstrained domain, into X (x1,
x2, x3 in deformed domain, is characterized by a Jacobian matrix J:

Ji j =
∂x j

∂ai
(1)

The symmetric Lagrangian strain parameters εi j are then given as [Wallace (1972)]

εi j =
1
2

3

∑
n=1

(
∂x2

n

∂ai∂a j
−δi j) or ε =

1
2
(JT J− I) (2)

Where δi j is the Kronecker delta.The densities in the initial undeformed and fi-
nal deformed state, (ρ0 and ρ respectively), are related to each other through the
determinant of the Jacobian (ρ0 = ρ det J); therefore the strain matrix, ε , yields
a volume-conserving deformation in case of a unit-determinant J [Mehl, Osburn,
Papaconstantopoulos and Klein (1990)]. Since deformation tensors are symmetric,
we use the Voigt index notation for convenience: (11) → 1, (22) → 2, (33) → 3,
(23) → 4, (13) → 5, (12) → 6. Thus, a 3 x 3 symmetric strain matrix,ε , can be
simplified to a 6-dimensional vector η :

ε =

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

 =

 η1
1
2 η6

1
2 η5

1
2 η6 η2

1
2 η4

1
2 η5

1
2 η4 η3

~η =



η1
η2
η3
η4
η5
η6

 =



ε11
ε22
ε33

ε23 + ε32
ε13 + ε31
ε12 + ε21

 =



ε11
ε22
ε33
2ε23
2ε13
2ε12


(3)

Stress components σαβ (α , β =1, 2, 3 in Cartesian coordinates) are defined as the
force in α thaxis on the plane with outward normal in β th direction. The generalized
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Hooke’s law [Nye (1957)] gives the relation between the stress, elastic modulus and
strain: σαβ = Cαβ µνηµν or, σI = CIJηJ in Voigt notation.

In addition, the thermodynamic definition of adiabatic (constant S) and isothermal
(constant T) n-order elastic constants given by Brugger are widely used [Brugger
(1964; Wallace (1972)]:

CS
i jkl..mn = ρ0(

∂ nU
∂εi j∂εkl · · ·∂εmn

)S (4)

where U and F are internal energy and free energy, respectively and ρ0 is the spe-
cific density of the unstrained medium.

In this paper, total energy was calculated by DFT at 0 K; therefore elastic con-
stants can be referred to as isothermal. The tensor stress is described by following
equation:

σαβ =
ρ

ρ0

3

∑
m,n=1

∂xα

∂am

∂U
∂εmn

∂xβ

∂an
(5)

The elastic energy per crystal unit volume upon application of a Lagrangian strain
tensor, η , may be expanded in terms of elastic constants as the expansion coeffi-
cients [Brugger (1964)]:

ρ0∆F(η) =
1
2! ∑

IJ=1···6
CIJηIηJ +

1
3! ∑

IJK=1···6
CIJKηIηJηK +Θ(η4) (6)

Due to high symmetry in the stress and strain tensors of a cubic crystal, a fourth-
rank SOEC tensor can be reduced to a 6 x 6 symmetric matrix with only 12 non-zero
SOEC terms, and three of them are independent (C11, C12 and C44). Therefore the
general form of second-order term in equation (6) can be derived for a cubic crystal
as follows.

∑
IJ=1···6

CIJηIηJ

= (η1,η2,η3,η4,η5,η6,).



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 .



η1
η2
η3
η4
η5
η6
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= C11(η2
1 +η

2
2 +η

2
3 )+2C12(η1η2 +η2η3 +η3η1)+C44(η2

4 +η
2
5 +η

2
6 )

or = C11(ε2
11 + ε

2
22 + ε

2
33)+2C12(ε11ε22 + ε22ε33 + ε33ε11)+4C44(ε2

23 + ε
2
13 + ε

2
12)
(7)

Under the uniaxial strain (i.e ηi=0 for i 6= 1), this expression will remain the only
contribution from C11. The biaxial strain (ηi=0 for i 6= 1, 2) contribution is given
in terms of C11 and C12; likewise, a strain tensor with zero diagonal components
leads to a contribution of C44 alone. Hence, choices of strain tensors will result in
a system of linear equations on elastic constants as variables.

The symmetry analysis leads to 6 distinct TOEC for cubic crystals [Fumi (1951)];
and the expansion of the third-order term in equation (6) yields the following com-
bination of cubic crystal TOEC:

∑
I,J,K=1···6

CIJKηIηJηK =

C111(η2
1 +η

2
2 +η

2
3 )+3C112(η2

1 η2 +η
2
2 η1 +η

2
2 η3 +η

2
3 η2 +η

2
3 η1 +η

2
1 η3)

+6C123η1η2η3 +3C144(η1η
2
4 +η2η

2
5 +η3η

2
6 )

+3C155(η2η
2
4 +η3η

2
4 +η1η

2
5 +η3η

2
5 +η1η

2
6 +η2η

2
6 )

+6C456η4η5η6

(8)

Low symmetrical crystals have more distinct elastic constants than high symmet-
rical crystals. Specifically, the hcp crystals have 5 independent SOEC, and the
2-order term in equation (6) for an hcp crystal can be given as follows:

∑
IJ=1···6

CIJηIηJ

= (η1,η2,η3,η4,η5,η6,).



C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 (C11−C12)/2

 .



η1
η2
η3
η4
η5
η6


= C11(η2

1 +η
2
2 +

1
2

η
2
6 )+C12(2η1η2−

1
2

η
2
6 )+2C13(η1η3 +η2η3)

+C33η
2
3 +C44(η2

4 +η
2
5 )

(9)

For completeness, the expression below is derived for contribution to strain en-
ergy from TOEC in the hcp phase, using the symmetry table given by Fumi [Fumi
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(1952)]:

∑
IJK=1···6

CIJKηIηJηk =

C111(η3
1 +3η1η

2
2 −

3
2

η1η
2
6 +

3
2

η2η
2
6 )

+C112(3η
2
1 η2 +3η1η

2
2 −

3
4

η1η
2
6 −

3
4

η2η
2
6 )

+C113(3η
2
1 η3 +3η

2
2 η3 +

3
2

η3η
2
6 )+C114(3η

2
1 η4 +3η1η5η6−3η

2
2 η4 +3η2η5η6)

+C123(6η1η2η3−
3
2

η3η
2
6 )

+C124(6η1η2η4 +9η1η5η6−6η
2
2 η4−3η2η5η6 +3η4η

2
6 )

+C133(3η1η
2
3 +3η2η

2
3 )+C134(6η1η3η4−6η2η3η4 +6η3η5η6)

+C144(3η1η
2
4 +3η2η

2
5 −3η4η5η6)

+C155(3η1η
2
5 +3η2η

2
4 +3η4η5η6)+C222(−3η1η

2
2 +

9
4

η1η
2
6 +η

3
2 −

3
4

η2η
2
6 )

+C333(η3
3 )+C344(3η3η

2
4 +3η3η

2
5 )+C444(η3

4 −3η4η
2
5 )

(10)

Due to the sensitivity of elastic constants calculations, especially TOEC, to the
maximum value of strains, the strains in this work are applied within the range of
-0.035 to +0.035.

3 Results and Discussions

3.1 Equations of State (EoS)

Depending on external conditions, iron is observed to have various phases, in-
cluding body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal close-
packed (hcp) [Yoo, Akella, Campbell, Mao and Hemley (1995)]. Crystal structure
of ground-state iron is ferromagnetic bcc with 2 atoms contained in a conventional
cubic unit cell. Upon increased pressure and temperature, iron undergoes phase
transformations into close-packed structures: fcc and hcp. The hcp iron was re-
ported to be the stable phase at the Earth’s interior conditions [Jephcoat and Olson
(1987; Laio, Bernard, Chiarotti, Scandolo and Tosatti (2000)]. In addition, the
transition of iron from bcc to hcp begins around 9-13 GPa [Lew, Caspersen, Carter
and Ortiz (2006)], and the transformation to fcc occurs at 1150 K [Sha and Cohen
(2006)]

In this work, the equilibrium state of iron is determined by studying the behavior
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of energy and pressure, i.e., the EoS for bcc, fcc, and hcp Fe at 0 K. The atomic
energy curves are displayed for different structures in Fig. 1, in which bcc Fe is
considered as ferromagnetic, and fcc and hcp are both of non-magnetic phases. In
fact, our calculations show that the magnetic field yields no change in total energy
of fcc and hcp crystals, which in turn confirms about no magnetization contribution
in those phases. From the plot, the bcc crystal is more stable at 0 K condition and
possesses a smaller atomic packing factor (APF). This observation is consistent
with theoretical calculations, in which bcc crystal has an APF of 0.64 vs. 0.74 for
fcc and hcp. If far from the zero pressure, the hcp phase could be more favorable
than the bcc and that critical point could be around 70 GPa (Fig. 2). In this work,
we focus on bcc and hcp structures, since they are naturally observed crystalline
phases of Fe.

Based on the EoS plots, the equilibrium lattice parameter can be determined as the
point of minimum energy and hence the zero pressure. The visual inspection gives
a value approximately at two-thirds the distance between 2.80 and 2.85 Å for bcc
iron. However, the zero-pressure lattice parameter, bulk modulus and its pressure
derivative can also be obtained by fitting the data to an EoS expression for metals.
We used the E-V and P-V relations introduced by [Li, Liang, Guo and Liu (2005)],
which was a modified version of the Vinet and Rose equation [Vinet, Ferrante, Rose
and Smith (1987)].

 

Figure 1: Variation of atomic energy as a function of atomic volume in Fe bcc, fcc
and hcp phases

The EoS results show a good agreement with the experimental and previous theo-
retical calculations (Tab. 1). The theoretical lattice parameter calculated using DFT
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tends to be slightly below that of experimental measurements. In addition, our the-
oretical calculation on hcp bulk modulus, as well as the report by [Lew, Caspersen,
Carter and Ortiz (2006)], yield a value of approximately 40% different from the ex-
perimental data (290 GPa compared to 208 GPa ). The difference may result from
the fact that hcp phase exists in extreme high pressure conditions, while this DFT
calculation was performed at 0 K and 0 GPa. Also, the experimental evaluations
of bulk modulus at high pressures generally come with large fluctuation error in
measurements.

 

Figure 2: Variation of energy as a function of external pressure for bcc and hcp Fe

3.2 Elastic Constants: Second and Third Order

Calculations were made for SOEC and TOEC of bcc (Tab. 2) and hcp Fe (Tab. 3)
at various points around zero pressure by fitting the strain energy using Eq. 6-10.
Also, a set of elastic constants was reported for fcc phase at zero pressure in Tab.4.
Utilizing the relationship of B0= (C11+C12)/3 for cubic crystals, the bulk modulus,
B0, can be obtained from the values of C11 and C12, in addition to the value derived
from the EoS fit. From those two methods, the data still gave close agreements for
bcc Fe (188.4 vs. 177.9 GPa) and fcc Fe (284.7 vs. 285.4 GPa). In addition, both
bcc and fcc phases obey the lattice stability criteria for cubic crystals [Wang, Yip,
Phillpot and Wolf (1993)], i.e., B0> 0, G = C44> 0, Cs = (C11-C12)/2 > 0, and all
comply with the general rule: B0> G > Cs..

According to these calculations, most of the elastic constants (second and third-
order) follow a linear dependence with respect to pressure (Fig.3 and Fig. 4 for
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Table 5: Calculated first pressure derivative of SOEC for bcc Fe (a: [Jephcoat, Mao
and Bell (1986)] )

dC11/dP dC12/dP dC44/dP dB0/dP
From values of TOEC 9.72 4.55 2.20 6.27

From plot of SOEC 9.70 4.35 3.57 6.13
From EOS – – – 5.09

Expt.a – – – 5.0

bcc; Fig. 5 and Fig. 6 for hcp Fe). C111, C222 and C333 are nearly identical in
hcp Fe. The values of TOEC in both phases (especially C111) are very sensitive to
pressure. For example, a variation of 0.1 GPa in external pressure may induce a
change in bcc Fe C111 by 600 GPa.

 

Figure 3: Variation of bcc Fe SOEC (GPa) as functions of pressure

The SOEC of bcc and hcp Fe positively vary with pressure, and this is a normal
behavior for solids. The derivatives of SOEC can either be determined directly
from the slope of SOEC lines or be calculated analytically, requiring the knowledge
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Figure 4: Variation of bcc Fe TOEC (GPa) as functions of pressure

of some TOEC.

∂C11

∂P
=−2C11 +2C12 +C111 +2C112

C11 +2C12

∂C12

∂P
=−−C11−C12 +2C112 +C123

C11 +2C12

∂C44

∂P
=−C11 +2C12 +C44 +C144 +2C166

C11 +2C12

(11)

The results of dC11/dP, dC12/dP, and dB/dP are very consistent between two meth-
ods, while there is an observable difference in dC44/dP (Tab. 5). The negative
TOEC values of bcc and fcc Fe indicate that the increasing pressure will cause an
increase in vibration frequencies. The behavior of bcc Fe under compression can
be verified by studying the phonon dispersion curves in the next section.

3.3 Phonon dispersion of Iron polymorphs and Pressure dependence.

The calculated phonon dispersion curves of bcc, fcc, and hcp Fe are displayed in
Fig. 7, in addition to the corresponding density of states (DOS) along the high
symmetry lines of the Brillouin zone. Consistency is observed between our theo-
retical calculations and experimental data for bcc Fe [Hasegawa, Finnis and Pettifor
(1987)], which were recorded at room temperature and zero pressure.
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Figure 5: Variation of hcp Fe SOEC (GPa) as functions of pressure

 

Figure 6: Variation of hcp Fe TOEC (GPa) as functions of pressure
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Figure 7: Phonon dispersion curves of bcc (a), fcc (b) and hcp (c) Fe at equilibrium.
The red dots in BCC phonon are experimental data from [Hasegawa, Finni and
Pettifor (1987)]

In order to assess the stability of Fe crystal at high pressures, the phonon spectra
of bcc Fe is calculated under various compressions, as displayed in Fig. 8. Besides
the expansion of the frequency range, negative frequency values were found for the
optical branch after 200 GPa. This negative vibration frequency indicates instability
in bcc Fe structure at high pressures. Similarly, the hcp Fe is studied at decreased
pressures by expanding the unit cell volume beyond equilibrium volume (Fig. 9).
After approximately a tensile pressure value of -40 GPa an negative frequency for
the acoustic branch is recorded, i.e. indication of an unstable hcp phase. This
observation implies that bcc Fe is more favorable at equilibrium, whereas hcp is
dominant at extreme conditions.

4 Concluding Remarks

A complete set of SOEC and TOEC has been reported in three common phases of
Fe: bcc, fcc and hcp. The calculations of their values at different pressures show a
fairly linear dependence. Among the TOEC, C111 is most affected by the external
stress. The study on phonon spectra confirms the instability of lattice vibration for
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Figure 8: Phonon spectra of bcc Fe at increased pressure

 

Figure 9: Phonon spectra of hcp Fe
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bcc at high pressure and for hcp under tension.
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DFT studies on ferroelectric ceramics and their alloys CMES: Computer Modeling
in Engineering and Sciences, Vol. 24, 215-38.

Vinet, P.; Ferrante, J.; Rose, J. H.; Smith, J. R. (1987): Compressibility of
Solids. Journal of Geophysical Research-Solid Earth and Planets 92, 9319-9325.

Wallace, D. C. (1972): Thermodynamics of crystals. New York,: Wiley.

Wang, J. H.; Yip, S.; Phillpot, S. R.; Wolf, D. (1993): Crystal Instabilities at
Finite Strain. Physical Review Letters 71, 4182-4185.

Yoo, C. S.; Akella, J.; Campbell, A. J.; Mao, H. K.; Hemley, R. J. (1995):
Phase-Diagram of Iron by in-Situ X-Ray-Diffraction - Implications for Earth Core.
Science 270, 1473-1475.

Zhao, J. J.; Winey, J. M.; Gupta, Y. M. (2007): First-principles calculations of
second- and third-order elastic constants for single crystals of arbitrary symmetry.
Physical Review B 75, 094105.


