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Space-Time Adaptive Fup Multi-Resolution Approach for
Boundary-Initial Value Problems

Hrvoje Gotovac1, Vedrana Kozulić2 and Blaž Gotovac1

Abstract: The space-time Adaptive Fup Collocation Method (AFCM) for solv-
ing boundary-initial value problems is presented. To solve the one-dimensional
initial boundary value problem, we convert the problem into a two-dimensional
boundary value problem. This quasi-boundary value problem is then solved si-
multaneously in the space-time domain with a collocation technique and by using
atomic Fup basis functions. The proposed method is a generally meshless method-
ology because it requires only the addition of collocation points and basis functions
over the domain, instead of the classical domain discretization and numerical in-
tegration. The grid is adapted progressively by setting the threshold as a direct
measure of the solution accuracy at a given resolution level. At higher resolution
levels, collocation points are only added in the space-time sub-domains where the
solution correction is greater than the prescribed threshold. In contrast to the clas-
sical time-stepping schemes, in which globally accumulated errors can arise and
which are not easily adapted to multiple time steps, the space-time AFCM covers
all space and time multiple scales, while global error is strictly controlled in time
by an a priori threshold.

Keywords: Fup basis functions, collocation, partial differential equations, adap-
tive grid, meshless method, prescribed accuracy of time integration.

1 Introduction

Classical solutions of time-dependent partial differential equations (PDEs) are re-
duced to time integration of ordinary differential equations (ODEs) with respect to
spatial discretization and corresponding boundary conditions through the common
method of lines (MOL) [Ascher and Petzold (1998); Hairer and Wanner (1996)].
Time integration of ODEs or time-dependent PDEs that require resolution at the
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fastest time scales of the system can be very costly if the system exhibits multiple
time scales of different magnitudes. If different time scales are localized to differ-
ent components that correspond to localizations in space for a PDE, efficient time
integration thus requires the use of different time steps for different components. If
the solution is intermittent in both space and time, one adapts the spatial mesh to
the solution at a fixed time and uses an adjustable time step to control local errors
in time. This approach enforces use of the same time step for all spatial locations,
which is clearly not optimal for problems that are simultaneously intermittent in
both space and time. However, global errors accumulate in time, even as spatial
errors are controlled by adaptive approximation. There is no guarantee that tem-
poral truncation errors will not accumulate over time and eventually exceed the
desired error tolerance. In fact, the common explicit and implicit time-marching
schemes provide no control over global errors in time [Alam, Kevlahan, and Vasi-
lyev (2006)].

Common numerical techniques, such as finite difference, finite element and finite
volume methods, are often used to solve problems described by PDEs through the
MOL. However, these conventional methods are associated with many numerical
difficulties, such as the usage of classical numerical integration, derivative discon-
tinuities or non-efficient adaptive procedures. Therefore, we focus in this paper on
meshless methods that naturally eliminate the above-mentioned problems.

In recent years, a number of meshless methods have been developed for solv-
ing PDEs with the classical MOL approach. Among others, prominent mesh-
less discretization techniques include the Meshless Local Petrov-Galerkin (MLPG)
Method. Various MLPG methods were compared and shown to be promising con-
tenders for the Finite Element Method [Atluri and Shen (2002)]. Remarkable
successes of the MLPG method have been reported in solving the convection-
diffusion problems [Lin and Atluri (2000)], elasto-static problems [Atluri, Han,
and Rajendran (2004)], elasto-dynamic problems [Han and Atluri (2004)] and for
atomistic/continuum simulation [Shen and Atluri (2005)]. The convergence, ac-
curacy, numerical stability and computational efficiency of four various formula-
tions for solution of boundary value problems where the meshless point interpo-
lation method was employed based on various basis functions with using both a
weak form and strong form (by collocation of the governing PDE) can be found in
[Sladek, Sladek and Zhang (2006)].

Furthermore, meshless methods that are based on radial basis functions (RBFs)
have increasingly attracted attention from researchers. The idea of using RBFs for
solving PDEs was first proposed in [Kansa (1990)], where the collocation method
was used to solve parabolic, hyperbolic and elliptic PDEs. The RBF-based numer-
ical methods represent one of the key directions in meshless methods research for
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fluids [Amaziane, Naji and Ouazar (2004)], solids [Mai-Duy, Khennane and Tran-
Cong (2007)] and moving boundaries [La Rocca, Power, La Rocca and Morale
(2005)]. Applications of RBFs to solution of the Navier-Stokes equations were re-
ported in [Mai-Duy (2004)], the numerical simulation of two-phase flow in porous
media in [Iske and Käser (2005)], and dealing with transport phenomena in [Šarler
(2005)]. The heat transfer model was solved [Lorbiecka, Vertnik, Gjerkeš, Mano-
jlovič, Senčič, Cesar and Šarler (2009)] by the meshless technique by using local
collocation with radial basis functions. Cho, Golberg, Muleshkov and Li (2004)
presented a meshless approach to numerically solving a class of second order time-
dependent PDEs based on a combination of the method of particular solutions and
the Trefftz method.

A number of papers have been published in the last several years that describe an
adaptive strategy in RBF solutions of PDEs. Sarra (2005) developed and success-
fully applied an adaptive RBF method to the solution of nearly-singular and time-
dependent Burger’s and Advection equations in 1D. A dynamic adaptive scheme
was proposed by Wu (2004) for time-dependent PDEs. Behrens, Iske, and Käser
(2003) successfully applied an adaptive algorithm with local TPS-RBFs interpola-
tion to linear evolutionary PDEs. The method uses a local interpolation to evaluate
an error indicator and to detect regions where the approximation requires more
accuracy. Many of the adaptive strategies mentioned above are driven by a front-
tracking scheme that utilizes a posterior error indicator to detect regions that require
refinement; see Lee, Im, Jung, Kim and Kim (2007) and Iske and Käser (2005).

The concept of wavelet analysis was introduced in applied mathematics in the late
1980s, and interest has grown recently in developing wavelet-based numerical al-
gorithms for both uniform and adaptive node-distribution schemes for the solution
of PDEs. Recently, multi-resolution wavelet analysis has been developed as a po-
tentially adaptive approach to the construction of optimum adaptive node distribu-
tion in nearly-singular problems; see Cruz, Mendes, and Magalhaes (2001); Mehra
and Kevlahan (2008) and Vasilyev and Kevlahan (2005). Libre, Emdadi, Kansa,
Shekarchi, and Rahimian (2008) developed a modified adaptive wavelet scheme
to solve nearly-singular potential PDEs. Recently, there have been many attempts
to develop new adaptive procedures focused upon the use of, among others, adap-
tive wavelet collocation methods [Bertoluzza (1996); Bertoluzza and Naldi (1996);
Cruz, Mendes, and Magalhaes (2001); Hesthaven and Jameson (1998); Holmstrom
(1999); Vasilyev and Paolucci (1997); Alam, Kevlahan, and Vasilyev (2006)].

Aside from wavelets and splines, there is a relatively lesser-known class of atomic
or Rb f basis functions (Rvachev’s basis functions) [Rvačev and Rvačev (1971);
Rvačev (1982)]. Atomic functions are classified in between classic polynomials
and spline functions. However, in practice, their application as basis functions
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is closer to those of splines or wavelets. In this paper we use Fup basis func-
tions, which are one type of atomic basis functions, recent reviewed by Kolodi-
azhny and Rvačev (2007). Gotovac and Kozulić (1999) systemized the existing
knowledge on atomic functions and presented the transformation of basis func-
tions into a numerically-applicable form. The application of Fup basis functions
has been demonstrated in signal processing [Kravchenko, Basarab, and Perez-
Meana (2001)], initial value problems [Gotovac and Kozulić (2002)], and colloca-
tion methods for boundary value problems [Kozulić and Gotovac (2000); Gotovac,
Andričevič, and Gotovac (2007)].

The main feature of the Fup basis functions, as well as wavelets, is the spatial multi-
resolution of signals and functions, resolving all the spatial frequencies and scales
that are obtained by Fup collocation transform (FCT). Recently, the Adaptive Fup
Collocation Method (AFCM), with an adaptive spatial algorithm but with a clas-
sical time-marching algorithm, was published [Gotovac, Andričevič, and Gotovac
(2007); Kozulić, Gotovac, and Gotovac (2007)].

The second approach involves solving PDEs simultaneously in the space-time do-
main. This simultaneous approach controls global time integration errors, but in-
volves time as an additional coordinate and thus increases the dimension and com-
putational burden of the problem. There are adaptive space-time finite element
methods [Cao and Demeler (2005)], finite difference methods [Wackers and Koren
(2003)] and wavelet collocation methods [Alam, Kevlahan, and Vasilyev (2006)].

In this paper, we present a new space-time AFCM with resolution of all space and
time multiple scales. Essentially, AFCM solves PDEs and corresponding boundary
conditions in the same way as an FCT approximates a function by different resolu-
tion levels. All existing algorithms that use wavelets and splines [e.g., Vasilyev and
Bowman (2000) and Wang, Keast, and Muir (2004)], as well as a recent form of the
AFCM [Gotovac, Andričevič, and Gotovac (2007)], use localized basis functions
only to obtain an efficient adaptive strategy, but the PDE itself is solved by classic
time-marching on a non-uniform adaptive grid (including all levels). In this pa-
per, we present a novel form of the AFCM, with Fup basis functions at each level,
by using a collocation framework in the space-time domain. Each non-zero level
solves only the residuals of the PDEs from all previous levels and gives particu-
lar solution corrections. Adaptive criteria add new collocation points in the next
level only in the space-time zones where solution corrections are greater than the
prescribed threshold. Thus, in the case of a moving steep front, one can track its
position and increase the local resolution of the grid by adding higher-resolution
basis functions in that region.

The rest of this paper is organized as follows. A short description of the main
features of the Fup basis functions is presented in section 2. The procedure of
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the Fup collocation transform is explained in section 3. Section 4 describes how
to extend the Adaptive Fup Collocation Method for solving boundary-initial value
problems. The efficiency of the proposed meshless method is illustrated by two
numerical examples in section 5: the Burgers equation and an advection-dispersion
problem. Finally, we give a summary and conclusions in section 6.

2 Fup basis functions

Atomic basis functions are infinitely-differentiable functions with compact support
[Gotovac and Kozulić (1999), Rvačev and Rvačev (1971)]. Atomic functions y(.)
are defined as solutions of differential functional equations of the following type:

Ly(x) = λ

M

∑
k=1

Cky(ax−bk) (1)

where L is a linear differential operator with constant coefficients, λ is a nonzero
scalar, Ck are coefficients of the linear combination, a > 1 is a parameter that defines
the length of the compact support, and bk are coefficients that determine displace-
ments of the basis functions. Rvačev and Rvačev (1971), in their pioneering work,
called these basis functions “atomic” because they span the vector spaces of all
three fundamental functions in mathematics: algebraic, exponential and trigono-
metric polynomials. Also, atomic functions can be divided into an infinite number
of smaller pieces that maintain all their properties, implying a so-called “atomic
structure.”

The simplest function, which is the most-studied of the atomic basis functions, is
the up(x) function. The function up(x) is a smooth function with compact support
over [-1,1], which is obtained as a solution of a differential functional equation

up′(x) = 2up(2x+1)−2up(2x−1) (2)

with the normalized condition
∫

∞

−∞
up(x)dx =

∫ 1
−1 up(x)dx = 1. The function up(x)

can be expressed as an inverse Fourier transform:

up(x) =
1

2π

∞∫
−∞

eitx
∞

∏
j=1

(
sin(t2− j)

t2− j

)
dt. (3)

Since Eq. (3) represents an exact but mathematically-intractable expression, Rvačev
(1982) and Gotovac and Kozulić (1999) provided a numerically more-adequate ex-
pression for calculating the function up(x):

up(x) = 1−
∞

∑
k=1

(−1)1+p1+...+pk pk

k

∑
j=0

C jk(x−0, p1 . . . pk) j (4)
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where coefficients C jk are rational numbers determined according to the following
expression:

C jk =
1
j!

2 j( j+1)/2up(−1+2−(k− j)); j = 0,1, ...,k; k = 1,2, ...,∞. (5)

Calculation of the up(−1 + 2−r); r ∈ [0,∞] in binary-rational points (Eq. (5)), as
well as all details regarding the calculation of the function up(x) values, are pro-
vided in [Gotovac and Kozulić (1999)] and [Gotovac and Kozulić (2002)]. The
argument (x−0, p1...pk) in Eq. (4) is the difference between the real value of coor-
dinate x and its binary form in k bits, where p1...pk are digits, 0 or 1, of the binary
representation of the x coordinate. Therefore, the accuracy of the x coordinate com-
putation, and, thus the accuracy of the up(x) function at an arbitrary point, depends
on machine accuracy.

From Eq. (2), it can be seen that the derivatives of the up(x) function can be calcu-
lated simply from the values of the function itself. The general expression for the
derivative of the mth degree is

up(m)(x) = 2C2
m+1

2m

∑
k=1

δkup(2mx+2m +1−2k), m ∈ N (6)

where C2
m+1 = m(m+1)/2 is the binomial coefficient and δk are the coefficients

with value ±1, according to the recursive formulas δ2k−1 = δk, δ2k = −δk, k ∈
N, δ1 = 1. It can be observed that the derivatives consist of the up(x) function
compressed to an interval of 2−m+1 length, with ordinates extended by the 2C2

m+1

factor.

The Fupn(x) function satisfies the following differential-functional equation:

Fup′n(x) = 2
n+2

∑
k=0

(
Ck

n+1−Ck−1
n+1

)
Fupn(x)

(
2x−2−n−1k +2−n−2(n+2)

)
(7)

where n is the Fup order. Index n also denotes the highest degree of the polyno-
mial that can be expressed exactly as a linear combination of n + 2 Fupn(x) basis
functions, uniformly displaced by a characteristic interval 2−n.

For n = 0,Fup0(x) = up(x), since Fupn(x) and its derivatives can be calculated us-
ing a linear combination of displaced up(x) functions instead of using their Fourier
transforms:

Fupn(x) =
∞

∑
k=0

Ck(n)up
(

x−1− k
2n +

n+2
2n+1

)
(8)



Space-Time Adaptive Fup Multi-Resolution Approach 179

 

-0.1875 0.0000 0.1875

-0.1875 0.0000 0.1875

-0.1875 0.0000 0.1875

-0.1875 0.0000 0.1875

-0.1875 0.0000 0.1875

-0.1875 0.0000 0.1875

x

x

x

x

x

x

Fup4(x)

Fup'4(x)

Fup''4(x)

Fup'''4(x)

Fup4
IV(x)

Fup4
V(x)

Figure 1: Function Fup4(x) and its first five derivatives
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where C0(n) = 2C2
n+1 = 2n(n+1)/2. In turn, Ck(n) = C0(n) ·C′k(n), where a recursive

formula is used for calculating auxiliary coefficients C′k(n):

C′0(n) = 1, when k = 0; i.e., when k > 0

C′k(n) = (−1)kCk
n+1−

min{k;2n+1−1}
∑
j=1

C′k− j(n) ·δ j+1

(9)

The Fupn(x) is defined over the compact support [−(n + 2)2−n−1;(n + 2)2−n−1].
Fig. 1 shows the Fup4(x) function and its first five derivatives, which are used in
this paper.

Basis functions for numerical analyses of two-dimensional problems are obtained
from the Cartesian product of the two one-dimensional Fup basis functions defined
for each direction:

Fupn (x,y) = Fupn (x) ·Fupn (y) . (10)

Calculations of all required derivatives of the function Fupn(x,y) can be written
in an analogue form. Fig. 2 gives an axonometric presentations of basis function
Fup4(x,y) and its partial derivatives.

X Y

Z c)

X Y

Z

a)

X Y

Z

b)

 

Figure 2: a) Fup4(x,y); b) ∂Fup4(x,y)
∂x ; c) ∂ 2Fup4(x,y)

∂x2

3 Fup collocation transform

The Fup collocation transform (FCT), developed by Gotovac, Andričevič, and Go-
tovac (2007), is an efficient numerical tool for describing various types of signals
and functions using linear combinations of the Fup basis functions. It is a discrete
transform, similar to the classical discrete Fourier transform. However, a natural
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advantage of the Fup collocation transform is that it is based on the chosen basis
functions, with compact support (Fig.1). In other words, the specific frequencies
are associated with a particular spatial location, which is not possible in the clas-
sic Fourier transform due to the non-localized properties of classic trigonometric
basis functions. The transform is obtained through a collocation procedure and is
therefore called the Fup collocation transform (FCT). The high efficiency of the
FCT lies in the transform property, which keeps only the significant Fup coeffi-
cients that accurately describe the chosen function. Other Fup coefficients present
a residual between a true function and their Fup presentation, which must be less
than the prescribed threshold ε . This threshold has a fundamental meaning for the
FCT, because it represents the approximation accuracy or the FCT precision level.

The multi-resolution approximation of any u(x) function can be expressed as a
linear combination of Fup basis functions in the following way:

uJ(x) =
J

∑
j=0

(2 jmin+ j+n/2)

∑
k=−n/2

d j
kϕ

j
k (x) (11)

where j is the resolution level, from zero to a maximum level J, needed for the
desired accuracy, defined by a threshold ε . The Fup order is n; jmin is the resolution
at the zero level, d j

k are the Fup coefficients, ϕ
j

k are the Fup basis functions, and k
denotes the location index at the current level. Thus, the grid is divided into distinct
resolution levels. The minimum and maximum levels are predefined by the user.

If we define the domain as Ω = [X1,X2], then the characteristic interval at each level
is equal to the scale or distance between adjacent collocation points:

∆x j = (X2−X1)/2 jmin+ j. (12)

To demonstrate the Fup collocation transform, let us consider the following test
function:

f (x) =
1
2
·
[

1− tanh
(

x−0.75
0.02

)]
+ e(−642(x−1.5)2) (13)

with a relatively high threshold of ε=0.1, which implies that the residual between
the Fup approximation and the function (13) must be less than the prescribed
threshold. Other parameters are jmin = 3,X1 = 0,X2 = 2, and n = 4.

Basis functions are characterized by vertices or peaks where they have maximum
values (Fig. 1). All basis functions with vertices inside the domain are called
internal basis functions. Other functions are external basis functions, and only their
influence within the domain is considered. The best choices for locations of the
collocation points are the vertices of the internal basis functions.
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The main difficulty in transformations with localized basis functions is the special
treatment of the boundaries. For a complete Fup approximation in each charac-
teristic interval ∆x j, we need n + 2 Fupn(x) basis function [Gotovac and Kozulić
(1999)]. For all n/2 external basis functions at the left and right boundaries, the
collocation points are located at the boundaries (at X1 and X2). The approximations
for internal and external basis functions should satisfy the function values in cor-
responding collocation points and the first n/2 derivatives in boundary collocation
points (at X1 and X2), respectively, [Gotovac, Andričevič, and Gotovac (2007);
Kozulić, Gotovac, and Gotovac (2007)].

The location of each basis function is actually determined by the location of the
vertex and is defined by b j

k = X1 + k∆x j. Calculations of basis function values
and their derivatives at a general characteristic interval ∆x j should be done in the
following form with respect to a basic characteristic interval 2−n:

ϕ
j

k
(m)

(x) =
1

(2n∆x j)
(m) Fup(m)

n

(
x−b j

k
2n∆x j

)
(14)

where m is the order of the derivative. The compact support of the basis function at
each level has length (n+2)∆x j.

Fig. 3 shows the adaptive multi-resolution Fup collocation transform for the cho-
sen function in Eq. (13). Fig. 3a shows adaptive grids for all levels and internal
basis functions for the zero and the first level. Each subsequent level includes twice
as many internal basis functions with half as much support and scale (Eq. (12)).
Obviously, there are two sensitive regions with sharp gradients that require denser
distributions of collocation points than the rest of the domain. The key step of
the adaptive numerical algorithm is the transfer from the current level to the next
level. The residual between the true function and the previous-level approximation
is checked. Points where residual is below the prescribed threshold are removed
from the grid (Fig. 3c). For the first and then for each subsequent level, the collo-
cation algorithm should only satisfy the residual between the true function and the
previous-level approximation.

By using the previously described adaptive procedure, the Fup collocation trans-
form uJ(x) of any function u(x) is expressed in the form of (11). The d j

k unknown
Fup coefficients are obtained by solving a system of linear collocation equations.
The function values are satisfied in collocation points:

∑
k∈Z j

d j
kϕ

j
k (x

j
p) = r j(x j

p), p ∈ Z j : 0≤ p≤ 2 jmin+ j; j = 0, ....,J (15)

where Z j is the irregular grid containing only the significant collocation points and
the Fup basis functions that were obtained using the adaptive procedure.
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The boundary derivatives are satisfied in points X1 and X2:

∑
k∈Z j

d j
kϕ

j
k
(m)

(Xb) = r j(m)
(Xb), m = 1, ...,n/2; b = 1,2; j = 0, ....,J. (16)

The residual vectors in Eqs. (15) and (16) have the following forms:

r j(x j
p) = f (x j

p), p ∈ Z j : 0≤ p≤ 2 jmin+ j; j = 0

r j(x j
p) = f (x j

p)−u j−1(x j
p), p ∈ Z j : 0≤ p≤ 2 jmin+ j; j = 1, ...,J

r j(m)(Xb) = f (m)(Xb), j = 0; b = 1,2

r j(m)(Xb) = 0, j = 1, ...,J

(17)

In the same way as FCT performs a multi-scale decomposition of any function u(x),
it is possible to solve differential equations with corresponding boundary conditions
by using the same adaptive procedure. This should be done by applying the corre-
sponding differential operators in internal collocation points, and boundary-initial
conditions in boundary collocation points.

4 Adaptive Fup Collocation Method (AFCM) for boundary-initial value prob-
lem

Here, we extend the adaptive procedure presented in Section 3 for solving boundary-
initial value problems.

Generally, one-dimensional boundary-initial value problems can be described by
the following nonlinear time-dependent partial differential equation:

LIu(x, t)≡ ∂u(x, t)
∂ t

+KIu(x, t) = f (x, t), x ∈ (X1,X2) , t ∈ (0,T ) (18)

with corresponding boundary and initial conditions:

LBu(Xb, t) = gb(Xb, t), b = 1,2, t ∈ (0,T ) (19)

u(x,0) = u0(x), x ∈ (X1,X2) , t = 0 (20)

where u(x, t) is a solution that depends on one spatial variable x, LI is the partial
differential operator, KI is an operator that consists of partial derivatives with re-
spect to the space only, LB is a boundary differential operator, and f , gb and u0 are
known functions. The operators LB can be specified to impose Dirichlet, Neumann
or mixed boundary conditions.
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Figure 3: Multi-resolution approximation of the test function (13): a) adaptive
grid development and internal basis functions, b) FCT approximation and function
(13), c) a priori adaptive criteria for new collocation points based on the residuals
between the test function (13) and its FCT approximations.
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We can consider this problem as a boundary value problem in the space-time do-
main. Fup collocation discretization reduces the problem to a system of algebraic
equations for domain collocation points of the form:

∑
k,l∈Z j

d j
k,lLIϕ

j
k,l(x

j
p, t

j
q) = r j(x j

p, t
j
q) : 0≤ p≤ 2 jminx+ j, 0 < q≤ 2 jmin t+ j; (21)

for the spatial boundary collocation points of the form:

∑
k,l∈Z j

d j
k,lLBϕ

j
k,l(x

j
p, t

j
q) = r j(x j

p, t
j
q) : p = 0 or p = 2 jminx+ j, p,q ∈ Z j; (22)

and for initial conditions in corresponding temporal boundary collocation points of
the form:

∑
k,l∈Z j

d j
k,lϕ

j
k,l(x

j
p, t

j
q) = r j(x j

p, t
j
q) : q = 0, p,q ∈ Z j. (23)

In Eqs. (21)−(23), j takes on values from zero to the maximum level necessary for
a desired accuracy, d j

k,l are Fup coefficients, ϕ
j

k,l are Fup basis functions, k presents
the index of collocation points at the current level for x-direction, l presents the
index of collocation points at the current level for the t direction, jminx and jmin t
are numbers of collocation points at zero level in x and t directions, respectively,
and r j is the residual vector. The system (21)-(23) satisfies the differential flow
equation in the internal collocation points (internal Fup coefficients) and boundary-
initial conditions in the corresponding boundary collocation points (external Fup
coefficients; see Fig. 4).

The residual vector in previous expressions has the following form:

r j(x j
p, t

j
q) = f (x j

p, t
j
q) : (0≤ p≤ 2 jminx+ j, 0 < q≤ 2 jmin t+ j, p,q ∈ Z j); j = 0

r j(x j
p, t

j
q) = f (x j

p, t
j
q)−

j−1

∑
i=0

∑
k,l∈Z j

di
k,lLIϕ

i
k,l(x

j
p, t

j
q) :

(0≤ p≤ 2 jminx+ j, 0 < q≤ 2 jmin t+ j, p,q ∈ Z j); j > 0
(24)

r j(x j
p, t

j
q) = gb(x j

p, t
j
q) : (p = 0 or p = 2 jminx+ j, p,q ∈ Z j; b = 1,2); j = 0

r j(x j
p, t

j
q) = gb(x j

p, t
j
q)−

j−1

∑
i=0

∑
k,l∈Z j

di
k,lLBϕ

i
k,l(x

j
p, t

j
q) :

(p = 0 or p = 2 jminx+ j, p,q ∈ Z j; b = 1,2); j > 0

(25)
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r j(x j
p, t

j
q) = u0(x j

p, t
j
q) : (q = 0, p,q ∈ Z j); j = 0

r j(x j
p, t

j
q) = u0(x j

p, t
j
q)−

j−1

∑
i=0

∑
k,l∈Z j

di
k,lϕ

i
k,l(x

j
p, t

j
q) : (q = 0, p,q ∈ Z j); j > 0

(26)

Eqs. (21)-(26) define a boundary-initial value problem that can be solved uniquely
by a simultaneous space-time adaptive procedure. The given differential equation
is solved only at the zero level of resolution. Each non-zero level solves only a
residual of the differential equation from the solution of all previous levels and
gives a particular solution correction. Fup coefficients are associated with a specific
resolution level and location in the space/time domain. Adaptive criteria add new
collocation points at the next level only in the zones where the solution correction
is greater than the prescribed threshold. Therefore, an adaptive criterion directly
estimates the accuracy of the solution. With this approach, the Fup coefficients
measure the local fluctuations of the solution simultaneously in space and time,
and provide global control of both spatial and temporal errors.

If the partial differential equation is nonlinear, the algebraic problem is also non-
linear. Numerical solution of the problem is performed by use of the common
Newton’s damped method (see Gotovac, Andričevič, and Gotovac (2007)). Finally,
it is worthwhile to note that AFCM can divide the time domain into many subdo-
mains or time steps, such that final time solution in previous subdomain becomes
the initial condition for the next subdomain. In this manner, time steps possess
more common-sense comparisons with classic time integration, but in a much more
efficient form.

4.1 Implementation of a general boundary conditions

The AFCM solves a one-dimensional boundary-initial value problem as a bound-
ary value problem in the space-time domain. The treatment of general boundary
conditions is a straightforward task, due to the collocation nature of the algorithm
and the use of localized Fup basis functions.

Fig. 4 shows an example of a regular space-time dyadic grid for a given resolution
level. This figure represents vertex locations of internal and external basis functions
and the corresponding collocation points if the Fup4(x,y) functions are used. The
complete Fup approximation needs two external basis functions at each boundary.
For all external basis functions, the corresponding collocation points are located
at the boundary. Thus, boundary collocation points are multiple collocation points
where differential equation and boundary/initial conditions are satisfied, while ad-
ditional possible equations should neglect higher partial derivatives which do not
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affect solution accuracy near the boundary (Fig. 4).

For solving this problem, the following equations are applied:

• the PDE is satisfied for all internal collocation points:

d1) LIu(x, t) = f (x, t).

• At boundary collocation points in the space direction, three equations are
satisfied: Left boundary Right boundary

l1) LIu(X1, t) = f (X1, t)
l2) LBu(X1, t) = g1(X1, t)

l3)
∂ 4u(X1, t)

∂x4 = 0

r1) LIu(X2, t) = f (X2, t)
r2) LBu(X2, t) = g2(X2, t)

r3)
∂ 4u(X2, t)

∂x4 = 0

• For boundary collocation points at the initial time, the initial condition, the
first and the second partial derivatives of the function u(x, t) at the initial time
are satisfied:

i1) u(x, t0) = u0(x); i2)
∂u(x, t0)

∂ t
= u1(x); i3)

∂ 2u(x, t0)
∂ t2 = u2(x)

where u1(x) and u2(x) are the first and the second derivatives, respectively,
of the known function u0(x) with respect to x variable.

• For boundary collocation points at the final time, three equations are satis-
fied:

f 1) LIu(x,T ) = f (x,T ); f 2)
∂ 3u(x,T )

∂ t3 = 0; f 3)
∂ 4u(x,T )

∂ t4 = 0.

• For collocation points at corners, we need more equations. Numerical exper-
iments [Kozulić and Gotovac (2000)] showed that it is convenient to neglect
mixed partial derivatives of the solution function:

c1)
∂ 6u(x, t)
∂x3∂ t3 = 0; c2)

∂ 7u(x, t)
∂x4∂ t3 = 0;

c3)
∂ 7u(x, t)
∂x3∂ t4 = 0; c4)

∂ 8u(x, t)
∂x4∂ t4 = 0; x = X1,X2; t = t0,T.
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Figure 4:  An example of a regular space-time dyadic grid 

 

Figure 4: An example of a regular space-time dyadic grid

5 Numerical examples

5.1 Burgers’ equation

The Burgers equation is an ideally-suited test problem for the numerical solution of
partial differential equation (PDE), because it is nonlinear and has a known exact
solution. In the past several years, there have been many studies on the numerical
solutions of Burgers’ equation, see Liu (2006), Liu (2009).

The Burgers equation has been of considerable physical interest because it is an
appropriate simplification of the Navier-Stokes equations, and is also the governing
equation for a number of one-dimensional flow systems. The problem is described
by the following partial differential equation, initial and boundary conditions:

∂u
∂ t

= v
∂ 2u
∂x2 −u

∂u
∂x

; u(x,0) =−sin(πx) ; u(±1, t) = 0 (27)

where x and t are dimensionless space and time variables, respectively, and u is the
dimensionless velocity. The computational domain and viscosity are defined by:
x ∈ [−1,1] ; t ∈ [0,1.5/π] ; v = 10−2/π . The initial conditions are very simple and
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monotonic. The Dirichlet boundary conditions are homogeneous. The analytical
solution of the problem is known [Vasilyev and Paolucci (1997)]:

u∗(x, t) =−

∞∫
−∞

sin(π (x−η))exp
(
− cos(π(x−η))

2πv

)
exp
(
− η2

4vt

)
dη

∞∫
−∞

exp
(
− cos(π(x−η))

2πv

)
exp
(
− η2

4vt

)
dη

(28)

Fig. 5 shows the time evolution of the analytic solution. The solution is character-
ized by a one-dimensional shock that is fixed in space, but rapidly increases in time.
The shock is very narrow due to the small viscosity. The change from a uniformly
smooth distribution to the shock structure is observed at the time t = 1/π .

Fig. 6 shows the numerical solution in the x− t domain obtained with space-time
AFCM using Fup4(x, t) basis functions. The results obtained at the time T = 0.4,
which is sufficient for the smooth initial condition to become highly intermittent,
are presented. In the solution, a fixed shock that becomes steeper as time increases
is represented by lines of different velocities that join together at one point, x = 0,
when time reaches its final value. The initial grid is determined by jminx= 8 and
jmin t= 2. Grid adaptation is performed in both space and time directions (Fig. 7)
and represents all resolved scales and frequencies. We use here only one time sub-
domain or time step, while classical numerical time integration requires a few hun-
dreds steps for the prescribed local temporal error [Vasilyev and Bowman (2000);
Alam, Kevlahan, and Vasilyev (2006); Kozulić, Gotovac, and Gotovac (2007)].
The local time step is particularly interesting. The time scale is smaller where the
spatial gradients are steeper. The results presented in Figures 6 and 7 were obtained
with prescribed accuracy criterion ε = 10−2.

Fig. 8 shows the dependence between the number of collocation points N selected
by AFCM at time T = 1.5/π and the Lmax norm for different values of the threshold
parameter ε = 10−2, 10−3, 10−4 and 10−5.

Lmax norm represents the maximum absolute error between the numerical (u) and
analytic (u∗) solutions. For ε = 10−2, the maximum number of grid points is 8941.
A smaller threshold implies more collocation points and higher accuracy. Notice
that absolute error is strictly less than the prescribed threshold. This clearly shows
that the threshold defines the error indicator and the a priori adaptive criterion in
space-time AFCM, as a direct measurement of the difference between the numeri-
cal and exact solutions.

5.2 Advection-dispersion problem

This problem describes the mixing of transport processes, for instance in porous
media. For the mathematical model of the groundwater contamination problem,



190 Copyright © 2010 Tech Science Press CMC, vol.15, no.3, pp.173-198, 2010

x

u*

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

πt = 0.0 /

x

u*

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

πt = 0.5 /

x

c

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
t = 0.980

x

u*

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

πt = 1.0 /

x

u*

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

t = 1.5 /π

 

Figure 5: Exact solution of the Burgers equation at different values of t
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Figure 6: Numerical solution of the Burgers equation in the x− t domain
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Figure 7: Adaptive space-time grid

many researchers use the backward in time advection-dispersion equation to gov-
ern the problem. Liu, Chang and Chang (2009) recently derived a closed-form
solution of the second kind Fredholm integral equation by employing the quasi-
boundary method and demonstrated very good results in the numerical computa-
tions of advection-dispersion equation.

Here, we consider a uniform and constant velocity field. The one-dimensional
advection – dispersion process can be described by the following equation, initial
and boundary conditions:

∂C(x, t)
∂ t

= D
∂ 2C(x, t)

∂x2 −u
∂C(x, t)

∂x
(29)

C(x,0) = 0 (30)

C(0, t) = C0;
∂C(2, t)

∂ x
= 0 (31)

where C is the concentration (M/L3), D is the dispersion coefficient and u is the
transport velocity in the x direction. The domain, dispersion, velocity and threshold
are defined by: L = 2(m); D = 3 ·10−8

(
m2/s

)
; u = 10−3 (m/s) ; ε = 10−2.
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Figure 8: Dependence between maximum absolute error (dashed line) and the num-
ber of collocation points required by different choices of the threshold parameter
(solid line)

The initial condition (Eq. (30)) shows that initially the domain was occupied by
fresh water. The left boundary consists of the salt source (or some other denser
fluid) that continuously flows into the domain. The right boundary specifies that
there is no dispersion flux through the boundary.

Fig. 9 shows the numerical solution in the x− t domain obtained with space-time
AFCM using Fup4 basis functions. It represents the change in solute concentra-
tion over the space over time, and this change occurs in a narrow transition zone.
Fig. 10 shows an adaptive grid in the space-time domain. In initial stages of the
process, a denser grid is needed due to very challenging initial conditions and the
creation of a very sharp concentration front. The accumulation of grid points in the
region of intermittency and the non-uniformity of the time step in space shows the
efficiency of the method. Once again, we use only one time step, and the differ-
ence between presented numerical and analytical solutions (see Ogata and Banks
(1961)) is strictly less than the prescribed threshold for t > 0.3. For early times, the
numerical error is slightly higher than the threshold, due to discontinuity of initial
conditions. However, this initial error does not propagate further over time, because
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AFCM converts the boundary-initial value problem to a quasi-boundary problem
controlling the global temporal/spatial error.

This example shows the ability of the method to handle moving fronts and to change
the grid dynamically, following a front during the simulation.

6 Summary and conclusions

In this paper, we demonstrated an algorithm for solving boundary-initial value
problems. The proposed method (AFCM) solves nonlinear PDEs simultaneously
in the space and time domains. In numerical procedures, a collocation technique
and infinitely differentiable Fup basis functions are used. The adaptive Fup multi-
resolution approach is able to dynamically track the evolution of the solution and
to allocate higher grid density as necessary. Therefore, the number of collocation
points or basis functions needed to represent a solution is considerably optimized.
Spatiotemporal discretization and grid adaptation depend on the character of the so-
lution and accuracy criteria. Numerical results show accumulations of grid points
in regions of intermittency and non-uniformities of time steps in space. The time
domain can be split to the more subdomains, while solutions from previous subdo-
mains serve as initial conditions for other subdomains.

Each nonzero level solves only residuals of the PDEs from all previous levels and
gives a particular solution correction. Numerical experiments with known analytic
solutions show that solution correction on some level is greater than the difference
between the analytic solution and the overall solution up to that level. This means
that an adaptive criterion directly estimates accuracy of the solution even if ana-
lytical solution is not known a priori. The strength of the space-time AFCM is
that it controls global time integration errors, contrary to classical time-integration
schemes, and enables an adaptive grid that directly shows all the time and space
scales, with a near-minimal number of collocation points, necessary in order to
obtain solution with prescribed accuracy.

However, it should be mentioned that the convergence of the numerical solution
depends significantly on initial conditions and the types of the partial differential
equations used. Initial conditions that describe abrupt fronts should be analyzed at
a high level of resolution to be approximated accurately at a given threshold. Con-
sequently, node spacing must be sufficiently refined to capture these discontinuous
fronts. Generally speaking, partial differential equations that are predominantly
hyperbolic are much more difficult to solve numerically those that are predomi-
nantly parabolic. Finally, the main weakness of the presented methodology is its
introduction of an additional dimension, which is more severe for demanding 3-D
spatial problems because they then become 4-D problems (x, y, z, t). However, use
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of smaller time steps (which are still larger than in those used in classical temporal
integration) and parallel computing can still preserve the efficiency of the proposed
methodology.
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