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A Quasi-Boundary Semi-Analytical Method for Backward
in Time Advection-Dispersion Equation

Chein-Shan Liu1, Chih-Wen Chang2 and Jiang-Ren Chang2,3

Abstract: In this paper, we take the advantage of an analytical method to solve
the advection-dispersion equation (ADE) for identifying the contamination prob-
lems. First, the Fourier series expansion technique is employed to calculate the
concentration field C(x, t) at any time t < T . Then, we consider a direct regu-
larization by adding an extra term αC(x,0) on the final condition to carry off a
second kind Fredholm integral equation. The termwise separable property of the
kernel function permits us to transform it into a two-point boundary value problem.
The uniform convergence and error estimate of the regularized solution Cα(x, t) are
provided and a strategy to select the regularized parameter is suggested. The solver
used in this work can recover the spatial distribution of the groundwater contami-
nant concentration. Several numerical examples are examined to show that the new
approach can retrieve all past data very well and is good enough to cope with het-
erogeneous parameters’ problems, even though the final data are noised seriously.

Keywords: Inverse problem, Groundwater contaminant distribution, Advection-
dispersion equation, Fredholm integral equation, Two-point boundary value prob-
lem

1 Introduction

With the development of society and economics, groundwater contamination has
become a very critical issue. Most of groundwater pollution cases usually occur
in industrial zones, highly developed areas, and agricultural zones. Reliable and
quantitative predictions of pollutant movement can be made only if we are able to
realize the source characteristics [Mahar and Datta (2001)], such as contaminant
concentration, pollutant location, categories of pollution and so forth. Because
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the data cannot be measured by direct methods in lots of cases, some additional
data are needed to determine the unknown sources in accordance with the analyt-
ical models, which always result in the inverse problems [Sun (1994)]. For the
mathematical model of the problem, many researchers use the backward in time
advection-dispersion equation (ADE) to govern the problem. By accurately iden-
tifying those groundwater pollution source properties, one can tackle the problem
effectively.

Over the last few decades, many researches have been done to deal with the back-
ward in time ADE for identifying the groundwater pollution source problem. One
often employs an optimization approach to obtain the best fitted solution due to
the nonuniqueness of the solution and the infinite number of plausible combina-
tions. Gorelick et al. (1983) first formulated the problem as the forward simula-
tions together with a linear optimization model by using the linear programming
and multiple regression. The optimization model provides an effective method
for identifying the time release history of groundwater pollution source and the
location in homogeneous medium. However, the classical optimization scheme
spent much computational time, produced large numerical errors, and was limited
to cases where the data were available in the form of breakthrough curves. Because
the groundwater pollution source problem is a nonlinear problem, Wagner (1992)
has proposed a combination of the nonlinear optimization model and the nonlinear
maximum likelihood estimation to cope with the groundwater contaminant source
characterizations and parameter estimations in homogeneous medium simultane-
ously. It is reported that the nonlinear optimization approach is more accurate than
the linear optimization method for solving the reconstruction of the release history
and the location of a pollution source since the model parameter uncertainty is con-
sidered. Nevertheless, the nonlinear maximum likelihood estimation has so many
confinements that its application is limited, and its complex procedures require to
be tackled. In general, the above-mentioned optimization approaches encounter
complicated procedures and large numerical errors in dealing with the problem in
heterogeneous media.

To solve the groundwater pollution source problem in heterogeneous media, a
non-optimization approach, namely the marching-jury backward beam equation
(MJBBE) method, was proposed by Atmadja (2001) and Atmadja and Bagtzoglou
(2001a, 2001b, 2003) to cope with the recovery of the spatial distribution of con-
taminant concentration. From calculating the recovery of the spatial distribution
of contaminant concentration in homogeneous media, the MJBBE method obtains
smaller numerical errors than those in heterogeneous media. However, the scheme
retrieves the problem merely in a short time period between the initial and final
time (it is impossible to retrieve the plume at times near t = 0), and it transforms
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the backward in time ADE (second-order partial differential equation (PDE)) into
the fourth-order PDE. This not only increases the complexity of the computational
procedures, where two artificial boundary conditions are needed, and also takes
much computational time. In addition, the numerical errors of the MJBBE method
are larger than those calculated by the forward numerical scheme. Subsequent to
Atmadja and Bagtzoglou (2003), Liu et al. (2009) have proposed a simple and ex-
plicit one-step backward group preserving scheme (BGPS) to solve the backward
in time ADE. Although the numerical errors of the BGPS are much smaller than
those of the MJBBE method, there still has room to increase the accuracy of the
BGPS.

In this paper, we propose a direct regularization technique to transform the ADE
into a second kind Fredholm integral equation by employing the quasi-boundary
method. By using the separating kernel function and eigenfunctions expansion
techniques, we can derive a closed-form solution of the second kind Fredholm in-
tegral equation, which is a major contribution of this paper. Another one is the
application of the Fredholm integral equation to develop an effective numerical
scheme, whose accuracy is much better than the MJBBE method proposed by At-
madja and Bagtzoglou (2001b). Particularly, the proposed approach is time-saving
and easy to implement. A similar second kind Fredholm integral equation regular-
ization method was first used by Liu (2007a) to solve a direct problem of elastic
torsion in an arbitrary plane domain, where it was called a meshless regularized in-
tegral equation method. Liu (2007b, 2007c) extended it to solve the Laplace direct
problem in arbitrary plane domains. Based on those good results and experiences,
Liu (2009) used this new method to treat the inverse Robin coefficient problem of
Laplace equation.

The present paper is organized as follows. Section 2 illustrates the backward in
time ADE and its final condition and boundary conditions, and then we derive the
second kind Fredholm integral equation by a direct regularization in Section 3. In
Section 4, we derive a two-point boundary value problem, which helps to derive
a closed-form solution of the second kind Fredholm integral equation in Section
5. Section 6 offers a selection principle of the regularized parameter and presents
some numerical examples to demonstrate and validate the proposed approach. A
summary with some concluding remarks is drawn in Section 7.

2 Contaminant source identification problem

Let us consider the following one-dimensional backward in time ADE:

∂C
∂ t

=
∂

∂x

[
D

∂C
∂x

]
− v

∂C
∂x

, (1)
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C(0, t) = C(l, t) = 0, 0≤ t ≤ T, (2)

C(x,T ) = CT (x), 0≤ x≤ l, (3)

where C is the solute concentration, D is the dispersion coefficient, v is the transport
velocity in the x direction, and CT (x) is the observed plume’s spatial distribution
at a time T . The domain is assumed to be sufficiently large that the plume has not
reached the boundary.

The contaminant source identification problem is to identify the initial profile C(x,0),
and is known to be highly ill-posed. One way to solve an ill-posed problem is
by perturbation it into a well-posed one. Many perturbing techniques have been
proposed, including a biharmonic regularization developed by Lattés and Lions
(1969), a pseudo-parabolic regularization proposed by Showalter and Ting (1970),
a stabilized quasi-reversibility proposed by Miller (1973), the method of quasi-
reversibility proposed by Mel’nikova (1992), a hyperbolic regularization proposed
by Ames and Cobb (1997), the Gajewski and Zacharias quasi-reversibility pro-
posed by Huang and Zheng (2005), a quasi-boundary value method by Denche and
Bessila (2005), and an optimal regularization proposed by Boussetila and Rebbani
(2006). Showalter (1983) first regularized the inverse problem by considering a
quasi-boundary-value approximation to the final value problem, which is for our
problem, to supersede Eq. (3) by

αC(x,0)+C(x,T ) = CT (x). (4)

Eqs. (1), (2) and (4) can be shown to be well-posed for each α> 0 as that done by
Clark and Oppenheimer (1994) for the heat conduction inverse problem. Ames and
Payne (1999) have investigated those regularizations from the continuous depen-
dence of solution on the regularized parameter.

In our previous paper, Chang et al. (2007) have tackled the above quasi-boundary
two-point boundary value problem for the case of D = 1 and v = 0 by an extension
of the Lie-group shooting method, which was originally developed by Liu (2006)
to resolve second-order boundary value problems.

3 The Fredholm integral equation

The use of the technique for separation of variables can yield a formal series ex-
pansion of C(x, t), satisfying Eqs. (1) and (2):

C(x, t) =
∞

∑
k=1

akevx/2D−[(v/2D)2+(kπ/l)2]Dt sin
kπx

l
, (5)
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where ak are coefficients to be determined. By imposing the two-point boundary
condition (4) on the above equation, we obtain

C(x,T ) =
∞

∑
k=1

akevx/2D−[(v/2D)2+(kπ/l)2]DT sin
kπx

l
= CT (x)−αC(x,0). (6)

Fixing any t < T and applying the eigenfunctions expansion to Eq. (5), we obtain

ak =
2e[(v/2D)2+(kπ/l)2]Dt

l

∫ l

0
e−vξ/2D sin

kπξ

l
C(ξ , t)dξ . (7)

Substituting Eq. (7) for ak into Eq. (6) and assuming that the order of summation
and integral can be interchanged, it follows that

(
KT−t

x C(·, t)
)
(x) :=

∫ l

0
K(x,ξ ;T − t)C(ξ , t)dξ = CT (x)−αC(x,0), (8)

where

K(x,ξ ; t) =
2
l

∞

∑
k=1

e−[(v/2D)2+(kπ/l)2]Dtev(x−ξ )/2D sin
kπx

l
sin

kπξ

l
(9)

is a kernel function, α is a regularized parameter, and KT−t
x is an integral operator

generated from K(x,ξ ;T − t). Corresponding to the kernel K(x,ξ ; t), the operator
is denoted by Kt

x.

In order to recover the concentration C(x,0), we have to solve the second kind
Fredholm integral equation:

αC(x,0)+
∫ l

0
K(x,ξ ;T )C(ξ ,0)dξ = CT (x), (10)

which is obtained from Eq. (8) by taking t = 0.

4 Two-point boundary value problem

We assume that the kernel function in Eq. (10) can be approximated by m terms
with

K(x,ξ ;T ) =
2
l

m

∑
k=1

e−[(v/2D)2+(kπ/l)2]DT ev(x−ξ )/2D sin
kπx

l
sin

kπξ

l
, (11)

because of T > 0. The above kernel is termwise separable, which is also called the
degenerate kernel or the Pincherle-Goursat kernel [Tricomi (1985)].
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By the inspection of Eq. (11), we have

K(x,ξ ;T ) = P(x;T ) ·Q(ξ ), (12)

where P and Q are m-vectors given by

P :=
2evx/2D

l


e−[(v/2D)2+(π/l)2]DT sin πx

l

e−[(v/2D)2+(2π/l)2]DT sin 2πx
l

...
e−[(v/2D)2+(mπ/l)2]DT sin mπx

l

 , Q := e−vξ/2D


sin πξ

l

sin 2πξ

l
...

sin mπξ

l

 , (13)

and the dot between P and Q denotes the inner product, which is sometime written
as P>Q, where the superscript T signifies the transpose.

With the aid of Eq. (12), Eq. (10) can be decomposed as

αC(x,0)+
∫ x

0
P>(x)Q(ξ )C(ξ ,0)dξ +

∫ l

x
P>(x)Q(ξ )C(ξ , 0)dξ = CT (x), (14)

where we omit the parameter T in P for clarity. Let us define

c1(x) :=
∫ x

0
Q(ξ )C(ξ ,0)dξ ,

c2(x) :=
∫ x

l
Q(ξ )C(ξ ,0)dξ ,

(15)

and Eq. (14) can be expressed as

αC(x,0)+P>(x)[c1(x)− c2(x)] = CT (x). (16)

If c1 and c2 can be solved, we can calculate C(x,0).
Using the Leibniz rule and taking the differential of Eq. (15) with respect to x, we
obtain

c′1(x) = Q(x)C(x,0), c′2(x) = Q(x)C(x,0). (17)

From Eqs. (14)-(16), we obtain

αc′1(x) = Q(x)P>(x)[c2(x)− c1(x)]+CT (x)Q(x),c1(0) = 0, (18)

αc′2(x) = Q(x)P>(x)[c2(x)− c1(x)]+CT (x)Q(x),c2(l) = 0. (19)

Thus, the above two equations constitute a two-point boundary value problem.
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5 A closed-form solution

In this section, we will find a closed-form solution of C(x,0). From Eq. (17) we
observe that c′1 = c′2, which means that

c1 = c2 +d, (20)

where d is a constant vector to be determined. By using the right-boundary condi-
tion in Eq. (19), we find that

c1(l) = c2(l)+d = d. (21)

Substituting Eq. (20) into (18), we have

αc′1(x) =−Q(x)P>(x)d+CT (x)Q(x),c1(0) = 0. (22)

Integrating and using the left-boundary condition, it follows that

c1(x) =
−1
α

∫ x

0
Q(ξ )P>(ξ )dξ d+

1
α

∫ x

0
CT (ξ )Q(ξ )dξ . (23)

Taking x = l in the above equation and imposing condition (21), one obtains a
governing equation for d:(

αIm +
∫ l

0
Q(ξ )P>(ξ )dξ

)
d =

∫ l

0
CT (ξ )Q(ξ )dξ . (24)

It is straightforward to write

d =
(

αIm +
∫ l

0
Q(ξ )P>(ξ )dξ

)−1 ∫ l

0
CT (ξ )Q(ξ )dξ . (25)

On the other hand, from Eqs. (16) and (20) we have

αC(x,0) = CT (x)−P(x) ·d. (26)

Inserting Eq. (25) into the above equation, we obtain

αC(x,0) = CT (x)−P(x) ·
(

αIm +
∫ l

0
Q(ξ )P>(ξ )dξ

)−1 ∫ l

0
CT (ξ )Q(ξ )dξ . (27)

Due to the orthogonality of∫ l

0
sin

jπξ

l
sin

kπξ

l
dξ =

l
2

δ jk, (28)
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where δ jk is the Kronecker delta, the m×m matrix can be explicitly written as∫ l

0
Q(ξ )P>(ξ )dξ =

diag
[
e−[(v/2D)2+(π/l)2]DT ,e−[(v/2D)2+(2π/l)2]DT , . . . ,e−[(v/2D)2+(mπ/l)2]DT

]
, (29)

where diag means that the matrix is a diagonal matrix.

Inserting Eq. (29) into Eq. (27), we therefore obtain

C(x,0) =
1
α

CT (x)− 1
α

P>(x)diag

[
1

α + e−[(v/2D)2+(π/l)2]DT
,

1

α + e−[(v/2D)2+(2π/l)2]DT
, . . . ,

1

α + e−[(v/2D)2+(mπ/l)2]DT

]∫ l

0
CT (ξ )Q(ξ )dξ . (30)

While we use Eq. (13) for P and Q, we can get

C(x,0) =
1
α

CT (x)−

2
αl

∞

∑
k=1

e−[(v/2D)2+(kπ/l)2]DT

α + e−[(v/2D)2+(kπ/l)2]DT

∫ l

0
sin

kπx
l

sin
kπξ

l
ev(x−ξ )/2DCT (ξ )dξ , (31)

where the summation upper bound m has been replaced by ∞ because our argument
is independent of m and m denotes a number of the finite terms in the numerical
example. For a given CT (x), through some integrals one may employ the above
equation to calculate C(x,0).
If C(x,0) is available, we can calculate C(x, t) at any time t < T by

Cα(x, t) =
∞

∑
k=1

aα
k e−[(v/2D)2+(kπ/l)2]Dtevx/2D sin

kπx
l

, (32)

where

aα
k =

2
l

∫ l

0
e−vξ/2D sin

kπξ

l
C(ξ ,0)dξ . (33)

Inserting Eq. (31) into the above equation and utilizing the orthogonality equation
(29) again, it is verified that

aα
k =

2

l[α + e−[(v/2D)2+(kπ/l)2]DT ]

∫ l

0
e−vξ/2D sin

kπξ

l
CT (ξ )dξ . (34)

Eqs. (32) and (34) constitute an analytical solution of the ADE. In order to distin-
guish it from the exact solution C(x, t), we have used the symbol Cα(x, t) to denote
the regularized solution.
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6 Selection of the regularization parameter α and numerical examples

Up to this point, however, we have not yet specified how to select a suitable reg-
ularization parameter α . Suppose that CT (x) ∈ L2(0, l) satisfying condition (A1)
and that CT (x) having a Fourier sine series expansion:

CT (x) =
∞

∑
k=1

a∗kevx/2D sin
kπx

l
, (35)

where

a∗k =
2
l

∫ l

0
e−vξ/2D sin

kπξ

l
CT (ξ )dξ . (36)

Substituting Eq. (35) into Eq. (31) and utilizing the orthogonality equation (29)
again, we obtain

Cα(x,0) =
∞

∑
k=1

e−[(v/2D)2+(kπ/l)2]DT

α + e−[(v/2D)2+(kπ/l)2]DT
a∗k sin

kπx
l

, (37)

where we note that

e−[(v/2D)2+(kπ/l)2]DT

α + e−[(v/2D)2+(kπ/l)2]DT
=

1

1+αe[(v/2D)2+(kπ/l)2]DT
.

In a practical calculation, we can only perform a finite sum in Eq. (37) and let
k = m be the upper bound.

For a better numerical solution, we require that

αe[(v/2D)2+(mπ/l)2]DT = α0� 1.

Otherwise, the term e−[(v/2D)2+(mπ/l)2]DT /(α + e−[(v/2D)2+(mπ/l)2]DT ) in Eq. (37)
would be very small when v, D, T and l are finite and m is very large, which may
lead to a large numerical error. Therefore, we have a criterion to select m when α

and α0 are specified:

m =
l
π

√
1

DT
log
(

α0

α

)
−
( v

2D

)2
.

On the other hand, when m and α0 are given, we can use the following criterion to
choose α:

α =
α0

e[(v/2D)2+(mπ/l)2]DT
. (38)
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6.1 Numerical Method for the Homogeneous ADE

Now, let us take into account the one-dimensional ADE:

Ct = DCxx− vCx, 0≤ x≤ l, 0 < t < T, (39)

C(0, t) = C(l, t) = 0, 0≤ t ≤ T, (40)

C(x,0) = 0, ∀0 < x < 13.5 and 14.5 < x < 28, (41)

C(x,0) = c1 = 1 13.5≤ x≤ 14.5, (42)

where l = 28 and we first consider the Fourier sine series expansion of the initial
condition

C(x,0) =
∞

∑
k=1

akevx/2D sin
kπx

l
. (43)

Substituting the above equation into Eq. (33), we obtain

ak =
2
l

∫ l

0
e−vξ/2DC(ξ ,0)sin

kπξ

l
dξ

=
2
l

∫ 14.5

13.5
c1e−vξ/2D sin

kπξ

l
dξ

=
2
l

[
e−14.5s(−ssin14.5b−bcos14.5b)+ e−13.5s(ssin13.5b+bcos13.5b)

s2 +b2

]
,

(44)

where

b =
kπ

l
, s =

v
2D

. (45)

Then, the data to be retrieved is given by

C(x, t) =
∞

∑
k=1

akevx/2D−[(v/2D)2+(kπ/l)2]Dt sin
kπx

l
. (46)

Therefore, by Eqs. (32) and (34) we obtain a regularized solution:

Cα(x, t) =
1

1+αe[(v/2D)2+(kπ/l)2]DT

∞

∑
k=1

akevx/2D−[(v/2D)2+(kπ/l)2]Dt sin
kπx

l
. (47)
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Figure 1: For homogeneous ADE problem we compare numerical and exact data at
t = 0 retrieved from final time T = 2 in (a), and in (b) plotting the numerical errors.

Table 1: Comparing the mass and concentration peak errors of the present method
and MJBBE of homogeneous ADE problem.

εM(%) εP(%)
Time MJBBE Present MJBBE Present

T = 2 t = 1.8 -0.024 1.0E-8 0.41 1.0E-8
T = 2 t = 1.1 -0.11 1.0E-8 2.61 1.0E-8
T = 5 t = 4.8 1.0E-8 1.0E-8
T = 5 t = 4.1 1.0E-8 1.0E-8
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Figure 2: Comparisons of exact solutions and numerical solutions for homogeneous
ADE problem with data at different times retrieved: (a) t = 1.8, (b) t = 1.1.

For this example with T = 2, comparisons of exact solutions and regularized so-
lutions under D = 2.8 and v = 1 were plotted in Fig. 1(a), and the corresponding
errors of C(x,0) were plotted in Fig. 1(b). In Fig. 2, we present the numerical
results and numerical errors for the final time of T = 2. Figs. 2(a) and 2(b) compare
the exact solution with the regularized solution under D = 2.8, v = 1, α0 = 10−10,
∆x = 28/100, k = 50 and t = 1.8, 1.1. Upon compared with the numerical re-
sults computed by Atmadja and Bagtzoglou (2001b) with the MJBBE method (see
Fig. 5 of the above cited paper), and Wang and Zabaras (2006) with a hierarchical
Bayesian computation method (see Figs. 1 and 2 of the above cited paper), we can
say that the present method is much more accurate than the MJBBE method and the
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Figure 3: For homogeneous ADE practical problem we compare numerical and
exact data at t = 0 retrieved from final time T = 5 in (a), and in (b) plotting the
numerical errors.

Bayesian method. After viewing the output data, which are summarized in Table 1,
we find that the corresponding mass and concentration peak errors are, respectively
about εM = 1.0E-8% and εP = 1.0E-8% for t = 1.8, εM = 1.0E-8% and εP = 1.0E-8%
for t = 1.1 (Figs. 2a and 2b), εM = 1.0E-8% and εP = 1.0E-8% for t = 4.8, and εM

= 1.0E-8% and εP = 1.0E-8% for t = 4.1 (Figs. 3a and 3b), i.e., Fig. 3 shows that
the plume traveling a distance is much larger than its initial spread, where the mass
error and the concentration peak error are defined as
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[1] mass error, normalized by the exact mass

εM =
Masse−Massn

Masse ×100%; (48)

[2] concentration peak error, normalized by the exact peak concentration

εP =
max(Ce)−max(Cn)

max(Ce)
×100%, (49)

where max( ) denotes the maximum value of ( ) for all grid points in the
domain, and the superscripts e and n stand for exact and numerical values,
respectively.

6.2 Group Preserving Scheme (GPS) and Present Method for the Homoge-
neous ADE

In the previous numerical example, we employed closed-form solutions as the in-
puts of the final time data. In practice, we cannot easily obtain the closed-form
solution of the backward in time ADE when the available data CT (x) is not in a
closed-form; therefore, many numerical schemes are used to calculate the problem.
Instead of directly using Eqs. (32) and (34) as a semi-analytic solution of the back-
ward in time ADE where the data CT (x) can be in a discretized form, we apply the
trapezoidal rule to perform the integral. Here, the final data of the above example
is calculated by GPS [Liu (2001)] with a time increment ∆t = 5×10−5:

C(x,T ) = CT (x), 0≤ t < T, (50)

Let l = 28, and substitute Eq. (50) for CT (x) into Eq. (34) to obtain

aα
k =

2

l[α + e−[(v/2D)2+(kπ/l)2]DT ]

∫ l

0
e−vξ/2D sin

kπξ

l
CT (ξ )dξ . (51)

Substituting Eq. (51) into Eq. (32), we have

Cα(x, t) =
∞

∑
m=1

aα
k e−[(v/2D)2+(mπ/l)2]Dtevx/2D sin

mπx
l

, (52)

which gives

Cα(x,0) =
∞

∑
m=1

aα
k evx/2D sin

mπx
l

, (53)

We display the exact solutions and regularized solutions for a fixed T = 5 with
α = 10−9 in Fig. 4(a), and the corresponding errors of C(x,0) are plotted in Fig.
4(b). In Fig. 4(a), it is evident that the Gibbs phenomenon inevitably appears
in the numerical evaluation of a finitely-truncated Fourier series near a point of
discontinuity.
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Figure 4: Comparisons of exact solutions and numerical solutions for homogeneous
ADE problem with data at different times retrieved: (a) t = 4.8, (b) t = 4.1.

6.3 Numerical Method for the Heterogeneous ADE

Three cases involving heterogeneity in the dispersion coefficient D are to be an-
alyzed. In all the heterogeneous parameter cases the velocity is fixed to be one.
The heterogeneity configurations are shown in Table 2. Two different zones, each
with a distinct value of D, are used. For configuration 1 the two zones are (1) outer
zones for 0 ≤ x < 13 and 15 < x ≤ 28, and (2) inner zone for 13 < x ≤ 15. Both
configurations 2 and 3 use (1) outer zones for 0≤ x < 11 and 17 < x≤ 28, and (2)
inner zone for 11 < x ≤ 17. The results in Figs. 5 to 8 are all calculated by the
new numerical method with ∆x = 28/100, α0 = 10−10 and k = 50, where accurate
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results are obtained.

Table 2: Dispersion coefficient configurations for heterogeneous ADE.

Configuration DO Di Inner zone width
1 2.8 3.0 2
2 3.5 2.7 6
3 3.0 2.7 6
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Figure 5: Comparisons of exact solutions and numerical solutions for configuration
1 with data at different times retrieved: (a) t = 1.8, (b) t = 1.1.

In configuration 3, when the input final measured data are contaminated by random
noise, we are concerned with the stability of our method, which is investigated by
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Figure 6: Comparisons of exact solutions and numerical solutions for configuration
2 with data at different times retrieved: (a) t = 1.8, (b) t = 1.1.

adding the different levels of random noise on the final data. We use the function
RANDOM_NUMBER given in Fortran to generate the noisy data R(i), where R(i)
are random numbers in [0, 1]. The numerical results with T = 2 were compared
with those without considering random noise in Figs. 7 and 8. The noise is ob-
tained by multiplying R(i) by a factor s. It can be seen that the noise level with s =
0.003 disturb the numerical solutions deviating from the exact solution very small.
Upon compared with the numerical results computed by Atmadja and Bagtzoglou
(2001b) with the MJBBE method (see Fig. 8, Fig. 10 and Fig. 11 of the above
cited paper), we can say that the proposed method is much more accurate than the
MJBBE method. The mass errors of Figs. 3 to 8 induced by our method for the het-
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Figure 7: Comparisons of exact solutions and numerical solutions for configuration
3 with data at t = 1.8 retrieved and made in (a) with different noise levels s = 0,
0.003, and (b) the corresponding numerical errors.

erogeneous and homogeneous cases at t = 1.8, t = 1.1, t = 4.8 and t = 4.1 are equal
to 1.0E-8%. A summary of the mass and peak errors for different heterogeneity
configurations can be found in Table 3. Obviously, our results are much better than
those obtained by Atmadja and Bagtzoglou (2001b).

7 Conclusions

In this article, we have transformed the 1D backward in time ADE into a second
kind Fredholm integral equation through a direct regularization technique and a
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Figure 8: Comparisons of exact solutions and numerical solutions for configuration
3 with data at t = 1.1 retrieved and made in (a) with different noise levels s = 0,
0.003, and (b) the corresponding numerical errors.

quasi-boundary idea. By utilizing the Fourier series expansion technique and a
termwise separable property of kernel function, a series solution for approximating
the exact solution is presented. The effect of regularized parameter on the perturbed
solution is clear, which brings well about a better choice of the regularized param-
eter to avoid for causing a large numerical error. The uniform convergence and
error estimate of the regularized solution are provided. We demonstrate that the
new regularized technique is applicable to the groundwater contamination prob-
lems. Several numerical examples have shown that the new approach can retrieve
all the initial data very well, even though the final data are very small or noised by
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Table 3: Summary of mass and concentration peak errors of the present method
and MJBBE for the heterogeneous ADE cases.

εM(%) εP(%)
configuration Time MJBBE Present MJBBE Present

1
T = 2 t = 1.8 -0.24 1.0E-8 -0.21 1.0E-8
T = 2 t = 1.1 -1.10 1.0E-8 -0.87 1.0E-8

2
T = 2 t = 1.8 1.47 1.0E-8 1.78 1.0E-8
T = 2 t = 1.1 6.79 1.0E-8 8.54 1.0E-8

3
T = 2 t = 1.8 0.63 1.0E-8 0.83 1.0E-8
T = 2 t = 1.1 2.82 1.0E-8 4.08 1.0E-8

a large disturbance, and the initial data to be recovered are not smooth. Our method
has no numerical errors, which can be extended to 2D and 3D problems and is ex-
pected to yield good results. However, the computational procedures of the MJBBE
method are very complex and the numerical errors of the MJBBE method are only
in the order of O(10−2)-(10−3). Thus, it is highly recommended to exploit the new
approach in the numerical computations of ADE.
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Appendix: Error estimation

In Section 5, we have derived a regularized solution Cα(x, t) of Eqs. (1)-(3) un-
der the regularized approximation (4) with a regularized parameter α > 0. We can
prove the following main results.

Theorem 1: Suppose that the final data CT ∈ L2(0, l). Then a sufficient and neces-
sary condition that the inverse problem (1)-(3) has a solution is that

∞

∑
k=1

e2[(v/2D)2+(kπ/l)2]DT
(∫ l

0
e−vξ/2D sin

kπξ

l
CT (ξ )dξ

)2

< ∞. (A.1)

Proof: Taking α = 0 in Eq. (34) and inserting it into Eq. (32), we have a formal
exact solution of Eqs. (1)-(3):

C(x, t) =
∞

∑
k=1

a∗ke−[(v/2D)2+(kπ/l)2]D(t−T )evx/2D sin
kπx

l
, (A.2)
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where

a∗k =
2
l

∫ l

0
e−vξ/2D sin

kπξ

l
CT (ξ )dξ . (A.3)

Eq. (A1) is available by applying the Parseval equality on the Fourier sine series of
C(x, 0) ∈ L2(0, l):

C(x,0) =
∞

∑
k=1

a∗ke[(v/2D)2+(kπ/l)2]DT evx/2D sin
kπx

l
, (A.4)

which is obtained from Eq. (A2) by inserting t = 0. This ends the proof.

Theorem 2: If the final data CT (x) is bounded in the interval x ∈ [0, l], then for any
α > 0 and t0 > 0, the regularized solution series (32) converges uniformly for all
t ≥ t0 and x ∈ [0, l].
Proof: Since α > 0, and CT (x) is bounded, say |CT (x)| ≤ E∗,x ∈ [0, l], for some
E∗ > 0, from Eq. (34) we have

|ak|=
2

l[α + e−[(v/2D)2+(kπ/l)2]DT ]

∣∣∣∣∫ l

0
e−vξ/2D sin

kπξ

l
CT (ξ )dξ

∣∣∣∣
≤ 2

lα

∫ l

0
|CT (ξ )|dξ ≤ 2E∗

α
=: E, (A.5)

where E is a positive constant. Thus, for any t ≥ t0 > 0 we have∣∣∣∣ake−[(v/2D)2+(kπ/l)2]Dt sin
kπx

l

∣∣∣∣≤ Ee−[(v/2D)2+(kπ/l)2]Dt0 . (A.6)

Through the ratio test, it is obvious that the series
∞
∑

k=1
e−[(v/2D)2+(kπ/l)2]Dt0 con-

verges. Therefore, by the Weierstrass M-test [Apostol (1974)], the series in Eq.
(32) converges uniformly with respect to x and t whenever t ≥ t0 and x ∈ [0, l]. This
ends the proof.

Theorem 3: If the final data CT (x) satisfies condition (A1) and there exists an
ε ∈ (0,1), such that

2
l

∞

∑
k=1

e2[(v/2D)2+(kπ/l)2]D(1+ε)T
(∫ l

0
e−vξ/2D sin

kπξ

l
CT (ξ )dξ

)2

:= M2(ε) < ∞,

(A.7)

then for any α > 0, and t ≥ 0 the regularized solution Cα(x, t) satisfies the following
error estimation:

‖Cα(·, t)−C(·, t)‖L2(0,l) ≤ α
εM(ε). (A.8)
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Proof: From Eqs. (28), (32), (34), (A2) and (A3) it follows that

C(x, t)−Cα(x, t) =
∞

∑
k=1

bke[(v/2D)2+(kπ/l)2]D(T−t) sin
kπx

l
, (A.9)

where

bk =
2α

l[α + e−[(v/2D)2+(kπ/l)2]DT ]

∫ l

0
e−vξ/2D sin

kπξ

l
CT (ξ )dξ . (A.10)

By using the Parseval’s identity on Eq. (A9), we obtain

‖C(x, t)−Cα(x, t)‖2
L2(0,l) =

2
l

∞

∑
k=1

b2
ke2[(v/2D)2+(kπ/l)2]D(T−t). (A.11)

Substituting Eq. (A10) for into Eq. (A11) leads to

‖C(x, t)−Cα(x, t)‖2
L2(0,l) =

∞

∑
k=1

2α2

l[α + e−[(v/2D)2+(kπ/l)2]DT ]2
e2[(v/2D)2+(kπ/l)2]D(T−t)

×
(∫ l

0
sin

kπξ

l
CT (ξ )dξ

)2

.

Thus, for any ε ∈ (0,1) we have the following estimation:

‖C(x, t)−Cα(x, t)‖2
L2(0,l)

=
2α2

l

∞

∑
k=1

e2[(v/2D)2+(kπ/l)2]D(T−t)

[(α + e−[(v/2D)2+(kπ/l)2]DT )ε(α + e−[(v/2D)2+(kπ/l)2]DT )1−ε ]−2

×
(∫ l

0
e−vξ sin

kπξ

l
CT (ξ )dξ

)2

≤2α2

l

∞

∑
k=1

e2[(v/2D)2+(kπ/l)2]D(T−t)[e2[(v/2D)2+(kπ/l)2]DT ]ε [α1−ε ]−2

(∫ l

0
e−vξ/2D sin

kπξ

l
CT (ξ )dξ

)2

=
2α2ε

l

∞

∑
k=1

e2[(v/2D)2+(kπ/l)2]D((1+ε)T−t)
(∫ l

0
e−vξ/2D sin

kπξ

l
CT (ξ )dξ

)2

≤2α2ε

l

∞

∑
k=1

e2[(v/2D)2+(kπ/l)2]D(1+ε)T
(∫ l

0
e−vξ/2D sin

kπξ

l
CT (ξ )dξ

)2

=α
2εM2(ε).

(A.12)
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Therefore, we complete the proof.

The above three theorems are important to guarantee that the proposed regulariza-
tion is workable. Although the problem we consider is ill-posed, we have assumed
that the exact solution is existent to cast the error estimation in a manner that is
typical in the partial differential equation approximations.
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