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Identification of dynamical systems with fractional
derivative damping models using inverse sensitivity

analysis

R Sivaprasad1,2, S Venkatesha1 and C S Manohar1,3

Abstract: The problem of identifying parameters of time invariant linear dy-
namical systems with fractional derivative damping models, based on a spatially
incomplete set of measured frequency response functions and experimentally de-
termined eigensolutions, is considered. Methods based on inverse sensitivity anal-
ysis of damped eigensolutions and frequency response functions are developed.
It is shown that the eigensensitivity method requires the development of deriva-
tives of solutions of an asymmetric generalized eigenvalue problem. Both the first
and second order inverse sensitivity analyses are considered. The study demon-
strates the successful performance of the identification algorithms developed based
on synthetic data on one, two and a 33 degrees of freedom vibrating systems with
fractional dampers. Limited studies have also been conducted by combining finite
element modeling with experimental data on accelerances measured in laboratory
conditions on a system consisting of two steel beams rigidly joined together by a
rubber hose. The method based on sensitivity of frequency response functions is
shown to be more efficient than the eigensensitivity based method in identifying
system parameters, especially for large scale systems.

Keywords: Fractional derivative models; inverse sensitivity analysis; eigenderiva-
tives of asymmetric matrices; system identification.

1 Introduction

The focus of the present study is on inverse problems associated with linear dynam-
ical systems that are governed by equations of the form Mẍ +CFDαx + Kx = f (t)
where t is time, x is a N×1 vector of system response, a dot represents derivative
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with respect to time t, M,CF and K are respectively the N×N mass, damping and
stiffness matrices, f (t) is the external excitation and Dαx(t) denotes the α-th order
derivative of x(t) with respect to t with α being, in general, a non-integer number.
This equation represents the model for linear vibrating systems with fractional or-
der damping model. Specifically, we focus on the problem of characterizing the
parameters of the damping force model CDαx(t) based on measured dynamic re-
sponse of the system.

The problem of characterizing damping in engineering structures has remained one
of the challenging problems in structural dynamics (see, for instance, the works
of Nashiff et al., 1985, Mallik 1990, Woodhouse 1998, Wineman and Rajagopal
2000, Mead 2000, Jones 2001 and Adhikari 2002, 2005). The value of fractional
derivative models in characterizing constitutive laws for rubber like material has
been recognized in the existing literature (e.g., Bagley and Torvic 1983a,b, Lee and
Tsai 1994, Pritz 1996). Such materials find wide applications in damping treatment
and also they appear prominently in the form of hoses in many structures such as
an aircraft engine. The paper by Muhr (2007) reviews the mechanics of laminates
of elastomer and shims of high modulus and considers questions on damping im-
parted by rubber to metallic panels. An understanding of dynamic magnification of
response in such structures requires insights into damping characteristics of struc-
tural elements made up of rubber like material. It has been recognized that models
with fractional derivative terms in their equation of motion offer a parsimonious
means for capturing the frequency dependent constitutive behavior of viscoelastic
material. Studies on solution of fractional order differential equations that arise
in structural dynamics are also available: some of the techniques studied include
method of Adomian decomposition (e.g., Ray et al., 2005), method of iterations
(e.g., Ingman and Suzdalnitsky 2001), and transform techniques (e.g., Bagley and
Torvic 1983, Maia et al., 1998). The response of these systems to random excita-
tions has also been explored (e.g., Spanos and Zeldin 1997 and Agarwal 2001).

While the forward problem of analyzing the response of systems with fractional
derivative terms has received wide attention, the inverse problem of identifying
model parameters from measured responses has not received as much attention.
In this context it may be noted that the problem of identification of damping in
systems with viscous and structural damping models is extensively studied in the
existing literature. Thus, the traditional modal analysis methods routinely extract
modal characteristics from measured frequency response or impulse response func-
tions (Ewins 2000, Maia and Silva 1997). Methods based on inverse sensitivity
of complex valued eigensolutions and sensitivity of frequency response functions
have been developed for problems of structural system identification and vibration
based damage detection (e.g., Nobari 1991, Lin et al., 1994,1995, Lee and Kim
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2001, Choi et al., 1994a,b, Maia et al., 2003). In a recent paper Reddy and Ganguli
(2007) have employed Fourier analysis of mode shapes and have introduced a dam-
age index in terms of vector of Fourier coefficients. A related inverse problem of
estimating applied time dependent forces on a beam using an iterative regulariza-
tion scheme has been investigated by Huang and Shih (2007). Characterization of
degradation in composite beams using a wave based approach that employs wavelet
based spectral finite element scheme has been developed by Tabrez et al., (2007).

The extension of the tools based on sensitivity of eigensolutions and FRF-s to sys-
tems with fractional order damping models appears to have not been considered in
the existing literature. Accordingly, we focus in the present study on identifying
parameters of dynamical systems with fractional order damping models based on
inverse sensitivity analysis of eigensolutions and FRF-s. In this case the eigenso-
lutions are known to be damping dependent, complex valued and are obtained as
solutions of a generalized asymmetric eigenvalue problem. The order of the eigen-
value problem is shown to depend upon dynamical degree of freedom of the system
and also on the order of the fractional derivative. The FRF based method is shown
to be conceptually simpler and more generally valid. The study demonstrates the
successful performance of the identification algorithms developed based on syn-
thetic data on one, two and a 33 degrees of freedom vibrating systems. Limited
studies, with mixed success, have also been conducted by combining finite element
modeling with experimental data on accelerances measured in laboratory condi-
tions on a system consisting of two steel beams rigidly joined together by a rubber
hose.

2 Frequency response function and system normal modes

We consider a N-dof dynamical system governed by the equation

Mẍ+Cẋ+CFDαx+Kx = F(t) (1)

Here t is time, x is a N× 1vector of system response, a dot represents derivative
with respect to time t, M, C, CF and K are respectively the N×N mass, viscous
damping, fractional damping and stiffness matrices, F(t) is the external excitation
and Dαx(t) denotes the α-th order derivative of x(t) with respect to t with α being,
in general, a fractional number. Following Oldham and Spanier (1974), we define
Dαx(t) as

Dαx(t) =
dαx
dtα

=
1

Γ(1−α)

t∫
0

x(z)
(t− z)α dz (2)
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Here Γ(·) is the gamma function. We focus in this study on normal mode oscilla-
tions and steady state harmonic responses of the system governed by equation 1.
Thus, if F (t) = F0 exp(iωt), for t → ∞, one could seek the solution of equation 1
in the form x(t) = X (ω)exp(iωt) and deduce

X (ω) =
[
−ω

2M + iωC +(iω)α CF +K
]−1

F0 exp(iωt) (3)

Here H (ω)= D−1 (ω)=
[
−ω2M + iωC +(iω)α CF +K

]−1
is the system frequency

response function, which, in the present case is also termed as receptance; the
matrix D(ω) is the system dynamic stiffness matrix (DSM). If response veloc-
ity and accelerations are sought, one gets ẋ(t) = iωX (ω)exp(iωt) and ẍ(t) =
−ω2X (ω)exp(iωt) and the quantities Y (ω) =−iωH (ω) and A(ω) =−ω2H (ω)
are respectively known as mobility and accelerance functions. In deriving equation
3, use has been made of the relation Dα [exp(iωt)] = (iω)α exp(iωt). The ele-
ments of H (ω) could also be derived as a series in terms of system eigensolutions.
This is possible, for example, when we write α = 1/q where q is an integer. To
demonstrate this we rewrite equation 1 as

D
2q
q x+M−1CD

q
q x+M−1CFD

1
q x+M−1KD0x = M−1F (t) (4)

This can be recast into a general form as

a2qD
2q
q x+a2q−1D

2q−1
q x+ · · ·+a0D

0
q x = f (t) (5)

Here {[ai]}2q
i=0 are N×Nmatrices; depending on the value of q, a subset of these

matrices would be zero matrices. Thus, for q = 3, one gets

a6D
6
3 x+a5D

5
3 x+ · · ·+a0D

0
3 x = f (t) (6)

with [a6] = I, [a5] = [a4] = [a2] = 0, [a3] = [M−1C] and [a0] = [M−1K]. It can be
shown that by introducing a 2Nq×1 state vector z equation can be cast in the form

AD
1
q z−Bz = f (t) (7)

where A and B are 2Nq× 2Nq asymmetric, sparse matrices.To illustrate this, we
consider q=3 and N=2, and, in this case, equation 7 reads as AD

1
3 z−Bz = f (t) with

z =



D
5
3 x

D
4
3 x

D
3
3 x

D
2
3 x

D
1
3 x

D
0
3 x


12×1

(8a)
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A =



[0] [0] [0] [0] [0] [I]
[0] [0] [0] [0] [I] [0]
[0] [0] [0] [I] [0] [0]
[0] [0] [I] [0] [0] [0]
[0] [I] [0] [0] [0] [0]
[I] [0] [0] [a′3] [a′2] [a′1]


12×12

(8b)

B =



[0] [0] [0] [0] [I] [0]
[0] [0] [0] [I] [0] [0]
[0] [0] [I] [0] [0] [0]
[0] [I] [0] [0] [0] [0]
[I] [0] [0] [0] [0] [0]
[0] [0] [0] [0] [0] [−a′0]


12×12

(8c)

where,
[
a′5
]
= [a′4] = [a′2] = 0, [a′3] = [M]−1 [C2], [a′1] = [M]−1 [C1] and [a′0] = [M]−1 [K]

are 2× 2 matrices and { f (t)} = [M]−1 {F(t)}. Clearly, given that the matrices A
and B are asymmetric, the equations for {zi}2Nq

i=1 (equation 7) would be mutually
coupled. We seek a transformation of the coordinates which would uncouple these
equations and, towards reaching this end, we seek special free vibration the solution
of equation AD

1
3 z−Bz = 0 of the form z = ψ exp(λ t). This leads to the eigenvalue

problem

Bψ = λAψ (9)

This further leads to 2Nq eigenpairs and, since the matrices A and B here are asym-
metric, the eigenvalues and eigenvectors are in general complex valued. By taking
conjugation on both sides of equation 9 it can be verified that these eigensolutions
appear in pairs of complex conjugates. To proceed further, we also consider the
eigenvalue problem associated with the transpose of matrices A and B given by

Bt
φ = µAt

φ (10)

It can be verified that λ = µ the eigenvectors φ and ψ satisfy the orthogonality
relations given by

φ
t
sAψr = δrs; φ

t
sBψr = λrδrs (11)

Here δrs is the Kronceker’s delta function and fr and ys are respectively the r-th
left and s-th right eigenvectors. By introducing the modal matrices Φ = [φrs] and
Ψ = [ψrs] with r,s = 1,2, · · · ,2Nq, and suitably normalizing the eigenvectors with
respect to A matrix, we can rewrite the above orthogonality relations as

Φ
tAΨ = I and Φ

tBΨ = Λ (12)
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Here Λ is a 2Nq×2Nq diagonal matrix with the diagonal elements being equal to
the eigenvalues λi, i = 1,2, · · · ,2Nq. Now, returning to equation 7, we introduce the
transformation z(t) = Ψu(t) which leads to the equation

AΨD
1
q u−BΨu = f (t) (13)

Pre-multiplying the above equation by Φt and utilizing the orthogonality relations
(12), the above equation can be shown to lead to the following set of uncoupled
fractional order differential equations

D
1
q un−λnun = pn exp(iωt) ; n = 1,2, · · ·2Nq (14)

Here {pn} = ΦtF0 is the amplitude of the generalized force. Based on this we
obtain the steady state harmonic response of the system in the original coordinate
system as

zk(t) =
2Nq

∑
n=1

pnΨkn

(iω)
1
q −λn

exp(iωt) (15)

If all the terms in the above modal expansion are retained, the resulting solution is
expected to lead to results that are identical with those obtained from equation 3.

It may also be noted here that the eigensolutions Λ,Φ and Ψ possess specific inter-
nal structure which needs to be recognized in modeling work. To demonstrate this
we again consider the eigensolutions for the case of q=3 and N=2 (equation 6). For
the s-th mode, if we write x(t) = γs exp(λst) where γs is a N× 1 vector extracted
from Ψ, it follows from equation 8a that the s-th eigenvector need to be of the form

ψs =
[
λ

5
3

s γs λ
4
3

s γs λ
3
3

s γs λ
2
3

s γs λ
1
3

s γs γs

]t
(16)

Since, eigensolutions appear in conjugate pairs, it follows that the following is also
an eigenvector

ψ
∗
s =

[
λ
∗ 5

3
s γ∗s λ

∗ 4
3

s γ∗s λ
∗ 3

3
s γ∗s λ

∗ 2
3

s γ∗s λ
∗ 1

3
s γ∗s γ∗s

]t
(17)

A similar representation for the right vector φs is also possible and we denote by
ρs the N×1 extract of Φ on lines similar to the definition ofγs. Consequently, the
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matrices Φ and Ψ will have the form

Ψ =



χβ
5
3 χ∗β ∗

5
3

χβ
4
3 χ∗β ∗

4
3

χβ
3
3 χ∗β ∗

3
3

χβ
2
3 χ∗β ∗

2
3

χβ
1
3 χ∗β ∗

1
3

χ χ∗


; Φ =



ϑβ
5
3 ϑ ∗β ∗

5
3

ϑβ
4
3 ϑ ∗β ∗

4
3

ϑβ
3
3 ϑ ∗β ∗

3
3

ϑβ
2
3 ϑ ∗β ∗

2
3

ϑβ
1
3 ϑ ∗β ∗

1
3

ϑ ϑ ∗


(18)

Here χ and ϑ are N×N matrices with χ = [γs] ;s = 1,2, · · ·N and ϑ = [ρs] ;s =
1,2, · · ·N and β is a diagonal matrix of size Nq×Nq with diagonal entries containing
λs;s = 1,2, · · · ,Nq. It may be noted in this context that a similar partitioning of
modal matrix is generally done for damped normal modes of viscously damped
systems.

3 Sensitivity analysis

Let p = {pi}n
i=1 denote a set of system parameters which we wish to identify from

the free vibration response and harmonic forced vibration characteristics. As a first
step in addressing this identification problem, we need to determine the deriva-
tive(s) of the FRF-s and the eigensolutions with respect to {pi}n

i=1.

3.1 FRF sensitivity analysis

In order to find ∂H
∂ pi

, we define Ω(ω)= H−1 (ω) and consider the relation H (ω)Ω(ω)=
I. From this it follows

∂H
∂ pi

Ω(ω)+H (ω)
∂Ω

∂ pi
= 0 (19)

leading to

∂H
∂ pi

=−H (ω)
∂Ω

∂ pi
Ω
−1 (ω) =−H (ω)

∂Ω

∂ pi
H (ω) (20)

Noting that Ω(ω) =
[
−ω2M + iωC +(iω)α CF +K

]
, we get

∂H
∂ pi

=−H (ω)
[
−ω

2 ∂M
∂ pi

+(iω)α ∂CF

∂ pi
+ iω

∂C
∂ pi

+
∂K
∂ pi

]
H (ω) (21)

Higher order derivatives, if desired, could be obtained by differentiating the above
equation further. Thus, by differentiating with respect to p j, it can be shown that

∂ 2H
∂ pi∂ p j

=−
[

∂H
∂ p j

∂Ω

∂ pi
H (ω)+H (ω)

∂ 2Ω

∂ pi∂ p j
H (ω)+H (ω)

∂Ω

∂ pi

∂H
∂ p j

]
(22)
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with

∂ 2Ω

∂ pi∂ p j
=
[
−ω

2 ∂ 2M
∂ pi∂ p j

+(iω)α ∂ 2CF

∂ pi∂ p j
+ iω

∂ 2C
∂ pi∂ p j

+
∂ 2K

∂ pi∂ p j

]
(23)

Remarks

It is possible that the parameter α itself could be one of the parameters belonging to
the set {pi}n

i=1. In this case the deduction of ∂Ω

∂ pi
and ∂ 2Ω

∂ pi∂ p j
needs to take cognizance

of this possibility.

The structural matrices M,C,CF and K often could be linear functions of param-
eters {pi}n

i=1 In this case the term ∂ 2Ω

∂ pi∂ p j
would be zero thereby affording further

simplification of equation 22 .

3.2 Eigensensitivity analysis

In order to derive the sensitivity of eigensolutions, we begin by introducing the
notation Fr = B−λrA so that the underlying eigenvalue problems can be written as
Frψr = 0 and φ t

rFr = 0. From this it follows, φ t
rFrψr = 0 which, in turn, leads to the

equation

∂φ t
r

∂ p j
Frψr +φ

t
r

∂Fr

∂ p j
ψr +φ

t
rFr

∂ψr

∂ p j
= 0 (24)

Noting that Frψr = 0 and φ t
rFr = 0, the above equation is simplified to get

φ
t
r

[
∂B
∂ p j
− ∂λr

∂ p j
A−λr

∂A
∂ p j

]
ψr = 0 (25)

Here, by virtue of the normalization condition we haveφ t
rAψr = 1, leading to

∂λr

∂ p j
= φ

t
r

[
∂B
∂ p j
−λr

∂A
∂ p j

]
ψr (26)

The derivatives of ψr and φr with respect to p j can be obtained by considering the
equations Frψr = 0 and φ t

rFr = 0, from which one gets

∂Fr

∂ p j
ψr +Fr

∂ψr

∂ p j
= 0 and

∂F t
r

∂ p j
φr +F t

r
∂φr

∂ p j
= 0 (27)

leading to the approximations

∂ψr

∂ p j
=−F+

r

[
∂B
∂ p j
− ∂λr

∂ p j
A−λr

∂A
∂ p j

]
ψr

∂φr

∂ p j
=−[F t

r ]+
[

∂Bt

∂ p j
− ∂λr

∂ p j
At −λr

∂At

∂ p j

]
φr

(28)
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Here the superscript + denotes the matrix pseudo-inverse operation. Further modifi-
cation to these gradients can be derived by considering additional equations arising
out of orthogonality relations. Thus, for two distinct eigenpairs we have

φ
t
sBψr = δrs; and φ

t
sAψr = λrδrs (29)

Differentiating these equations with respect to p j, we get

∂φ t
s

∂ p j
Bψr +φ

t
s

∂B
∂ p j

ψr +φ
t
sB

∂ψr

∂ p j
= 0

∂φ t
s

∂ p j
Aψr +φ

t
s

∂A
∂ p j

ψr +φ
t
sA

∂ψr

∂ p j
=

∂λr

∂ p j
δrs

(30)

Noting that ∂φ t
s

∂ p j
Bψr and ∂φ t

s
∂ p j

Aψr are scalars, and hence could be replaced respec-

tively by ψ t
rBt ∂φs

∂ p j
and ψ t

rAt ∂φs
∂ p j

, the above equation can be written as

ψ
t
rBt ∂φs

∂ p j
+φ

t
s

∂B
∂ p j

ψr =−φ
t
sB

∂ψr

∂ p j

ψ
t
rAt ∂φs

∂ p j
+φ

t
s

∂A
∂ p j

ψr =−φ
t
sA

∂ψr

∂ p j
+

∂λr

∂ p j
δrs

(31)

Combining these equations with equation 27 it can be shown that

{
∂ fs
∂ p j
∂yr
∂ p j

}
=


F t

s 0
0 Fr

yt
rB

t f t
s B

yt
rA

t f t
s A

+


− ∂F t

s
∂ p j

fs

− ∂Fr
∂ p j

yr

− f t
s

∂B
∂ p j

yr

− f t
s

∂A
∂ p j

yr + ∂λr
∂ p j

drs

 (32)

Clearly, more elaborate equations for the eigenvector derivatives could be derived
by considering orthogonality relationship between more than one pair of eigenvec-
tors: these details are available in the thesis by Venkatesha (2007).

Higher order eigenvalue derivatives, if desired, could now be derived as

∂ 2λr

∂ pi∂ p j
=

∂φ t
r

∂ pi

[
∂B
∂ p j
−λr

∂A
∂ p j

]
ψr +φ

t
r

[
∂ 2B

∂ pi∂ p j
− ∂λr

∂ pi

∂A
∂ p j
−λr

∂ 2A
∂ pi∂ p j

]
ψr

+ φ
t
r

[
∂B
∂ p j
−λr

∂A
∂ p j

]
∂ψr

∂ pi
(33)
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Similarly, for eigenvectors, a first level of formulation based on equation 28 leads
to

∂ 2ψr

∂ pi∂ p j
=−F+

r

[
∂ 2Fr

∂ pi∂ p j
ψr +

∂Fr

∂ p j

∂ψr

∂ pi
+

∂Fr

∂ pi

∂ψr

∂ p j

]
∂ 2φr

∂ pi∂ p j
=−[F t

r ]+
[

∂ 2F t
r

∂ pi∂ p j
φr +

∂F t
r

∂ p j

∂φr

∂ pi
+

∂F t
r

∂ pi

∂φr

∂ p j

] (34)

Again, by considering orthogonality relations between two or more distinct eigen-
vectors, more elaborate equations for these derivatives could be deduced: we omit
these details.

4 Inverse sensitivity analysis

Let Γk (p1, p2, · · · , pn); k = 1,2, · · · ,Nk denote a specific set of dynamic character-
istics of the system which could be measured. This, for instance, could include
a set of eigensolutions or a set of FRF-s at a set of frequencies. The objective of
inverse sensitivity analysis is to determine the parameters {pi}n

i=1based on the ob-
served values of Γk (p1, p2, · · · , pn) ;k = 1,2, · · · ,Nk and based on the availability
of a mathematical model for the system behavior. This model is presumed to be
capable of depicting the behavior of the system accurately if the model parameters
are assigned the “correct” values. Also it is assumed that the response charac-
teristics Γk (p1, p2, · · · , pn) ;k = 1,2, · · · ,Nk are differentiable with respect to the
parameters {pi}n

i=1 to a desired level. Let pu = {pui}n
i=1 denote the initial guess

on the model parameters so that an improved estimate of p could be obtained as
pdi = pui + ∆i, i = 1,2, · · · ,n where ∆i is the correction to the i-th system parame-
ter. Based on Taylor’s expansion, we can write

Γk (pu1 +∆1, pu2 +∆2, . . . , pun +∆n) = Γk (pu1, pu2, . . . , pun)+
n

∑
i=1

∂Γk

∂ pi

∣∣∣∣
p=pu

∆i

+
1
2

n

∑
i=1

n

∑
j=1

∂ 2Γk

∂ pi∂ p j

∣∣∣∣
p=pu

∆i∆ j + · · · ; k = 1,2, · · · ,Nk (35)

Here Γ(pu +∆) is interpreted as the observed characteristic from measurements
and Γ(pu) is taken to be the prediction of Γ based on the mathematical model with
p = pu. The first and second order gradients appearing in the above equation can
be deduced from the initial mathematical model using formulation presented in the
preceding section. In a first order inverse sensitivity analysis we retain only the first
two terms in the above equation and obtain

∆Γk = Γk (pu +∆)−Γk (pu) =
n

∑
i=1

∂Γk

∂ pi

∣∣∣∣
p=pu

∆i; k = 1,2, · · · ,Nk (36)
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In matrix notation this can be written as

{∆Γ}= [S]{∆} (37)

which represents a set of Nk equations in n unknowns. It is assumed that Nk > n
and, consequently, an optimal estimate for ∆ is obtained as

∆ = S+
∆Γ (38)

Remarks

In the present study the dynamic characteristics such as eigensolutions and FRF-s
are complex valued and in numerical work it is found expeditious to separate the
real and imaginary parts in equation 37 before the pseudo-inversing is done. Thus,
in equation 37, by writing ∆Γ = ∆ΓR + i∆ΓI and S = SR + iSI , equation 38 can be
written as

∆ =
[

SR

SI

]
+
{

∆ΓR

∆ΓI

}
(39)

In equation 35, the Taylor expansion has been carried out around {pu} which rep-
resents the first guess on system parameters and the S matrix in equation 37 is
evaluated at this initial guess. The reference value around which the Taylor expan-
sion is done can be updated once an estimate of ∆ is obtained using equation 38.
This leads to an iterative strategy to solve for D as follows: {D}k̄+1 = [S]k̄ +{DG}k̄;
k̄ = 1,2, · · · ,NT . This iteration could be stopped based on a suitable convergence
criterion based on difference in norms of initial guess and predicted value of ∆.

A higher order system identification algorithm could be developed by retaining sec-
ond and higher order terms in Taylor’s expansion. Thus, in a second order method,

one gets a first order sensitivity matrix [S]I =
[

∂Γk
∂ p j

]
and a second order sensitivity

matrix [S]II =
[

∂ 2Γk
∂ pi∂ p j

]
. Equation 35 here would be nonlinear in nature and these

equations could be solved by combining Newton Raphson algorithm with matrix
pseudo-inverse theory. The relevant details are omitted here.

Since the basic entity that is taken to be measured in the present study is a sub-
set of the FRF matrix, it is assumed that the problem of measurement noise has
been alleviated by adopting suitable band-pass filtering and adequate number of
averaging.

The determination of D using equation 38 crucially depends on the matrix S be-
ing well conditioned. Often, this requirement may not be met in applications
and it would become necessary to employ regularization schemes. To apply the
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scheme, equation 37 is re-written as [StS +ξ I]{∆} = St∆Γ. Here ξ is called the
regularization parameter and it is selected such that the matrix [StS +ξ I] is not
ill-conditioned. Thus, ∆ is now determined using{∆}= [StS +ξ I]−1 St∆Γ. This so-
lution can be shown as being equivalent to finding ∆ such that ||S∆−∆Γ||+ξ ||∆||
is minimized (Hansen 1994). The first term here represents the error norm and
the second term the smoothness of the solution. It is clear that ξ cannot be made
arbitrarily large, in which case, the physical characteristic of the original problem
would be distorted; on the other hand, if ξ =0, the solution to the problem is not sat-
isfactory, if not impossible. Thus in the selection of ξ , a trade-off is involved, and,
in implementing the regularization scheme a ‘L’-curve that represents ||S∆−∆Γ||
versus ||∆|| is constructed for different values of ξ . The value of ξ that corresponds
to the knee of this curve is taken as being optimal.

5 Numerical examples

The formulations outlined in the preceding sections are illustrated in this section
with the help of single and multi-dof systems. In the examples involving parameter
identification, the measurement data is by and large generated synthetically except
for one illustration in example 5.3 where FRF-s obtained experimentally in the
laboratory have been used in system identification.

5.1 Example 1

The sdof system shown in figure 1 is considered. The system parameters assumed
are m=1 kg, k=100 N/m, a1=1 Ns/m, a= 9.2832 N/(m/s)q, and q=3. The size of
the state space is accordingly obtained as 2Nq=6. The six eigenvalues are obtained
as−1.8487±0.9793i, −0.0358±2.1565i, and 1.8845±1.1664i. The correspond-
ing right and left eigenvectors are obtained as

φ =

1.3875−2.1685i 1.3875+2.1685i 2.1535−1.7983i
−1.0713+0.6055i −1.0713−0.6055i −0.8502−0.9845i
0.5898+0.0485i 0.5898−0.0485i −0.4041+0.4398i
−0.2382−0.1525i −0.2382+0.1525i 0.2070+0.1839i
0.0665+0.1177i 0.0665−0.1177i 0.0837−0.0974i
−0.0018−0.0646i −0.0018+0.0646i −0.0458−0.0380i

2.1535+1.7983i −1.2748−2.5442i −1.2748+2.5442i
−0.8502+0.9845i −1.0933−0.6734i −1.0933+0.6734i
−0.4041−0.4398i −0.5795−0.0522i −0.5795+0.0522i
0.2070−0.1839i −0.2347+0.1176i −0.2347−0.1176i
0.0837+0.0974i −0.0621+0.1009i −0.0621−0.1009i
−0.0458+0.0380i 0.0001+0.0535i 0.0001−0.0535i
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ψ =

−0.2623+2.4986i −0.2623−2.4986i −2.1234+1.8257i
0.6699−0.9967i 0.6699+0.9967i 0.8627+0.9703i
−0.5060+0.2711i −0.5060−0.2711i 0.4432−0.4074i
0.2744−0.0013i 0.2744+0.0013i −0.1923−0.2023i
−0.1162−0.0608i −0.1162+0.0608i −0.0923+0.0907i
0.0355+0.0517i 0.0355−0.0517i 0.0427+0.0421i

−2.1234−1.8257i 0.1931−3.2074i 0.1931+3.2074i
0.8627−0.9703i −0.6876−1.2764i −0.6876+1.2764i
0.4432+0.4074i −0.5669−0.3264i −0.5669+0.3264i
−0.1923+0.2023i −0.2950+0.0094i −0.2950−0.0094i
−0.0923−0.0907i −0.1110+0.0737i −0.1110−0.0737i
0.0427−0.0421i −0.0251+0.0546i −0.0251−0.0546i

 

Figure 1: Sdof system considered in Example 5.1.

Figure 2 compares the FRF obtained using the direct inversion of the DSM (equa-
tion 3) with solution obtained using modal summation (equation 15 with all modes
included in the summation) and, as might be expected, the two solutions show
perfect mutual agreement. The application of eigenderivatives derived in section
3.2 is demonstrated by considering two models with differing model parameters as
follows: Model I: m=3 kg, k=1000N/m, a=1 N/(m/s)q, q=3, and a1=1 Ns/m; and
Model II: m=3.1 kg, k=1080N/m, a=0.9 N/(m/s)q, q=3 and a1=1 Ns/m. Table 1
shows the eigenvalues for the two models and also the prediction on the eigenval-
ues of Model II by using first order eigenderivative analysis on Model I. In imple-
menting the sensitivity analysis the range of system parameters spanned by Models
I and II were divided into 100 divisions. Starting from predictions from Model I,
the properties of Model II were estimated by performing sensitivity analysis in 100
steps. In each step of computation an update on the initial model was obtained
using first order sensitivity analysis. Similar results on the system FRF-s obtained
using first order FRF sensitivity analysis are summarized in Table 2.

Figure 3 shows the results of inverse sensitivity analysis using second order eigensen-
sitivities. Here measurements have been made on Model I and parameters to be
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Figure 2: FRF for the Sdof system in Example 5.1 obtained using direct inversion
of dynamic stiffness matrix (DSM) and by using modal summation; (a)amplitude
spectrum; (b) Nyquist’s plot; (c) phase spectrum.

identified are taken to be m, k and a1. Iterations for parameter identification have
been initiated with an initial guess of m=3.2 kg, k=1080 N/m and a1= 0.9 N/(m/s)q.
It is assumed that the value of q=3 is known and hence is not treated as a parameter
to be identified. This assumption is relaxed in results shown in figure 4 in which the
same problem is solved using second order inverse FRF sensitivity analysis. Here
the parameter q is also taken to be unknown and the initial guess on system parame-
ters includes the guess of q =0.4 in addition to the guesses m=3.2 kg, k=1080 N/m
and a1= 0.9 N/(m/s)q. In implementing the FRF sensitivity method a frequency
range of 5 to 10 rad/s is considered and this range is divided into equi-spaced fre-
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Table 1: Eigenvalues for Models I and II in example 5.1

Eigenvalue Initial model Direct method Taylor’s Series
λ1 -2.3006 - 1.3188i -2.2838 - 1.3086i -2.2843 - 1.3089i
λ2 -2.3006 + 1.3188i -2.2838 + 1.3086i -2.2843 + 1.3089i
λ3 0.0067 - 2.6526i 0.0069 - 2.6332i 0.0069 - 2.6337i
λ4 0.0067 + 2.6526i 0.0069 + 2.6332i 0.0069 + 2.6337i
λ5 2.2939 - 1.3338i 2.2770 - 1.3245i 2.2774 - 1.3248i
λ6 2.2939 + 1.3338i 2.2770 + 1.3245i 2.2774 + 1.3248i

Table 2: Results on FRF from Models I and II in example 5.1

Excitation Response, m
frequency (rad/s) Initial model Direct method Taylor’s series

10.00 0.0022 + 0.1424i 0.0019 + 0.1313i 0.0019 + 0.1317i
18.37 4.0233 - 2.0615i 5.0502 + 0.5664i 5.8385 - 0.5131i
19.00 0.2936 - 1.1653i 0.3510 - 1.2706i 0.3450 - 1.2640i
22.00 0.0115 - 0.2218i 0.0107 - 0.2138i 0.0107 - 0.2144i

quency points at an interval of 0.5 rad/s. It was observed that the Newton-Raphson
iterations in implementing the second order sensitivity analysis converged in about
15 steps and a value of 0.001 was used to test the convergence of the norm of
the system parameters. Thus, in this example, the two inverse sensitivity analyses
procedures (based on eigensolutions and FRF-s) perform satisfactorily.

5.2 Example 2

Next, we consider the 2-dof system shown in figure 5. The governing equation
for this system has the form as in equations 7 and 8. In the numerical work it is
assumed that m1 = m2 = 1kg, k1 = k2 = 100N, c1 = 10N/(m/s)q; c2 = 0.001Ns/m,
q1=3 and q2=1. The size of the state space here is obtained as 2Nq=8. The
eigenvalues obtained are−3.7872±3.8405i, 3.7873±3.8432i,−1.4893±1.4773i,
1.4893±1.5013i/s. The results on the Nyquist plot of the FRF-s obtained using the
direct inversion of the dynamic stiffness matrix (equation 3) and by using modal
summation (equation 15) are shown to agree perfectly in figure 6. To demonstrate
the forward and inverse sensitivity analyses we again consider two models with
differing model parameters as follows: Model I: m1=3 kg, k1=100N/m, c1=1.1
N/(m/s)q, m2= 2 kg, k2=1000 N/m, q1 = 2, q2 = 1, and c2=1 Ns/m; and Model II:
m1=3.5 kg, k1=120N/m, c1=0.9 N/(m/s)q, m2= 2 kg, k2=1000 N/m, q1 = 2, q2 = 1
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 Figure 3: Parameter identification based on 2nd order eigensensitivity method; ex-
ample 5.1, (a) mass m, (b) damping coefficient a, and (c) stiffness k.

and c2=1 Ns/m. The eigenvalues obtained by direct analysis and also based on the
application of first order sensitivity is summarized in Table 3. In implementing the
sensitivity analysis the range of system parameters spanned by Models I and II were
divided into 100 divisions. Starting from predictions from Model I, the properties
of Model II were estimated by performing sensitivity analysis in 100 steps. In each
step of computation an update on the initial model was obtained using first order
sensitivity analysis. Similar results on the system FRF-s are summarized in Table
4. The same set of models is re-considered for implementing the inverse sensitivity
analysis. It is assumed that based on measurements the eigensolutions of Model II
have been extracted. For the purpose of illustration it is assumed that the parame-
ters m2, k2, q1, q2 and c2 are known and the problem on hand consists of estimating
the values of m1, k1 and c1. This problem has been tackled using the second or-
der inverse FRF sensitivity method and figure 7 shows the results obtained on the
system parameters. The initial model to initiate the iterations is taken to be pro-
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 Figure 4: Parameter identification based on 2nd order FRF sensitivity method for
example 5.1; (a) mass m; (b) damping coefficient a; (c) stiffness k; and (d) fractional
order 1/q.

vided by Model I specified above. A frequency range of 10 rad/s to 15 rad/s with
a frequency interval of 0.5 rad/s is considered for parameter identification process.
Solutions were observed to converge within about 15 Newton-Raphson iterations
with a value of 0.001 being used to test the convergence of the norm of the system
parameters.

5.3 Example 3

Here we consider a structure made up of two steel tubes interconnected rigidly with
a rubber hose and suspended freely as shown in figure 8. The steel tube has outer
and inner diameters of 12.7 mm and 9.91 mm respectively, and rubber tube has
diameters of 19.30 and 13.47 mm. The densities of steel and rubber were found
to be respectively 8023.3 kg/m3 and 1764.8 kg/m3. Young’s modulus of steel was
taken to be 1.98E+11 Pa. With reference to the nomenclature in figure 8a, the
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Figure 5: 2-dof system considered in example 5.2.

 

Figure 6: Nyquist’s plot of FRF-s for the 2-dof system in example 5.2 obtained
using direct inversion of dynamic stiffness matrix (DSM) and by using modal sum-
mation; (a) response of mass -1; (b) response of mass-2.

Table 3: Results on eigenvalues for Models I and II in example 5.2

Eigenvalue Initial model Direct method Taylor’s series
λ1 -1.5220 - 1.5135i -1.4893 - 1.4773i -1.4912 - 1.4794i
λ2 -1.5220 + 1.5135i -1.4893 + 1.4773i -1.4912 + 1.4794i
λ3 1.5220 - 1.5306i 1.4893 - 1.5013i 1.4912 - 1.5030i
λ4 1.5220 + 1.5306i 1.4893 + 1.5013i 1.4912 + 1.5030i
λ5 -3.7327 - 3.7840i -3.7872 - 3.8405i -3.7841 - 3.8373i
λ6 -3.7327 + 3.7840i -3.7872 + 3.8405i -3.7841 + 3.8373i
λ7 3.7327 - 3.7858i 3.7873 - 3.8432i 3.7841 - 3.8398i
λ8 3.7327 + 3.7858i 3.7873 + 3.8432i 3.7841 + 3.8398i
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 Figure 7: Parameter identification based on 2nd order FRF sensitivity method for
example 5.2, (a) mass, (b) damping coefficient, (c) stiffness, and (d) fractional order
derivative.

structure has the following dimensions (in mm): AB=15.5, BC=95.3, CC’=20.0,
C’D’=15.0, D’D=42.5, DD”=42.5, D”E’=15.0, E’E=13.3, EF=118.6 and FG=10.0
with a total length of 387.7 mm. The structure was studied both computationally
and experimentally. In the computational work the structure was modeled using
finite element method with 15 numbers of 2-noded Euler-Bernoulli beam elements
with 2-dofs per node with spatial distribution of elements as shown in figure 8a.
The stress strain relation for the rubber material here is taken to be of the form σ =
E [ε +a1Dαε] and the stiffness matrix was formulated using frequency dependent,
complex valued Young’s modulus (Wineman and Rajagopal 2000). Initial studies
were conducted using synthetic data obtained from the numerical model. For this
purpose, an initial model with E=3.4129E+07 Pa, a =0.105 N/(m/s)α and α=0.280
was used to compute the FRF-s at 20 rad/s with the drive point at F (figure 8a). The
steel beams were taken to be undamped and this is considered acceptable since
most of the damping in the structure is likely to originate from the rubber section.
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Table 4: Results on FRF from Models I and II in example 5.1

Excitation Response of mass (m1), m
frequency (rad/s) Initial model Direct method Taylor’s series

3 0.0438 + 1.8168i 0.0222 + 1.4284i 0.0204 + 1.4215i
4.6 4.5064 -16.1385i 12.3839 +28.0608i 24.5247 -45.2648i
5.5 0.0684 - 1.9938i 0.0669 - 2.1800i 0.0675 - 2.1527i
20 -0.0016 - 0.0980i -0.0018 - 0.0947i -0.0018 - 0.0955i

28.25 -0.1602 - 0.3549i -0.8141 - 0.0540i -0.6067 - 0.5959i
35 -0.0042 + 0.0363i -0.0028 + 0.0277i -0.0027 + 0.0271i

Excitation Response of mass (m2), m
frequency (rad/s) Initial model Direct method Taylor series

3 0.0450 + 1.9520i 0.0230 + 1.5565i 0.0213 + 1.5508i
4.6 4.7026 -16.7482i 12.9376 +29.4025i 25.5793 -47.1267i
5.5 0.0726 - 2.0158i 0.0711 - 2.2140i 0.0717 - 2.1847i
20 0.0026 + 0.0094i 0.0032 + 0.0261i 0.0031 + 0.0249i

28.25 0.2307 + 0.4462i 1.3618 + 0.0260i 0.8995 + 0.8593i
35 0.0060 - 0.0938i 0.0047 - 0.0879i 0.0048 - 0.0880i

Furthermore, by using first order sensitivity, the FRF-s at the same frequency and
at all the nodes in the finite element model were computed for a modified system
with E=3.61975E+07 Pa, a =0.125 N/(m/s)α and α=0.225. The results of this
forward sensitivity analysis are compared with the exact FRF-s for the modified
system in Table 5. The two results show satisfactory mutual agreement. Results of
a second order inverse sensitivity analysis to identify E, a and α of the rubber tube
are shown in figure 9. Here ‘measurements’ on system FRF-s were synthetically
simulated (with drive point at F) over a frequency range of 879.64 rad/s (140 Hz) to
917.34 rad/s (146 Hz) for a system with E=3.61975E+07 Pa, a =0.125 N/(m/s)α
and α=0.225. This frequency range was divided into 12 points in implementing the
inverse FRF sensitivity analysis. The iterations were initiated with an initial model
with E=3.4129E+07 Pa, a =0.105 N/(m/s)α and α=0.280. It may be observed from
figure 9 that the estimated parameters show satisfactory convergence after about 40
iterations.

With a view to assess the performance of the identification procedure when mea-
sured data are obtained in a laboratory experiment, the set up shown in figure 8c
was used to measure FRF-s with driving via a modal shaker at point F as shown.
The response of the beam structure was measured using five accelerometers and
the applied force was measured using a force transducer as shown in figure 8b.
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Table 5: Forward sensitivity analysis on FRF at 20 rad/s for the system in example
5.3

Degree of freedom
Response, (m)

Initial model Direct method Taylor series
1 0.0015 - 0.0011i 0.0022 - 0.0014i 0.0022 - 0.0013i
2 -0.0004 + 0.0003i -0.0005 + 0.0003i -0.0005 + 0.0003i
3 0.0012 - 0.0009i 0.0018 - 0.0011i 0.0018 - 0.0011i
4 -0.0004 + 0.0003i -0.0005 + 0.0003i -0.0005 + 0.0003i
5 0.0012 - 0.0009i 0.0018 - 0.0011i 0.0018 - 0.0011i
6 -0.0004 + 0.0003i -0.0005 + 0.0003i -0.0005 + 0.0003i
7 -0.0001 + 0.0001i -0.0001 + 0.0001i -0.0001 + 0.0001i
8 -0.0004 + 0.0003i -0.0005 + 0.0003i -0.0005 + 0.0003i
9 -0.0001 + 0.0001i -0.0002 + 0.0002i -0.0002 + 0.0002i
10 -0.0004 + 0.0003i -0.0005 + 0.0003i -0.0005 + 0.0003i
11 -0.0004 + 0.0003i -0.0006 + 0.0004i -0.0006 + 0.0004i
12 -0.0004 + 0.0003i -0.0005 + 0.0003i -0.0005 + 0.0003i
13 -0.0006 + 0.0005i -0.0009 + 0.0006i -0.0009 + 0.0006i
14 -0.0004 + 0.0003i -0.0005 + 0.0003i -0.0005 + 0.0003i
15 -0.0009 + 0.0007i -0.0014 + 0.0009i -0.0014 + 0.0009i
16 -0.0000 - 0.0000i -0.0001 + 0.0000i -0.0001 + 0.0000i
17 -0.0009 + 0.0007i -0.0014 + 0.0009i -0.0014 + 0.0009i
18 -0.0000 - 0.0000i -0.0001 - 0.0000i -0.0001 - 0.0000i
19 -0.0007 + 0.0005i -0.0011 + 0.0006i -0.0011 + 0.0006i
20 0.0003 - 0.0003i 0.0004 - 0.0003i 0.0004 - 0.0003i
21 -0.0006 + 0.0003i -0.0008 + 0.0004i -0.0008 + 0.0004i
22 0.0003 - 0.0003i 0.0004 - 0.0003i 0.0004 - 0.0003i
23 -0.0004 + 0.0002i -0.0006 + 0.0002i -0.0006 + 0.0002i
24 0.0003 - 0.0003i 0.0004 - 0.0003i 0.0004 - 0.0003i
25 -0.0004 + 0.0002i -0.0006 + 0.0002i -0.0006 + 0.0002i
26 0.0003 - 0.0003i 0.0004 - 0.0003i 0.0004 - 0.0003i
27 0.0009 - 0.0012i 0.0013 - 0.0013i 0.0014 - 0.0013i
28 0.0003 - 0.0003i 0.0004 - 0.0003i 0.0004 - 0.0003i
29 0.0009 - 0.0012i 0.0014 - 0.0014i 0.0014 - 0.0014i
30 0.0003 - 0.0003i 0.0004 - 0.0003i 0.0004 - 0.0003i
31 0.0010 - 0.0013i 0.0015 - 0.0015i 0.0015 - 0.0015i
32 0.0003 - 0.0003i 0.0004 - 0.0003i 0.0004 - 0.0003i
33 0.0009 + 0.0496i 0.0014 + 0.0494i 0.0014 + 0.0494i
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(a) 

 
(b) 

 

(c) 

 

1 3 5 6 7 9 1011 13 15 2 4 8 12 14 

Figure 8: Steel and rubber pipe structure considered in example 5.3; (a) details of
nodes in finite element model; (b) details of sensor deployment; (c) experimental
setup.

Following standard procedures for measurement of FRF-s (McConnel 1995) and
using 500 number of averages, the system FRF-s were measured; some of these
measurements are shown in figure 10. This figure shows three episodes of mea-
surements with each episode involving averaging across 500 samples. The results
shown confirm satisfactory repeatability of the measurements. By selecting the fre-
quency range of 122.62 to 124.45 Hz, and, with 31 number of frequency points,
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(a)                                                                                (b) 

            

                                                 (c) 

 Figure 9: Parameter identification based on 2nd order FRF sensitivity method for
example 5.3 based on synthetic data, (a) Young’s modulus, (b) damping coefficient,
(c) fractional order derivative.

the second order inverse FRF sensitivity analysis was implemented to estimate E, a
and α of the rubber material. The Young’s modulus of steel material was assumed
to be known (E=1.98E+11 Pa). Figure 11 shows the results on identification of
Young’s modulus of rubber segment and damping parameters. The system param-
eters showed minor oscillations that remained bounded as iterations proceeded.
The results in the last few iterations were averaged to obtain the estimates: E=
3.5987e+07Pa, a=0.1246 N/(m/s)α , and α =0.22. Using these parameters a few of
the FRF-s were reconstructed and compared with measurements and these results
are shown in figure 12. The identification procedure was observed to be not uni-
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        (a)       (b) 

 

                                 (c) 

 
Figure 10: Parameter identification based on 2nd order FRF sensitivity method for
example 5.3 based on experimental data, (a) Young’s modulus, (b) damping coeffi-
cient, (c) fractional order derivative.

formly successful with the method performing poorly especially in low frequency
ranges. The success of method was seen to depend upon the choice of frequency
points to be included in the identification procedure. Further work is needed in es-
tablishing criteria for selecting the frequency points bearing in mind the quality of
FRF measurements as indicated by departure of the spectrum of coherence function
deviating from the expected value of unity.
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(a)                                                                          (b) 

 Figure 11: Measured accelerance for the system shown in figure 8c; (a) accelerance
at the drive point; (b) accelerance at E; results three episodes of measurements with
each involving averaging across 500 samples are shown here.

6 Closing remarks

The use of fractional order derivatives in modeling the constitutive behavior of
visco-elastic materials is well investigated in the existing literature. Studies on
identifying parameters of dynamical systems with visco-elastic structural elements
are however not widely available. This paper has explored the applicability of in-
verse sensitivity methods based on system eigensolutions and frequency response
functions for identifying mass, stiffness and dissipation characteristics of systems
governed by fractional order differential equations. The following concluding re-
marks are made based on this study:

• The application of inverse eigensolutions method requires the problem to for-
mulated in a state space form with the size of this model depending upon the
value of the fractional order α . The formulation is possible when α is a ra-
tional number and, for α = 1/q, with q being an integer; the size of the state
space is 2Nq. The computational effort involved in system identification de-
pends this size, which in turn, somewhat artificially depends on the parameter
q. Furthermore, if q itself is a parameter to be identified, the method based on
eigensolutions becomes difficult to apply. Also, this method requires that the
eigensolutions of the system have been already extracted based on the mea-
sured FRF-s before the parameter identification problem could be tackled.
Given that the eigensolutions here are governed by asymmetric generalized,
eigenvalue problem, this extraction is not straightforward. The experimental
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         (a)               (b) 

 

        (c) 

 Figure 12: Example 5.3; Comparison of accelerance at sensor locations B,C and
E (figure 8) from measurements (Test) and from results of system identification
(Simulation); (a) location B; (b) location C; and (c) location E.

modal analysis procedures in this context are presently not fully developed
in the existing literature.

• The method based on inverse sensitivity analysis of FRF-s is better suited in
this context since it does not suffer from the above mentioned drawbacks of
the eigensolutions method. The size of the FRF matrix is not dependent on
order of the fractional derivative. This method permits the fractional order
itself to be a parameter to be identified and is based on primary response
variables (viz, the FRF-s) that are experimentally measured.

• Further work is needed to establish criteria for selecting number of frequency
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points to be included in the FRF based identification method. The measured
data reduction based on singular value decomposition of the FRF matrix (as
has been recently proposed by Venkatesha et al, 2008 for the identification
of viscously damped systems) could offer means to reduce the number of
equations to be tackled.
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