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Abstract: The effective properties of composite materials are often strongly re-
lated to the connectivity of the material components. Many structure metrics, and
related homogenization theories, do not effectively account for this connectivity.
In this paper, relationships between the topology, represented via homology theory,
and the effective elastic response of composite plates is investigated. The study is
presented in the context of popular structure metrics such as percolation theory and
correlation functions.
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1 Introduction

Understanding the linkages between a material’s internal structure, or microstruc-
ture, and its properties is the cornerstone of the field of materials science and en-
gineering. The microstructure features that contribute to effective properties or
macroscale response span multiple length scales from the atomic to the macroscale.
The understanding that the effects from features at these disparate length scales are
strongly coupled drives the current efforts in the field of multi-scale and multi-
physics modeling [Curtin and Miller (2003), Phillips (2001), Rudd and Broughton
(2000), Zbib and Diaz de la Rubia (2002)]. For the foreseeable future multi-scale
models that explicitly model the microstructure across all length scales are compu-
tationally impossible, and we must rely on homogenization or averaging techniques
to pass effective local properties from the lower length scales up the chain. In a very
real sense the grand challenge in multi-scale modeling is to develop computation-
ally efficient homogenization relationships based on the observed microstructure.

Many properties of interest are strongly dependent on the connectivity present in
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the microstructure; conductivity being the trivial example. For high contrast com-
posites and porous solids it is natural to assume that differences in connectivity
of the stiffer or stronger phase will have a large affect on the effective proper-
ties of the material. Previously, percolation theory [Arbabi and Sahimi (1993),
Bergman (1986), Kantor and Webman (1984), Roberts and Garboczi (2002)], sta-
tistical metrics such as the 2-point correlations, and the lineal path function [Be-
ran, Mason, Adams and Olsen (1996), Ju and Chen (1994), Kumar, Briant and
Curtin (2006), Sankaran and Zabaras (2006), Torquato (2002)], and simple topolog-
ical measures such as the Euler characteristic [Mecke (1996), Mecke and Sofonea
(1997), Mendoza, Thornton, Savin and Voorhees (2006), Steele (1972)] have all
been employed to tease out these relationships. Characterization of networks and
connectivity by the homology groups from algebraic topology has been utilized in
several other fields (for examples, see [Ghrist and Muhammad (2005), Goubault
and Jensen (1992), Mezey (1985)] among others) but has only recently been ex-
plored in the field of materials science [Gameiro, Mischaikow and Wanner (2005),
Wanner, Fuller Jr and Saylor (2010)].

In this study we seek to establish a relationship between the effective elastic prop-
erties of a heterogeneous microstructure and its associated homology group1. The
main case study will involve a two-phase heterogeneous plate with a high con-
trast of elastic stiffness between the phases. A recent study has identified a weak
correlation between the Betti numbers describing the homology group of a hetero-
geneous material, and elastic properties .[Adams (Submitted)]. This paper presents
a more comprehensive study of the relationships, considers relationships between
homology and percolation metrics, and investigates potential improvements in the
definition of homology-type metrics as representations of material structure.

One particular draw-back of homology as a metric is the lack of scale in the topo-
logical relationships. The size and shape of clusters is of considerable importance
in percolation theory .[Grimmett (1999)], yet the homological descriptors do not
contain any direct information regarding size or anisotropy of the clusters being
counted (see Fig. 1). One way of addressing this issue is to consider the homol-
ogy of local subsets of the original image by selecting a sub-image via a moving
window of varying size. This approach will be termed ‘calibrated homology’ and
will be used in an attempt to improve the correlation between macroscopic material
properties and homological structure metrics.

1 Rough Glossary of Terms:
Homology: a mathematical classification of holes and connected components in a structure
Betti Number, βi: the number of i-dimensional holes in a structure (β0 gives the number of con-

nected components)
Relative Homology: the homology of a structure relative to a chosen subspace
Percolation: a measure of connectedness across a structure
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In this paper we first convey some of the established methods of linking effective
properties to local microstructure. We will then briefly review the relevant aspects
of homology before developing the correlations between connectivity and stiffness.
Finally, we explore one way of including anisotropy and cluster size of the materials
using calibrated homology, and establish how effective it is as a structure metric.

 
Figure 1: Two plates having the same volume percentage of each material and the
same homology, but the plate on the right is stiffer in the vertical direction.

2 Structure Property Linkages

2.1 Homogenization Methods

The application of homogenization theory is a common approach in the determina-
tion of effective properties, including heat and mass transfer, mechanical properties,
as well as electrical and magnetic properties of heterogenous materials [Fullwood,
Niezgoda, Adams and Kalidindi (2010), Milton (2002)]. Homogenization theory
depends on the existence of two disparate length scales in the material, the micro-
scale which contains the fine structure of the material and the meso-scale where
the material is assumed to be a uniform continuum. On the micro-scale the local
properties and local response field to a macroscopic force oscillate spatially with a
high frequency, whereas on the meso-scale the effective response is assumed to be
uniform or slowly varying. The goal of the mathematical theory of homogenization
is to replace a differential field equation of the form ∂

∂x

(
C
( x

ε

)
∂u
∂x

)
, where ε is a

very small parameter representing the ratio of micro to meso-scale characteristic
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lengths, with the homogenized equation ∂

∂x

(
C∗ ∂u

∂x

)
where C∗ is the homogenized

property of interest. This is usually accomplished via an asymptotic expansion in
ε of the relevant constitutive laws.

n-point statistics are often used in homogenization theory to capture the local struc-
ture of the materials. Two point statistics and higher order statistics have been
extensively used to quantify microstructure [Fullwood, Niezgoda, Adams and Ka-
lidindi (2010), Tewari, Gokhale, Spowart and Miracle (2004), Torquato (2002),
Zeman and ejnoha (2007)], however it has been repeatedly demonstrated that long
range connectivity is not directly captured [Fullwood, Niezgoda, Adams and Ka-
lidindi (2010), Torquato (2002)]. Hence, while homogenization methods work very
well for low contrast composites, such as polycrystals, as the contrast is increased,
the connectivity of the constituent phases has a significant effect on the effective
properties, and homogenization methods fall down. Often, the connectivity is in-
cluded in a limited manner through the use of higher order homogenization tech-
niques [Kalidindi, Binci, Fullwood and Adams (2006), Kouznetsova, Geers and
Brekelmans (2004), Ponte Castañeda (2002)]. Furthermore, some local connec-
tivity information is contained in the 2-point statistics. It is well known that this
local connectivity has an effect on longer range connectivity such as the percola-
tion threshold. Hence, while it is not unreasonable to expect a relationship between
2-point statistics and elastic properties for high contrast materials. Nevertheless,
for extreme contrasts, such as porous solids, homogenization is a difficult and open
research area; metrics that contain long range connectivity information are more
likely to provide useful structure-property linkages.

2.2 Percolation Theory

For high contrast materials, percolation theory is often used to predict material be-
havior. Consider a network of points where adjacent points are either connected,
with probability p, or not connected with probability 1− p; percolation theory
seeks to answer whether there is a connected path (or does percolation exist) over
a “large” volume. The fraction of connections above which a connected network
exists with probability of one, is termed the percolation threshold, pc. Infinite con-
trast materials, such as porous solids and foams, must percolate otherwise they will
disintegrate and effective stiffness tends to zero. For materials above and near the
percolation threshold the elastic stiffness is often given as C ∝ (p− pc)T .[Bergman
(1986), Sahimi (1983)]. Percolation is a binary event; either a connected path exists
or it does not. In general it is expected that the more connections in the network
the higher the stiffness. When p is well above the percolation threshold, the above
relationship breaks down. In this case an alternative (and broader) measure of the
connectivity such as homology theory would be beneficial.
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3 Homology as a Structure Metric

3.1 Definition of Homology

In this section we review some of the definitions relating to homology that lead to
the concepts that will be used later in the paper. For the 2D examples considered in
this paper we extract two specific homological measures that describe the connec-
tivity of a given phase, comprising the set X, in the simulated material structures.
These are the first two Betti numbers, β0(X) and β1(X). Roughly speaking, the
number β0(X) represents the number of (disconnected) components of X and the
number β1(X) represents the number of independent loops in X . These metrics can
be readily calculated using freely available software [CHomP and CAPD (2009)],
and the mathematical details presented in the rest of this section are provided for
completeness, and can be readily skipped without compromising the main ideas of
the paper.

The homology group in dimension n of a cell complex X(in our case X denotes
one phase of a microstructure or image), denoted Hn(X), is an algebraic group
that contains information about the connectivity of the complex X . If X is a k-
dimensional complex, Hn(X) is trivial (empty) for n ≥ k. In our applications, X
is a planar 2-complex, so H0(X) and H1(X) will be the only homological groups
of interest. Hn(X) can be written as the product of a free group and a torsion
group. The Betti number βn(X) is the number of generators for the free group,
or, in other words, the number of factors in Hn(X). The torsion group represents
twisting, although this group is necessarily trivial for planar complexes. Hence the
numbers β0(X) and β1(X) are the only metrics of interest for our 2-D structues. As
an example, if X is the union of the shaded squares pictured in Fig. 2, X consists of
three connected components, so β0(X) = 3, and contains two independent loops,
so β1(X) = 2. The homology groups are then and .

In order to formally define Hn(X), we must define the chain groups Cn(X), the
boundary groups Bn(X), the cycle groups Zn(X), and the boundary operators ∂n :
Cn(X)→ Cn−1(X). For the purpose of illustration, let X denote the cell complex
illustrated in Figure 3. Note that X consists of two faces (or 2-cells), seven edges
(or 1-cells), and five vertices (or 0-cells). The faces will be assigned the orientation
of the forward direction. The orientation of the edges is indicated by the arrows.
The orientation of the vertices is positive.

The chain group Cn(X) is the collection of all linear combinations of oriented
n-cells in X with integer coefficients, called n-chains. For example, C2(X) =
{m1σ1 +m2σ2|m1,m2 ∈ Z}. The boundary operator is a linear operator, ∂n :Cn(X)→
Cn−1(X), that acts on an n-cell τ ∈ Z such that ∂n(τ) = ∑ liσi where the σi are the
oriented n−1-cells that form the boundary of τ and li =±1, the sign depending on
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Figure 2: A 2-D structure showing 3 disconnected regions of the black phase (grid-
lines are ignored).

 

Figure 3: Example of a cell complex, X, with faces denoted by σ , edges by e, and
vertices by v.

orientation of σi with respect to the orientation of τ . For example, ∂2(σ1) = e1 +
e4−e2, ∂1(σ2) = e2−e5−e3, ∂1(e5) = v3−v4, ∂1(e7) = v5−v3, ∂0(vi) = 0. The lin-
earity condition requires that given a chain ∂n(c) = m1τ1 + . . .+mkτk ∈Cn(X), the
boundary operator satisfies ∂n(c) = m1∂n(τ1)+ . . .+mk∂n(τk). The boundary group
Bn(X) is the image of ∂n+1. For example,−e5−e3 +e1 +e4 = ∂1(σ2 +σ1)∈B1(X),
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however e3 + e5 /∈ B1(X). The cycle group Zn(X) is the kernel of ∂n (i.e., the col-
lection of n-chains c ∈ Cn(X) such that ∂n(c) = 0). Examples of cycles in C1(X)
include e1 + e4− e2 and e5 + e7− e6. The homology group Hn(X) is the quotient
group Zn(X)/Bn(X). Thus two cycles Zn(X) in represent the same element Hn(X)
in provided that their difference is a boundary of some n + 1-chain. For exam-
ple, e5 + e7− e6 and −e3 + e2 + e7− e6 represent the same element in H1(X) and
e1 + e4− e2 represents the trivial element in H1(X).
Various other topological properties or invariants such as the Euler characteristic
can be calculated directly from the Homology. The Euler characteristic, ψ , is clas-
sically defined for polyhedra and relates the number of faces (F), edges (E) and
vertices (V ) as ψ = V −E + F . For all convex polyhedra in n-dimensions ψ = 2.
The above definition can be generalized for all topological spaces as the alternating
sum ψ = β0−β1 +β2−β3... [Dodson (1996)].

3.2 Relative Homology

In order to connect homological concepts with percolation concepts it is necessary
to introduce a further complexity termed relative homology. Percolation theory re-
lates to connectedness between the boundaries of a given domain. If these bound-
aries are considered as elements in the original structure, relative homology can be
used to determine connectedness between them.

The relative homology group in dimension of a cell complex modulo subcom-
plex A, denoted Hn(X ,A), is similar to Hn(X) with the exception that generators
in Hn(X) are represented by cycles, or chain complexes with zero boundary, and
generators in Hn(X ,A) are represented by chain complexes with boundaries that are
defined on A. For example, in Fig. 1 suppose that A is a collection of 1-cells form-
ing two borders at the top and bottom of the structure, and X is union of together
with the collection of already shaded boxes. Then H1(X ,A) = Z⊕Z⊕Z. Thus,
loosely speaking, the first Betti number for H1(X ,A) is the number of linearly in-
dependent loops or independent paths that begin and end in A. If A is a subcomplex
of X , the quotient group Cn(X)/Cn(A) is called the group of relative chains of X
modulo A, and is denoted C(X ,A). In particular, two chains in Cn(X) represent the
same chain in Cn(X ,A) if and only if the chains differ by a chain in Cn(A). The
boundary operator ∂n : Cn(X ,A)→ Cn−1(X ,A) is defined similarly as before. We
define the relative boundary group Bn(X ,A) as the image of ∂n+1 and the relative
cycle group Zn(X ,A) as the kernel of ∂n. The relative homology group Hn(X ,A) is
the quotient group Zn(X ,A)/Bn(X ,A).
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3.3 Conjectured Relationships between Homology and Material Properties

The discussion above indicates, albeit in somewhat vague terms, that a link between
‘connectedness’ and ‘properties’ of materials must exist; particularly where there
exists a high contrast between the individual properties of composite components.
The relationship between connectivity and properties has been well explored using
percolation theory. As contrast between material properties increases, percolation
scaling laws begin to dominate the composite properties (see, for example, ..[Chen
and Schuh (2006)]). One immediate connection between percolation theory and
homology is arrived at by considering percolation across an image, X, and utilizing
the definitions of relative homology given above.

For a subset of an image, X, (such as that in Fig. 1 or Fig. 2) the number of
independent or disconnected percolating paths, np, between the top and bottom
edges can be determined by adding a connected top border, A, and bottom border,
B, and determining:

np = β1 (XA+B,A+B)+β1 (X)−β1 (X+A)−β1 (X+B) (1)

If the number of paths is not important, one may determine whether percolation has
occurred by considering:

β1 (X+A+B,A+B)−β1 (X+A+B) =

{
1 if percolation has occured
0 if percolation has not occured

(2)

We note that in percolation theory, on an infinite domain, there is only a single
percolating path once the percolation threshold has been passed (i.e. there is only
one or zero disconnected paths between the borders).

One of the important measures used in percolation theory is the average cluster
size, χ . The average cluster size in a 2D image is given by the total area of the
phase of interested, divided by the number of connected components. If V is the
area / volume of the domain, and the volume fraction of the phase of interest is p,
then:

χ =
V × p

β0
(3)

This parameter follows a scaling law in the neighborhood of the percolation thresh-
old, pc [Grimmett (1999)],

χ
f (p)≈ |p− pc|−γ (4)

where the superscript, f , is to clarify that only finite clusters are included in the
calculation (i.e. not the infinite percolating cluster), the exponent, γ , is the mean
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cluster size critical exponent with published value of 2.4 for 2D geometries, and
the relation, ≈, indicates that

lim
p→pc

log
(
χ f (p)

)
log(|p− pc|)

=−γ (5)

If the percolating phase is conductive, the conductivity, σ , of the structure in the
region of the percolation threshold follows a similar law .[Sahimi (1983)]:

σ ≈ (p− pc)
t (6)

Published values of the conductivity critical exponent, t, are in the region of 1.26 for
2D situations. Hence, by considering the relationships in the previous equations,
we expect a scaling law relating β0 and σ in the region of the percolation threshold,

σ ≈
(

β0
p

)s
, where s = t/γ . This relationship is not considered in any detail in this

paper, but only mentioned to illustrate potential relationships between homology
structure metrics and properties in high-contrast materials.

It should be noted at this point that the scaling law in Eq. (4) relates to all clusters
in the structure before the percolation threshold is reached, since they are all finite;
however, it applies only to finite clusters once the percolation threshold has been
passed. This is not accounted for in the calculation of β0, and will no doubt affect
the anticipated correlation. Furthermore, the percolation theory mentioned above
relates to structures of infinite size (in this paper the 2-D domain of a structure is
termed a window). Properties of structures of finite size will deviate somewhat
from the general theory. For the small windows used for many of the calculations
reported below, the percolation threshold will be lower than for an infinite window
(see .[Sahimi (1983)]); hence the affects of the small window may need to be com-
pensated for in order to achieve a reasonable correlation between Betti numbers
and composite properties.

In terms of the first Betti number, it has been reported in other studies (e.g. [Frary
and Schuh (2005)]) that an increasing number of closed loops within clusters affects
the volume fraction at which percolation occurs. Hence one may expect a relation-
ship between pc and β1. In the subsequent sections various possible relations are
explored between homology and physical properties.

4 Simulations

One of the aims of this paper is to ferret out the relationship between homology
and global material properties. The initial focus is on global stiffness properties for
a two phase material of reasonable contrast laid out on a 2-dimensional plate.
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Each plate is composed of a regular n by n array of squares with each square being
either material one (M1) or material two (M2). The volume percentage of M1 in
the plate is φ1, and similarly the volume percentage of M2 in the plate is φ2. The
Young’s modulus of elasticity of M1 and M2 can be varied, but M2 is always stiffer
than M1. After these variables have been defined, a plate is generated by randomly
assigning each square to be either M1 or M2 such that the volume percentage of
M2 in the plate reaches φ2. The value of n was varied, but intentionally kept small
for initial calculation reported below in order to ensure that representative samples
from across the space of all possible structures were assessed within a sample space
of only hundreds or thousands of trials. After the plate is generated the homological
properties of the stiffer phase are computed using the freely available software,
CHomP [CHomP and CAPD (2009)]. The input to the CHomP software is a list
of coordinates (in two or three dimensions) of the phase of interest. The Betti
numbers for the given geometry are output. It should be noted that CHomP not
only considers cells that are joined along an edge to be connected, but also cells
that are joined at a vertex of the square grid. Clearly the transfer of stress across
an edge is much more efficient than transfer across a vertex, and this will clearly
affect the strength of any correlation between the homology and overall stiffness.

Next, the Young’s modulus of the entire plate is determined. An FEM analysis is
performed on the plate using ANSYS ..[(2007)] to determine the effective Young’s
modulus in the vertical direction. The bottom nodes are constrained and the top
nodes are displaced a certain distance to allow for elastic deformation in the plate.
Figure 4 demonstrates an example geometry output from ANSYS.

The Matlab [(2006)] computation environment was used to generate the material
geometries, run the CHomP and ANSYS codes, and analyze and visualize the re-
sults.

5 Correlations between Homology and Stiffness at Different Volume Frac-
tions

5.1 Betti Numbers Related to Stiffness and a Single Volume Fraction

Figures 5 and 6 present two graphs relating homology to the stiffness of the plate.
For this simulation n=16 and each of these plates is generated by randomly assign-
ing each element to be M1 or M2 and φ2 = 0.5. The modulus of elasticity of M1 is
108Pa and the modulus of elasticity of M2 is 700× 108Pa. Figure 5 correlates the
β0 number of a plate to the stiffness of the plate. Figure 5 correlates the number of
a plate to the stiffness of the plate. There are 250 sample points in each graph. The
least square R2 value is given to describe how strong of a correlation is achieved.
The closer is to one, the better the correlation is.
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Figure 4: An n = 16, φ2 = 0.5 heterogeneous plate in ANSYS.

Figures 5 and 6 demonstrate that there is a correlation between the phase homology
and the plate stiffness. The distribution of data points for any given Betti number is
a normal distribution about the trend line of the graph. While there is a significant
amount of scatter in the data, the general relationship between the stiffness, E, and
β0 follows the relationship predicted by Eqs. (3), (4) and (6) (as can be easily
derived from a log-scale graph of Fig 5):

E = 9.06×109×β
−0.12899
0 (7)

To intuitively understand why these correlations exist, two plates are shown in Fig.
7. M1 is the white material and M2 is the darker material. The plate on the right
has β0 = 11 and β1 = 0 while the plate on the left has β0 = 1 and β1 = 11. The
disconnected nature of the stiff phase in the right figure (corresponding to high
β0) means that stress is not efficiently transferred across the plate, resulting in low
stiffness. Similarly, in the left figure, the low value of β0, and the high value of β1
indicates good connectivity (and stress transfer) for low volume fractions of the stiff
phase (the areas of the softer phase being surrounded by stiff material). Hence, for
this type of geometry, it is clear that stiffness is likely to increase with decreasing
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Figure 5: Stiffness vs. (β0) for 250 structures with volume fraction of each phase =
0.5. The R-squared value for the trend line is R2 = 0.07171

β0 and with increasing β1.

The samples reported above were created by randomly assigning phases. The po-
tential property extrema achievable in non-random arrangements were investigated
by considering special structures.

Figure 8 illustrates the stiffness properties of four special structures in relation to the
random ones previously generated. The data series 1 is the same data that is given
in Fig. 5. The other four data points are four specifically designed plates. Each
plate has β0 = 4 and β1 = 0. The plate with the largest stiffness (as measured in the
vertical direction) is a vertical arrangement of 4 columns. Similarly, the point with
the lowest stiffness is a horizontal arrangement of M1 and M2. The second highest
stiffness shown on the figure is a plate with M2 in an arrangement that is largely
vertical but with a few idiosyncrasies. The plate with the second smallest stiffness
is made from four large, tight clusters of M2.

Clearly the Betti zero number of the special structures does not accurately reflect
their extreme nature. On the other hand, the number of percolating paths for these
structures is clearly special. Hence, some measure of local homology – relating to
the size / shape of clusters in a sample – may give better correlation in terms of
predicting physical properties.



Computational Homology, Connectedness, and Structure-Property Relations 141

 

Figure 6: Stiffness vs. (β1) for 250 structures with volume fraction of each phase =
0.5. The R-squared value for the trend line is R2 = 0.13236

 
 

Figure 7: Two plates with the same φ2 but different homology.

5.2 Effects on Homology due to Volume Fraction

Now we see how homology and stiffness are affected by varying the volume frac-
tion of M1 and M2. The results of several simulations are given below. Figure 9
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   Stiffest Plate                Vertical Strings        Clusters                  Least Stiff  

 Figure 8: The graph above plots the data for four plates with the same homology.
The data for the plates with the largest and smallest stiffness is plotted along with
the data for two other plates with intermediary stiffnesses.

relates the stiffness in the vertical direction to β0 for 250 samples randomly gen-
erated as before, where the volume fraction is φ2 = 0.25. Figure 10 relates the
stiffness to β1 for 250 random samples where the volume fraction is φ2 = 0.75.

These improved correlations shown in these two graphs highlight the fact that dif-
ferent homology descriptors provide better structure metrics at different volume
fractions – at least for the finite samples used in this study. When φ2 = 0.25 for a
random plate, the stiffness is best related to β0, but at φ2 = 0.75 the stiffness is best
related to β1. This is illustrated by the figures in Table 1. This trend is partially due
to the limited range of the Betti numbers at extremes of volume fraction in the small
samples. For example, when φ2 = 0.75 there were only two different outcomes for
β0 in the simulations that were run. Figure 11 shows data for the stiffness and β0
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Figure 9: β0 vs. stiffness for 250 structures with 0.25 volume fraction of M2. The
R-squared value for the trend line is R2 = 0.13236

for φ2 = 0.75. The narrow domain of Betti numbers doesn’t provide an adequate
sample space to allow for a strong correlation.

Table 1: The table below gives the R-squared values correlating trend lines between
Betti zero and the stiffness of a plate in the vertical direction at different volume
fractions.

φ2 R2
0

0.25 0.15679
0.50 0.07171
0.75 0.00310

For small volume fractions of the correlation is better using β0 but for large volume
fractions the correlation improves by using β1. At smaller volume fractions β0 tends
to be larger and β1 tends to be smaller. In general, the roles are then reversed as the
volume fraction increases. When the domain of the Betti number of choice is larger
there is a greater likelihood that a strong correlation will occur. We performed an
analysis to relate to φ2 both β0 and β1.

It should also be noted that from the discussion around Eqs. (3), (4) and (6), the
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Figure 10: β1 vs. stiffness for 250 structures with 0.75 volume fraction of M2.
R2 = 0.14288

 

Figure 11: β0 vs. stiffness for 250 structures with 75 volume fraction of M2. R2 =
0.00310

correlation with Betti zero is expected to improve below the percolation threshold,
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 Figure 12: The graph on the bottom left relates φ2 to β0 and the graph on the bottom
right relates φ2 to β1 both for randomly generated n = 16 plates. These are views
from the three dimensional plot above.
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Table 2: The table below gives the R-squared values correlating trend lines between
Betti one and the stiffness of a plate in the vertical direction at different volume
fractions.

φ2 R2
1

0.25 0.01490
0.50 0.13236
0.75 0.14288

which is approximately 0.41 for site percolation on an infinite window of the lattice
in question (note that this is different from published values of 0.59 for site perco-
lation on a square lattice, due to differing definitions of connectivity. In standard
lattices, sites that contact across a vertex rather than an edge are not considered to
be connected; in the CHomP definition, they are).

6 Further Insights

6.1 Calibrated Homology

The images in Fig. 1 highlight the potential for anisotropy to affect the properties
of structures. The Betti metrics do not contain information regarding directionality
of the connectedness in a structure. One method of determining such directionality
is to consider homology on particular subsets of a structure by investigating con-
nectivity across sub-windows of varying shapes and sizes. We define “calibrated
homology” as the homology of a local area of the original plate. Many options
exist for varying the size and shape of sub-windows, and thereby extracting more
information regarding the typical cluster size and shape. In this section we use cal-
ibrated homology to find the maximum cluster height within a structure. In Fig. 1,
for example, the plate on the left has a maximum cluster height of 3, and the plate
on the right has a maximum cluster height of 8.

Cluster height is determined by taking sample windows whose widths are equiva-
lent to the width of the plate but whose heights vary. For an n=16 plate we start
with a window that is 16 elements long and 1 element high. We place this window
at all 16 possible positions on the plate and use Eq. (2) to determine whether or not
the sample within the window has a percolating path from top to bottom. We then
increase the window size until the window height is larger than all clusters con-
tained within it. We defined the maximum cluster height as the threshold at which
percolation occurs.

In the following simulations we find the maximum cluster height of phase M2 for
250 structures, and correlate it to the vertical stiffness. Again, each plate is gener-
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ated randomly with n=16 and φ2 = 0.5.

Figure 14 illustrates a typical set of results relating the maximum cluster height of
a plate to its stiffness. While the graph highlights a definite correlation between the
two parameters, the strength of the correlation (given by R2) is of the same order
as that given by the Betti numbers alone (and reported above). Nevertheless, this
small foray into calibrated homology indicates that the choice of a more suitable
local window size / shape may lead to better correlations between the homology
metrics and material properties.

 

Figure 13: Maximum Cluster Height, hc, vs. Stiffness. R2 = 0.0501

6.2 Effects of Higher Contrast between and

One obvious question regarding the results presented above involves the impact
that the contrast between properties of the individual phases has on the correla-
tions. As contrast increases, the role that connectivity plays in determining the
resulting properties would be expected to increase. For the previous simulations,
the modulus of elasticity of was 700 times that of M1. Here we look at higher
contrasts. For this analysis we still leave n = 16 and φ2 = 0.5.

The results are given in Table 3, and indicate that for the particular properties of
interest in this study, and for the particular definition of connectedness, contrasts
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in properties above 700 do not result in a significantly higher correlation between
stiffness and connectivity as measured by the Betti numbers.

Table 3: R-squared values for correlations between stiffness and Betti numbers (the
subscript on R corresponding to the 0th or 1st number) for phases of varying contrast

Contrast R2
0 R2

1
700 0.07171 0.13236
7,000 0.06501 0.13802
70,000 0.05517 0.13711
700,000 0.03422 0.15110

6.3 Effects of a Larger Window Size (n)

The effects of window size on the main results of the paper were also investigated.
Again, the modulus of elasticity of is taken to be 700 times that of the modulus of
M1 and φ2 = 0.5. The results are given in Table 4, and indicate that the correlation
between Betti number and stiffness drops off sharply as the window size increases
for the random structures presented in this paper. One explanation for this may be
that for large structures, above the percolation threshold, the properties are domi-
nated by the single infinite cluster, and only weakly dependent upon the other finite
clusters (which potentially dominate the Betti number values). This may also be
indicative of the fact that the structure is becoming homogeneous at the larger win-
dow size - the individually generated samples are statistically almost identical at the
larger size. The result indicates that the correlation value can be used to help de-
termine suitable dimensions for representative volume elements (RVE) – domains
over which the structure is statistically homogeneous. This will be discussed in a
separate paper. Furthermore, non-random structures will also be considered.

Table 4: R-squared values for correlations between stiffness and Betti numbers (the
subscript on R corresponding to the 0th or 1st number) for windows of varying size

n R2
0 R2

1
16 0.07171 0.13236
32 0.00981 0.15411
64 0.00207 0.13668
128 0.00002 0.04869
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7 Conclusions

This paper presents an initial investigation into structure metrics provided by ho-
mology, and their relation to material properties. Some relationships between per-
colation theory and homology have been noted for the first time (to our knowledge).
Furthermore, from the calculations reported above, there is clearly a correlation be-
tween connectivity as measured by Betti numbers, and stiffness of resulting struc-
tures, for high contrast composites. However, the correlation is perhaps not as
strong as expected, and future investigations will consider electrical conductivity
of structures, which is more typically associated with percolation type property re-
lations (and hence, connectedness metrics). Non-random structures will also be
considers, along with an investigation into the definition of RVEs via homology
metrics.

Acknowledgement: The authors wish to acknowledge the Computational Ho-
mology Project at Rutgers University. D Gerrard also acknowledges funding from
Brigham Young University College of Physical and Mathematical Science and
Drexel University DREAM Research Experience for Undergraduates.

References

(2007): ANSYS 11.0, ANSYS, Inc.

(2006): Matlab, The Mathworks, Inc.

Adams, M. (Submitted): Correlation between effective stiffness and homological
connectivity, Journal of Elasticity,

Arbabi, S., Sahimi, M. (1993): Mechanics of disordered solids. I. Percolation on
elastic networks with central forces, Physical Review B, 47, 2, 695

Beran, M. J., Mason, T. A., Adams, B. L., Olsen, T. (1996): Bounding elastic
constants of an orthotropic polycrystal using measurements of the microstructure,
Journal of the Mechanics and Physics of Solids, 44, 9, 1543-1563

Bergman, D. J. (1986): Elastic moduli near percolation in a two-dimensional ran-
dom network of rigid and nonrigid bonds, Physical Review B, 33, 3, 2013

Chen, Y., Schuh, C. A. (2006): Diffusion on grain boundary networks: Percolation
theory and effective medium approximations, Acta Materialia, 54, 18, 4709-4720

CHomP, R. U., CAPD, N. L. U. P. (2009): Computational Homology Project,
CHomP,

Curtin, W. A., Miller, R. E. (2003): Atomistic/continuum coupling in computa-
tional materials science, Modelling and Simulation in Materials Science and Engi-
neering, 11, R33-R68



150 Copyright © 2010 Tech Science Press CMC, vol.15, no.2, pp.129-151, 2010

Dodson, C. (1996): User’s guide to algebraic topology, Kluwer Academic,

Frary, M., Schuh, C. A. (2005): Grain boundary networks: Scaling laws, pre-
ferred cluster structure, and their implications for grain boundary engineering, Acta
Materialia, 53, 16, 4323-4335

Fullwood, D., Niezgoda, S., Adams, B., Kalidindi, S. (2010): Microstructure
Sensitive Design for Performance Optimization, Progress in Materials Science, 55,
477-562

Gameiro, M., Mischaikow, K., Wanner, T. (2005): Evolution of pattern complex-
ity in the Cahn-Hilliard theory of phase separation, Acta Materialia, 53, 3, 693-704

Ghrist, R., Muhammad, A. (2005): Coverage, hole-detection in sensor networks
via homology, IEEE Press,

Goubault, E., Jensen, T. (1992): Homology of higher dimensional automata, 254-
268

Grimmett, G. (1999): Percolation. 2nd ed., Springer, 321,

Ju, J., Chen, T. (1994): Micromechanics and effective moduli of elastic compos-
ites containing randomly dispersed ellipsoidal inhomogeneities, Acta Mechanica,
103, 1, 103-121

Kalidindi, S. R., Binci, M., Fullwood, D., Adams, B. L. (2006): Elastic properties
closures using second-order homogenization theories: Case studies in composites
of two isotropic constituents, Acta Materialia, 54, 11, 3117-3126

Kantor, Y., Webman, I. (1984): Elastic Properties of Random Percolating Sys-
tems, Physical Review Letters, 52, 21, 1891

Kouznetsova, V. G., Geers, M. G. D., Brekelmans, W. A. M. (2004): Multi-scale
second-order computational homogenization of multi-phase materials: a nested fi-
nite element solution strategy, Computer Methods in Applied Mechanics and Engi-
neering, 193, 48-51, 5525-5550

Kumar, H., Briant, C. L., Curtin, W. A. (2006): Using microstructure recon-
truction to model mechanical behavior in complex microstructures, Mechanics of
Materials, 38, 818-832

Mecke, K. R. (1996): Morphological characterization of patterns in reaction-diffusion
systems, Physical Review E, 53, 5, 4794

Mecke, K. R., Sofonea, V. (1997): Morphology of spinodal decomposition, Phys-
ical Review E, 56, 4, R3761

Mendoza, R., Thornton, K., Savin, I., Voorhees, P. W. (2006): The evolution of
interfacial topology during coarsening, Acta Materialia, 54, 3, 743-750

Mezey, P. G. (1985): Group theory of electrostatic potentials: A tool for quantum



Computational Homology, Connectedness, and Structure-Property Relations 151

chemical drug design, International Journal of Quantum Chemistry, 28, S12, 113-
122

Milton, G. W. (2002): The Theory of Composites Cambridge University Press

Phillips, R. (2001): Crystals, defects and microstructures : modeling across scales,
Cambridge University Press,

Ponte Castañeda, P. (2002): Second-order homogenization estimates for nonlin-
ear composites incorporating field fluctuations: II–applications, Journal of the Me-
chanics and Physics of Solids, 50, 4, 759-782

Roberts, A. P., Garboczi, E. J. (2002): Elastic properties of model random three-
dimensional open-cell solids, Journal of the Mechanics and Physics of Solids, 50,
1, 33-55

Rudd, R. E., Broughton, J. Q. (2000): Concurrent Coupling of Length Scales in
Solid State Systems, physica status solidi (b), 217, 1, 251-291

Sahimi, M. (1983): Critical Exponent of Percolation Conductivity by Finite-Size
Scaling, Journal of Physics C: Solid State Physics, 16, L521-527

Sankaran, S., Zabaras, N. (2006): A maximum entropy approach for property
prediction of random microstructures, Acta Materialia, 54, 8, 2265-2276

Steele, J. H. (1972): Application of topological concepts in stereology, American
Society for Testing and Materials, 39-58

Tewari, A., Gokhale, A. M., Spowart, J. E., Miracle, D. B. (2004): Quantita-
tive characterization of spatial clustering in three-dimensional microstructures us-
ing two-point correlation functions, Acta Materialia, 52, 2, 307-319

Torquato, S. (2002): Random heterogeneous materials : microstructure and macro-
scopic properties, Springer

Wanner, T., Fuller Jr, E. R., Saylor, D. M. (2010): Homology metrics for mi-
crostructure response fields in polycrystals, Acta Materialia, 58, 1, 102-110

Zbib, H. M., Diaz de la Rubia, T. (2002): A multiscale model of plasticity, Inter-
national Journal of Plasticity, 18, 9, 1133-1163

Zeman, J., ejnoha, M. (2007): From random microstructures to representative
volume elements, Modelling and Simulation in Materials Science and Engineering,
15, S325-S335




