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A Quasi-Boundary Semi-Analytical Approach for
Two-Dimensional Backward Heat Conduction Problems

Chih-Wen Chang1, Chein-Shan Liu2 and Jiang-Ren Chang3

Abstract: In this article, we propose a semi-analytical method to tackle the two-
dimensional backward heat conduction problem (BHCP) by using a quasi-boundary
idea. First, the Fourier series expansion technique is employed to calculate the
temperature field u(x,y, t) at any time t < T . Second, we consider a direct reg-
ularization by adding an extra term αu(x, y, 0) to reach a second-kind Fredholm
integral equation for u(x, y, 0). The termwise separable property of the kernel func-
tion permits us to obtain a closed-form regularized solution. Besides, a strategy to
choose the regularization parameter is suggested. When several numerical exam-
ples were tested, we find that the proposed scheme is robust and applicable to the
two-dimensional BHCP.

Keywords: Backward heat conduction problem, Ill-posed problem, Fredholm in-
tegral equation, Regularized solution, Fourier series

1 Introduction

In several practical application fields such as archeology, it needs to find the temper-
ature history from the known final data. This is the so-called backward heat conduc-
tion problem (BHCP), which is a severely ill-posed problem because the solution
is unstable for the given final data. For the two-dimensional homogeneous BHCP,
many approaches have been studied. The regularized successive over-relaxation
(SOR) inversion method and the direct SOR inversion method were proposed by
Liu (2002). He mentioned that the regularized SOR approach is stable even under
the influence of high noise level, but its retrieved time is only 5× 10−3. By con-
trast, the direct SOR inversion method is unstable for small disturbances. Iijima
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(2004) established a high order lattice-free finite difference approach by employ-
ing the Taylor expansion and the Fourier transform; however, this study did not
discuss its robustness when the final time data was perturbed with noises. Later,
Mera (2005) claimed that the method of fundamental solutions is an efficient and
accurate scheme for resolving the BHCP in one-dimensional and two-dimensional
domains; nevertheless, the standard Tikhonov regularization technique with the L-
curve method are still required for the numerical stability problem. Recently, Liu
(2004) and Liu, Chang and Chang (2006) have used the group preserving scheme
(GPS) and the backward group preserving scheme (BGPS) to tackle the BHCP,
respectively. Without a priori regularization in use makes these two approaches
more appealing for ill-posed problems with a final value problem. Another use-
ful method, on the basis of the GPS [Liu (2001)], namely the Lie-group shoot-
ing method (LGSM), was further proposed to cope with boundary-value problems
(BVPs). Since adding a quasi-boundary regularization at the final time condition,
the BHCP, originally a final value problem, can be transformed into a BVP; ac-
cordingly, the LGSM [Chang, Liu and Chang (2007, 2008)] is used to resolve the
BHCP and obtains a good result.

The new approach to be developed here will provide us a semi-analytical solution,
and renders a more laconic numerical implementation than other methods to deal
with the difficult backward problems. The degree of ill-posedness of the BHCP is
over the sideways heat conduction problem which copes with the reconstruction of
unknown boundary conditions [Chang, Liu and Chang (2005)].

Through this study, a direct regularization technique is adopted to transform the
two-dimensional BHCP into a second-kind Fredholm integral equation by using
the quasi-boundary method. By employing the separating kernel function and
eigenfunctions expansion techniques, we can derive a closed-form solution of the
second-kind Fredholm integral equation, which is a major contribution of this pa-
per. Another one is the application of the Fredholm integral equation to develop
an effective numerical scheme, whose accuracy is much better than that of other
numerical methods.

This sort method of second-kind Fredholm integral equation regularization was
first used by Liu (2007a) to solve a direct problem of elastic torsion in an arbi-
trary plane domain, where it was called a meshless regularized integral equation
method. Then, Liu (2007b, 2007c) extended it to solve the Laplace direct problem
in arbitrary plane domains. A similar second-kind Fredholm integral equation reg-
ularization method was used to treat the inverse problems; Liu, Chang and Chiang
(2008) have applied the new method to determine the geometrical shape of a con-
stant temperature curve, Liu (2009a) has employed this new method to solve the
Robin problem in the Laplace equation, and Liu (2009b) has employed it to solve
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the backward heat conduction problem. Moreover, we have used this method to
solve the backward in time advection-dispersion equation [Liu, Chang and Chang
(2009)]. Especially, the proposed approach is time saving and easy to implement.

In the following, Section 2 describes the BHCP with a quasi-boundary regular-
ization of its final time condition, and then we derive the second-kind Fredholm
integral equation by a direct regularization in Section 3. In Section 4, we derive
a closed-form solution of the second-kind Fredholm integral equation. Section 5
presents a selection principle of the regularization parameter. Numerical examples
are also employed to validate the new method. A summary with some concluding
remarks is given in Section 6.

2 Backward heat conduction problems

We consider a homogeneous plate of length a and width b. The plate is thin enough
such that the temperature is uniformly distributed over the cross section of the plate
at any time t. In many practical engineering applications we may want to retrieve
all the past temperature distribution u(x,y, t), for t < T , when the temperature is
supposed to be known at a given final time T . Here, we set our problem as follows:

∂u
∂ t

=
∂ 2u
∂x2 +

∂ 2u
∂y2 , 0 < x < a, 0 < y < b, 0 < t < T, (1)

u(0, y, t) = u(a, y, t) = u(x, 0, t) = u(x, b, t) = 0, 0≤ t ≤ T, (2)

u(x, y, T ) = f (x, y), 0≤ x≤ a, 0≤ y≤ b. (3)

This is the so-called a two-dimensional BHCP, which is known to be highly ill-
posed, that is, the solution does not depend continuously on the input data u(x,y,T ).
In fact, the rapid decay of temperature with time results in fast fading memory of
initial conditions. Therefore, the numerical recovery of initial temperature from the
data measured at time T is a rather difficult issue due to the effect of the noise and
computational error.

One way to solve an ill-posed problem is by a perturbation of it into a well-posed
one. Many perturbing techniques have been proposed, including a biharmonic regu-
larization developed by Lattés and Lions (1969), a pseudo-parabolic regularization
proposed by Showalter and Ting (1970), a stabilized quasi-reversibility proposed
by Miller (1973), the method of quasi-reversibility proposed by Mel’nikova (1997),
a hyperbolic regularization proposed by Ames and Cobb (1997), the Gajewski
and Zacharias quasi-reversibility proposed by Huang and Zheng (2005), a quasi-
boundary value method by Denche and Bessila (2005), and an optimal regulariza-
tion proposed by Boussetila and Rebbani (2006). We extend the regularization of
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the one-dimensional BHCP of Showalter (1983) by considering a quasi-boundary-
value approximation to the final value problem, that is, to supersede Eq. (3) by

αu(x, y, 0)+u(x, y, T ) = f (x, y). (4)

The problems (1), (2) and (4) can be presented to be well-posed for each α> 0.

3 The Fredholm integral equation

By using the technique for separation of variables, we can easily write a series
expansion of u(x,y, t) satisfying Eqs. (1) and (2):

u(x, y, t) =
∞

∑
j=1

∞

∑
k=1

dk j exp[−(k2/a2 + j2/b2)π2t]sin
kπx

a
sin

jπy
b

, (5)

where dk j are coefficients to be determined. By imposing the two-point boundary
condition (4) on the above equation, we obtain

u(x, y, T ) =
∞

∑
j=1

∞

∑
k=1

dk j exp[−(k2/a2 + j2/b2)π2T ]sin
kπx

a
sin

jπy
b

= f (x, y)−αu(x, y, 0).

(6)

Fixing any t < T and applying the eigenfunctions expansion to Eq. (5), we have

dk j =
4exp[−(k2/a2 + j2/b2)π2t]

ab

∫ b

0

∫ a

0
sin

kπξ

a
sin

jπϕ

b
u(ξ , ϕ, t)dξ dϕ. (7)

Substituting Eq. (7) for dk j into Eq. (6) and presuming that the order of summation
and integral can be interchanged, it follows that

(
KT−t

xy u(·, ·, t)
)

(x, y) : =
∫ b

0

∫ a

0
K(x, ξ ; y, ϕ; T − t)u(ξ , ϕ, t)dξ dϕ

= f (x, y)−αu(x, y, 0),
(8)

where

K(x, ξ ; y, ϕ; t) =

4
ab

∞

∑
j=1

∞

∑
k=1

exp[−(k2/a2 + j2/b2)π2t]sin
kπx

a
sin

kπξ

a
sin

jπy
b

sin
jπϕ

b
(9)
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is a kernel function, α is a regularization parameter, and KT−t
xy is an integral operator

generated from K(x, ξ ; y, ϕ; T −t). Corresponding to the kernel K(x, ξ ; y, ϕ; t),
the operator is denoted by Kt

xy.

To retrieve the initial temperature u(x,y,0), we have to solve the two-dimensional
second-kind Fredholm integral equation:

αu(x, y, 0)+
∫ b

0

∫ a

0
K(x, ξ ; y, ϕ; T )u(ξ , ϕ, 0)dξ dϕ = f (x, y), (10)

which is obtained from Eq. (8) by taking t = 0. Taking x = η and y = ω in Eq.
(10), we can get

αu(η , ω, 0)+
∫ b

0

∫ a

0
K(η , ξ ; ω, ϕ; T )u(ξ , ϕ, 0)dξ dϕ = f (η , ω), (11)

and applying the operator Kt
xy on the above equation and noting that

(
Kt

xyu(·, ·, 0)
)

(x, y) =
∫ b

0

∫ a

0
K(x,η ; y,ω; t)u(η , ω, 0)dηdω = u(x, y, t),(

Kt
xyKT

ηωu(·, ·, 0)
)

(x, y) =
(
KT

xyKt
ηωu(·, ·, 0)

)
(x, y),

we have

αu(x, y, t)+
∫ b

0

∫ a

0
K(x, ξ ; y, ϕ; T )u(ξ , ϕ, t)dξ dϕ = F(x, y, t)

=
∫ b

0

∫ a

0
K(x, ξ ; y, ϕ; t) f (ξ , ϕ)dξ dϕ. (12)

This equation was extended from Ames, Clark, Epperson and Oppenheimer (1998)
to the two-dimensional case, and the numerical implementation has been carried
out only for the one-dimensional case.

4 A closed-form solution

However, we begin from Eq. (10) by a different approach, rather than Eq. (12),
since Eq. (10) is simpler than Eq. (12). We suppose that the kernel function in Eq.
(10) can be approximated by m and n terms with

K(x, ξ ; y, ϕ; T ) =

4
ab

n

∑
j=1

m

∑
k=1

exp[−(k2/a2 + j2/b2)π2T ]sin
kπx

a
sin

kπξ

a
sin

jπy
b

sin
jπϕ

b
(13)
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owing to T > 0. The above kernel is termwise separable, which is also called the
degenerate kernel or the Pincherle-Goursat kernel [Tricomi (1985)].

By inspection of Eq. (13), we can have

K(x, ξ ; y, ϕ; T ) = P(x, y; T ) ·Q(ξ ,ϕ), (14)

where P and Q are nm-vectors given by

P :=
4

ab



exp(−ρ2
11π2T )sin πx

a sin πy
b

exp(−ρ2
21π2T )sin 2πx

a sin πy
b

...
exp(−ρ2

m1π2T )sin mπx
a sin πy

b
exp(−ρ2

12π2T )sin πx
a sin 2πy

b
exp(−ρ2

22π2T )sin 2πx
a sin 2πy

b
...

exp(−ρ2
m2π2T )sin mπx

a sin 2πy
b

...
exp(−ρ2

1nπ2T )sin πx
a sin nπy

b
exp(−ρ2

2nπ2T )sin 2πx
a sin nπy

b
...

exp(−ρ2
mnπ2T )sin mπx

a sin nπy
b



, Q :=



sin πξ

a sin πϕ

b
sin 2πξ

a sin πϕ

b
...

sin mπξ

a sin πϕ

b
sin πξ

a sin 2πϕ

b
sin 2πξ

a sin 2πϕ

b
...

sin mπξ

a sin 2πϕ

b
...

sin πξ

a sin nπϕ

b
sin 2πξ

a sin nπϕ

b
...

sin mπξ

a sin nπϕ

b



, (15)

where ρ2
k j = k2/a2 + j2/b2, k = 1,2, . . . ,m, j = 1,2, . . . ,n and the dot between P

and Q denotes the inner product, which is sometimes written as PT Q, where the
superscript T signifies the transpose. With the aid of Eq. (14), Eq. (10) can be
written as

αu(x, y, 0)+
∫ b

0

∫ a

0
PT (x, y)Q(ξ , ϕ)u(ξ , ϕ, 0)dξ dϕ = f (x, y), (16)

where we abridge the parameter T in P for clarity. Let us define

c :=
∫ b

0

∫ a

0
Q(ξ , ϕ)u(ξ , ϕ, 0)dξ dϕ (17)

to be an unknown vector with dimensions mn.
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Multiplying Eq. (16) by Q(x,y), and integrating it, we can obtain

α

∫ b

0

∫ a

0
Q(x, y)u(x, y, 0)dxdy+

∫ b

0

∫ a

0
Q(x, y)PT (x, y)dxdy

×
∫ b

0

∫ a

0
Q(ξ , ϕ)u(ξ , ϕ, 0)dξ dϕ =

∫ b

0

∫ a

0
f (x, y)Q(x, y)dxdy. (18)

By definition (17) we thus have(
αInm +

∫ b

0

∫ a

0
Q(ξ , ϕ)PT (ξ , ϕ)dξ dϕ

)
c :=

∫ b

0

∫ a

0
f (ξ , ϕ)Q(ξ , ϕ)dξ dϕ,

(19)

where Inm denotes an identity matrix of order mn. Solving Eq. (19) one has

c =
(

αInm +
∫ b

0

∫ a

0
Q(ξ , ϕ)PT (ξ , ϕ)dξ dϕ

)−1 ∫ b

0

∫ a

0
f (ξ , ϕ)Q(ξ , ϕ)dξ dϕ.

(20)

On the other hand, from Eq. (16) we obtain

αu(x, y, 0) = f (x, y)−P(x, y) · c. (21)

Inserting Eq. (20) into the above equation, we get

αu(x, y, 0) = f (x, y)−P(x, y) ·
(

αInm +
∫ b

0

∫ a

0
Q(ξ , ϕ)PT (ξ , ϕ)dξ dϕ

)−1

∫ b

0

∫ a

0
f (ξ , ϕ)Q(ξ , ϕ)dξ dϕ. (22)

Because of the orthogonality of∫ b

0

∫ a

0
sin

jπξ

a
sin

kπξ

a
sin

mπϕ

b
sin

nπϕ

b
dξ dϕ =

ab
4

δ jkδmn, (23)

where δ jk and δmn are the Kronecker delta, the nm×nm matrix can be written as∫ b

0

∫ a

0
Q(ξ , ϕ)PT (ξ , ϕ)dξ dϕ =

diag[exp(−ρ
2
11π

2T ),exp(−ρ
2
21π

2T ), . . . ,exp(−ρ
2
m1π

2T ),

exp(−ρ
2
12π

2T ),exp(−ρ
2
22π

2T ), . . . ,exp(−ρ
2
m2π

2T ), . . . ,

exp(−ρ
2
1nπ

2T ),exp(−ρ
2
2nπ

2T ), . . . ,exp(−ρ
2
mnπ

2T )],

(24)
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where diag means that the matrix is a diagonal matrix. Inserting Eq. (24) into Eq.
(22), we hence obtain

u(x, y, 0) =
1
α

f (x, y)− 1
α

PT (x, y)

diag
[

1
α + exp(−ρ2

11π2T )
,

1
α + exp(−ρ2

21π2T )
, · · · ,

1
α + exp(−ρ2

m1π2T )
,

1
α + exp(−ρ2

12π2T )
,

1
α + exp(−ρ2

22π2T )
, · · · ,

1
α + exp(−ρ2

m2π2T )
, · · · , 1

α + exp(−ρ2
1nπ2T )

,
1

α + exp(−ρ2
2nπ2T )

, · · · ,

1
α + exp(−ρ2

mnπ2T )

]∫ b

0

∫ a

0
f (ξ , ϕ)Q(ξ , ϕ)dξ dϕ. (25)

Using Eq. (15) for P and Q, we can obtain

u(x, y, 0) =
1
α

f (x, y)− 4
αab

∞

∑
j=1

∞

∑
k=1

exp[−(k2/a2 + j2/b2)π2T ]
α + exp[−(k2/a2 + j2/b2)π2T ]

×
∫ b

0

∫ a

0
sin

kπx
a

sin
kπξ

a
sin

jπy
b

sin
jπϕ

b
f (ξ , ϕ)dξ dϕ, (26)

where the summation upper bound m and n can be replaced by ∞ since our argument
is independent of m and n. For a given f (x,y), through some integrals one may
employ the above equation to calculate u(x,y,0).
If u(x,y,0) is given, we can calculate u(x,y, t) at any time t < T by

uα(x, y, t) =
∞

∑
j=1

∞

∑
k=1

dα
k j exp[−(k2/a2 + j2/b2)π2t]sin

kπx
a

sin
jπy
b

, (27)

where

dα
k j =

4
ab

∫ b

0

∫ a

0
sin

kπξ

a
sin

jπϕ

b
u(ξ , ϕ, 0)dξ dϕ. (28)

Inserting Eq. (26) into the above equation and using the orthogonality equation
(23), one obtains

dα
k j =

4
ab{α + exp[−(k2/a2 + j2/b2)π2T ]}

∫ b

0

∫ a

0
sin

kπξ

a
sin

jπϕ

b
f (ξ , ϕ)dξ dϕ.

(29)

Eqs. (27) and (29) compose an analytical solution of the two-dimensional BHCP.
To distinguish it from the exact solution u(x, y, t),we have employed the symbol
uα(x, y, t) to indicate that it is a regularization solution.
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5 Selection of the regularization parameter α and numerical examples

Up to this point, we have not yet specified how to choose the regularization param-
eter α. Suppose that f has the following Fourier sine series expansion:

f (x, y) =
∞

∑
j=1

∞

∑
k=1

d∗k j sin
kπx

a
sin

jπy
b

, (30)

where

d∗k j =
4

ab

∫ b

0

∫ a

0
sin

kπξ

a
sin

jπϕ

b
f (ξ , ϕ)dξ dϕ. (31)

Substituting Eq. (30) into Eq. (26), we obtain

uα(x, y, 0) =
∞

∑
j=1

∞

∑
k=1

exp[−(k2/a2 + j2/b2)π2T ]
α + exp[−(k2/a2 + j2/b2)π2T ]

d∗k j exp[(k2/a2 + j2/b2)π2T ]

sin
kπx

a
sin

jπy
b

, (32)

where we indicate that

exp[−(k2/a2 + j2/b2)π2T ]
α + exp[−(k2/a2 + j2/b2)π2T ]

=
1

1+α exp[(k2/a2 + j2/b2)π2T ]
.

For a better numerical solution, we need to set

α exp[(k2/a2 + j2/b2)π2T ] = α0� 1.

On the other hand, the term exp[−(k2/a2 + j2/b2)π2T ]/(α + exp[−(k2/a2 + j2/b2)π2T ])
in Eq. (32) will be very small when k, j and/or T are large, which may result in a
large numerical error. Hence, we obtain an approximation

exp[−(k2/a2 + j2/b2)π2T ]
α + exp[−(k2/a2 + j2/b2)π2T ]

=
1

1+α0
= 1−α0 +α

2
0 −α

3
0 + . . . .

When the terms with order higher than one are truncated, we reach a good approx-
imation of u(x,y,0) by

uα0(x, y, 0) =
∞

∑
j=1

∞

∑
k=1

(1−α0)d∗k j sin
kπx

a
sin

jπy
b

. (33)
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The regularization parameter α0 is a small number, and k and j represent a number
of the finite terms in the numerical examples. In doing so, we can filter out the
noise induced by the higher-modes in Eq. (32).

We will apply the quasi-boundary approach on the calculations of BHCP through
numerical examples. We are interested in the stability of our method when the input
final measured data are polluted by random noise. We can assess the stability by
increasing the different levels of random noise on the final data:

f̂ (xi,y j) = f (xi,y j)+ sR(i, j), (34)

where f (xi,y j) is the exact data. We use the function RANDOM_NUMBER given
in Fortran to generate the noisy data R(i, j), which are random numbers in [-1, 1],
and s means the level of noise. Then, the noisy data f̂ (xi,y j) are employed in the
calculations.

5.1 Example 1

Let us consider the first example of two-dimensional BHCP:

ut = uxx +uyy, −π < x < π , −π < y < π , 0 < t < T, (35)

with the boundary conditions

u(−π,y, t) = u(π,y, t) = u(x,−π, t) = u(x,π, t) = 0, (36)

and the final time condition

u(x,y,T ) = e−2β 2T sin(βx)sin(βy). (37)

The exact solution is given by

u(x,y, t) = e−2β 2tsin(βx)sin(βy), (38)

where β ∈ N is a positive integer.

In Fig. 1(a), we show the errors of numerical solutions obtained from the quasi-
boundary semi-analytical approach for the case of β = 1. T = 1 is used in this
comparison, where the grid lengths ∆x = ∆y = 2π/40 are employed. At the point
x = −π + 60π/40 the error is plotted with respect to y by a solid line, and at the
point y = −π + 66π/40 the error is plotted with respect to x by a dashed line.
Nevertheless, the errors are much smaller than that calculated by Iijima (2004),
Liu (2004), Liu, Chang and Chang (2006) and Chang, Liu and Chang (2008) as
displayed in Figure 4 therein.
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Figure 1: The errors of semi-analytical solutions for Example 1 are shown in (a)
with T = 1 and β = 1, and in (b) with T = 2 and β = 3.
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Figure 2: The numerical errors of semi-analytical solutions with and without ran-
dom noise effect for Example 1 are plotted in (a) with respect to x at fixed y = 2π/3,
and in (b) with respect to y at fixed x = π/2.

We will give a more ill-posed example than the above one by using the quasi-
boundary semi-analytical approach. Let β = 3, T = 2, and the final data is very
small in the order of O(10−16). However, we can employ this method to retrieve
the desired initial data sinβxsinβy, which is in the order of O(1). In Fig. 1(b), the
errors of numerical solutions calculated by the proposed approach with ∆x = ∆y =
2π/40.

In Fig. 2, we compare the numerical errors with T = 2 and β = 1 for two cases:
one without the random noise and another one with the random noise in the level of
s = 0.01. In Figs. 3(a)-(c), we represent the exact solution and numerical solutions
sequentially. Even under the noise the numerical solution displayed in Fig. 3(c)
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Figure 3: The exact solution for Example 1 of two-dimensional BHCP are shown
in (a), in (b) the semi-analytical solution without random noise effect, and in (c) the
semi-analytical solution with random noise.

is a good estimation to the exact initial data as shown in Fig. 3(a). In addition,
we should emphasize that in all the calculations, we can use α0 = 0 without any
difficulty since Eq. (33) is still applicable.

5.2 Example 2

Let us consider the second example of two-dimensional BHCP:

ut = uxx +uyy, 0 < x < 1, 0 < y < 1, 0 < t < T, (39)
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 Figure 4: The errors of semi-analytical solutions for Example 1 are shown in (a)

with T = 1, and in (b) with T = 2.
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with the boundary conditions

u(0,y, t) = u(1,y, t) = u(x,0, t) = u(x,1, t) = 0, (40)

and the initial condition

u(x,y,0) =


4xy, for 0≤ x≤ 0.5, 0≤ y≤ 0.5,

4y(1− x), for 0.5≤ x≤ 1, 0≤ y≤ 0.5,

4x(1− y), for 0≤ x≤ 0.5, 0.5≤ y≤ 1,

4(1− x)(1− y), for 0.5≤ x≤ 1, 0.5≤ y≤ 1.

(41)

The exact solution is given by

u(x,y, t) =
∞

∑
j=0

∞

∑
k=0

64(−1)k(−1) j

abπ4(2k +1)2(2 j +1)2 exp[−(k2/a2 + j2/b2)π2t]

sin
[
(2k +1)πx

a

]
sin
[
(2 j +1)πy

b

]
. (42)

The backward numerical solution is subjected to the final condition at time T :

f (x,y) = u(x,y,T ) =
∞

∑
j=0

∞

∑
k=0

64(−1)k(−1) j

abπ4(2k +1)2(2 j +1)2 exp[−(k2/a2 + j2/b2)π2T ]

sin
[
(2k +1)πx

a

]
sin
[
(2 j +1)πy

b

]
. (43)

The difficulty of this problem is stemmed from that we employ a smooth final data
to retrieve a non-smooth initial data.

Let a = b = 1 and insert Eq. (42) for f (x,y) into Eq. (29) to obtain

dα
k j =

1
{α + exp[−(k2 + j2)π2T ]}

∞

∑
n=0

∞

∑
m=0

64(−1)m(−1)nδk,(2m+1)δ j,(2n+1)

π4(2m+1)2(2n+1)2

exp{−[(2m + 1)2 +(2n + 1)2]π2T}. (44)

Inserting it into Eq. (27), we have

uα(x,y, t) =
∞

∑
j=1

∞

∑
k=1

1
{α + exp[−(k2 + j2)π2T ]}

∞

∑
n=0

∞

∑
m=0

64(−1)m(−1)nδk,(2m+1)δ j,(2n+1)

π4(2m+1)2(2n+1)2 exp{−[(2m+1)2 +(2n+1)2]π2T}

exp[−(k2 + j2)π2t]sin(kπx)sin( jπy). (45)
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Interchanging the order of summation and using the δ property, we obtain

uα(x,y, t)=
∞

∑
n=0

∞

∑
m=0

64(−1)m(−1)n

π4(2m+1)2(2n+1)2
exp{−[(2m+1)2 +(2n+1)2]π2T}

{α + exp{−[(2m+1)2 +(2n+1)2]π2T}}

× exp{−[(2m+1)2 +(2n+1)2]π2t}sin[(2m+1)πx]sin[(2n+1)πy]. (46)

It gives

uα(x,y,0)=
∞

∑
n=0

∞

∑
m=0

64(−1)m(−1)n

π4(2m+1)2(2n+1)2
exp{−[(2m+1)2 +(2n+1)2]π2T}

{α + exp{−[(2m+1)2 +(2n+1)2]π2T}}

×sin[(2m+1)πx]sin[(2n+1)πy]. (47)

The term

exp{−[(2m+1)2 +(2n+1)2]π2T}
{α + exp{−[(2m+1)2 +(2n+1)2]π2T}}

= 1−α0

is already derived at the first of this section. Therefore, we get

uα0(x,y,0)= (1−α0)
∞

∑
n=0

∞

∑
m=0

64(−1)m(−1)n

π4(2m+1)2(2n+1)2 sin[(2m+1)πx]sin[(2n+1)πy].

(48)

Thus, we use this solution to compare that in Eq. (41). In practice, the data is
obtained by taking the sum of the first one thousand terms, which guarantees the
convergence of the series.

In Fig. 4(a), we show the errors of numerical solutions obtained from the quasi-
boundary semi-analytical approach for the case. T = 1 is employed in this com-
parison, where the grid lengths ∆x = ∆y = 0.01 are used. At the point x = 0.1 the
error is plotted with respect to y by a dashed line, and at the point y = 0.8 the error
is plotted with respect to x by a solid line. The latter one is larger than the former
one since the point y = 0.8 is near to the boundary. Then, we give a more ill-posed
example than the above one by using the current approach at T = 2. The errors of
numerical solutions were shown in Fig. 4(b).

In Fig. 5, we compare the numerical errors with T = 2 for two cases: one without
the relative random noise and another one with the relative random noise in the level
of s = 0.01. In Figs. 6(a)-(c), we show the exact solution and numerical solutions
sequentially. Even under the noise the numerical solution shown in Fig. 6(c) is a
good estimation to the exact initial data as represented in Fig. 6(a). Besides, the
maximum error estimation is shown in Fig. 7.
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 Figure 5: The numerical errors of semi-analytical solutions with and without ran-

dom noise effect for Example 2 are plotted in (a) with respect to x at fixed y = 0.8,
and in (b) with respect to y at fixed x = 0.1.

5.3 Example 3

In the previous numerical example, we employed closed-form solutions as the in-
puts of the final time data. In practice, we cannot easily obtain the closed-form
solution of the BHCP as that shown in Eq. (33) when the available data f (x,y) is
not in a closed-form; many numerical schemes can be used to evaluate the data.
Instead of directly using Eqs. (27) and (29) as a semi-analytical solution of the
BHCP where the data f (x,y) can be in a discretized form, we apply the trapezoidal
rule to perform the integral. Here, the final data of Example 2 is calculated by the
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Figure 6: The exact solution for Example 2 of two-dimensional BHCP are shown
in (a), in (b) the semi-analytical solution without random noise effect, and in (c) the
semi-analytical solution with random noise.

GPS with a time increment ∆t = 2.5×10−5:

u(x,y,T ) = f (x,y), 0≤ t < T. (49)

Let a = b = 1, and substitute Eq. (49) for f (x,y) into Eq. (29) to obtain

dα
k j =

4
{α + exp[−(k2 + j2)π2T ]}

∫ 1

0

∫ 1

0
sin(kπξ )sin( jπϕ) f (ξ , ϕ)dξ dϕ. (50)

Substituting Eq. (50) into Eq. (27), we have

uα(x, y, t) =
∞

∑
n=1

∞

∑
m=1

dα
k j exp[−(m2 +n2)π2t]sin(mπx)sin(nπy), (51)
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Figure 7: The maximum error as a function of the number of grid points for the
final time of T = 1.

which gives

uα(x, y, 0) =
∞

∑
n=1

∞

∑
m=1

dα
k j sin(mπx)sin(nπy). (52)

In Fig. 8, we display the exact solutions and numerical solutions for a fixed T =
0.001 with ∆x = ∆y = 0.1 and α = 0. At the point y = 0.8 the error is plotted with
respect to x in Fig. 8(a), and at the point x = 0.1 the error is plotted with respect to
y in Fig. 8(b). The accuracy is quite better.

6 Conclusions

In this study, we have transformed the two-dimensional BHCP into a second-kind
two-dimensional Fredholm integral equation through a direct regularization tech-
nique and a quasi-boundary concept. By using the Fourier series expansion tech-
nique and a termwise separable property of kernel function, an analytical solution
of the regularized type for approximating the exact solution is shown. The influence
of regularization parameter on the perturbed solution is clarified. Several numerical
experiments have represented that the proposed method can retrieve all initial data
very well, even though the final data are very small or noised by a large disturbance,
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Figure 8: For Example 5 we compare the exact solutions and numerical solutions
with T = 1 in (a), and with T = 0.01 in (b).

and the initial data to be recovered are not smooth. Hence, the current approach is
advocated to deal with the two-dimensional BHCPs.
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