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Simulation of delamination by means of cohesive elements
using an explicit finite element code
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Abstract: This paper presents the formulation of a tri-dimensional cohesive ele-
ment implemented in a user-written material subroutine for explicit finite element
analysis. The cohesive element simulates the onset and propagation of the delami-
nation in advanced composite materials. The delamination model is formulated by
using a rigorous thermodynamic framework which takes into account the changes
of mixed-mode loading conditions. The model is validated by comparing the finite
element predictions with experimental data obtained in interlaminar fracture tests
under quasi-static loading conditions.
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1 Introduction

The application of polymer-based composite materials reinforced with continuum
fibres is in gradual expansion as a result of their good specific mechanical prop-
erties. However, the application of composites is still limited due to the short-
comings in the models used to predict structural failure. In addition, the absence
of reliable strength prediction methods means that the certification process of aero-
nautical composite structures is based on a time consuming and expensive sequence
of physical tests, from coupon to full-component level. To increase the reliability
and to reduce the number of tests requested to certify composite structures, effi-
cient design tools validated by means of experimental data are needed. Virtual
testing platforms can be an efficient tool to replace some of these mechanical tests
(National Research Council of the National Academies (2006)).

Delamination is one of the most common failure mechanisms in laminated compos-
ite materials and can appear at any life time of the structure (manufacturing, trans-
portation, assembly, and service). Delamination reduces seriously the integrity of a
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structural element and can produce its collapse. Therefore, accurate analysis tools
for the simulation of delamination are required.

Delamination has been largely studied and modelled in the literature. When mate-
rial nonlinearities can be neglected and an initial crack is present, methods based
on Linear Elastic Fracture Mechanics have been proven to be effective in predict-
ing delamination growth, such as the virtual crack closure technique (Irwin (1957);
Rybicki and Kanninen (1977); Raju (1987); Zou et al. (2001); Krueger (2002)),
the J-integral method (Rice (1968)), the virtual crack extension (Hellen (1975)),
and the stiffness derivative (Parks (1974)). These techniques are used to calculate
the components of the energy release rate. Delamination growth is predicted when
a combination of the components of the energy release rate is equal to, or greater
than, a critical value (Griffith (1921)).

When no initial macroscopic defects are present, a local approach has been fre-
quently used to detect delamination onset, in which the key parameters are critical
values of tractions (e.g. Pagano and Pipes (1973) and Hashin (1980)).

Another approach for delamination modelling can be developed within the frame-
work of Damage Mechanics. Models formulated using Damage Mechanics con-
siders an interface as a third independent material defined by its own constitutive
law. This interface links the two structural components and is based on the con-
cept of the cohesive crack model introduced by Barenblatt (1962), Dugdale (1960),
Hillerborg et al. (1976) and others: a cohesive damage zone or softening plasticity
is developed near the crack front. Cohesive damage zone models relate tractions
to displacement jumps at an interface where a crack may occur. Damage initiation
is related to the interfacial strength (i.e. the maximum traction on the traction-
displacement jump relation). When the area under the traction-displacement jump
relation is equal to the fracture toughness, the traction is reduced to zero and new
crack surfaces are formed. The use of cohesive models is extremely powerful for
the simulation of general fracture processes due to its simplicity and the unification
of crack initiation and growth within one model.

The implementation of cohesive constitutive models normally is carried out by
means of user-written subroutines in finite element codes. Generally, the exam-
ples presented in the literature implement cohesive elements (e.g. Schellekens and
de Borst (1993), Allix et al. (1995), Mi et al. (1998), Alfano and Crisfield (2001),
Camanho et al. (2003) and De Borst et al. (2006)) or a user material definition (e.g.
Pinho et al. (2006), Iannucci (2006) and Aymerich et al. (2008)), although surface-
based cohesive behaviours which eliminate the need to define cohesive elements
have been also implemented (e.g. Zhang et al. (2006) and Abaqus 6.8 (2008)).

In cases where crack path is known in advance, either from experimental evidence,



Simulation of delamination 53

or because of the material configuration, discrete interface elements equipped with
a cohesive constitutive relation are inserted a priori in the finite element mesh (e.g.
Corigliano and Allix (2000)). To allow for a more arbitrary direction of crack
propagation, interface elements can be inserted between all continuum elements
(Xu and Needleman (1994)). However, this approach is limited to a number of pre-
defined orientation crack angles since the interface elements are aligned with the
element boundaries. Some authors (e.g. Martha et al. (1993) and De Borst (2003))
use meshing tools to redefine the position of cohesive elements in function of the
stress state evolution. When the position for the appearance and progression of a
crack is detected, the structure is again meshed and an interface element is located
in a proper position. Alternatively, another research line in fracture modelling is to
improve the kinematic description of finite elements by enriching the shape func-
tions by means of adding degrees of freedom. Initially, these models consider a
law which relates the stresses and the strains until damage localization is detected
in one plane. At this point, the law is rewritten and relates stresses and crack open-
ing. Some of these approaches are: elements with embedded discontinuities (e.g.
Oliver (2000)) based on the enhanced assumed strain (Simo and Rifai (1990)), and
extended finite elements (e.g. Belytschko et al. (2001)) based on partition of unity
method (Babuska and Melenk (1997)).

In the formulation of cohesive models, the energy dissipated during the crack open-
ing has to be controlled, i.e. it is necessary to assure that the model satisfies the
Clausius-Duhem inequality (Turon et al. (2006)). Some models are well suited
to simulate delamination under constant mixed-mode conditions, such as Mi et al.
(1998), Alfano and Crisfield (2001). However, these models do not satisfy the
Clausius-Duhem inequality when the crack grows in variable mixed-mode condi-
tions, because generally they define the damage threshold parameter as the max-
imum displacement and the damage variable as a function of material parameters
that depend on the mixed-mode ratio. Some examples of cohesive models which
develop in a thermodynamically consistent way are Ortiz and Pandolfi (1999), and
Jansson and Larsson (2003).

In previous work of the authors, a thermodynamically consistent damage model has
been proposed for the simulation of progressive delamination in composite mate-
rials under variable mixed-mode ratio (Turon et al. (2006)). The constitutive law
follows a bilinear relationship between relative displacements and tractions at the
interface, and it is defined by using a delamination onset and propagation criteria.
The delamination onset criterion is based on energy terms and is proposed so the
model formulation accounts for loading mode changes in a consistent thermody-
namically way. The formulation also accounts for crack closure effects to avoid
interfacial penetration of two adjacent layers. This model is implemented by using
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a user element subroutine, called UEL, where it is defined the zero-thickness co-
hesive element for implicit analysis in Abaqus finite element software (Abaqus 6.8
(2008)).

Some structural problems cannot be solved by using an implicit finite element code
due to convergence difficulties related to material softening. To avoid these diffi-
culties an explicit code should be used. An implicit analysis requires the assembly
of the global stiffness matrix and its subsequent inversion to solve the equilibrium
equations system for each iteration, whereas with an explicit analysis these opera-
tions are not necessary. Explicit integration schemes do not require the solution of
a global set of equilibrium equations as the accelerations, velocities and displace-
ments are calculated explicitly at each node recurring to a simple central differences
rule applied over a time increment. Consequently, the explicit formulation is often
proper in cases where severe changes in stiffness matrix occur, such as analysis
with failure or degradation of the material. Other applications where explicit code
is recommended and implicit analysis may lead to severe convergence difficulties
are problems with complex contacts, post-buckling, and high-speed dynamic events
such as impact. Explicit codes can also be used to solve problems that are essen-
tially static by controlling some simulation variables, such as the kinetic energy
that must be less than 5% of the internal energy of the system (Abaqus 6.8 (2008)).

In this paper, a modified formulation and implementation in an explicit finite ele-
ment code of the cohesive model originally developed by Turon et al. (2006) are
presented. The model is implemented by using a user-written material subroutine,
called VUMAT (Abaqus 6.8 (2008)). The user material developed is defined on sets
of elements that represent the possible location for delamination. The elements can
be selected to have zero-thickness (surface elements) or non-zero-thickness (con-
tinuum elements). The possibility of using continuum-based cohesive elements
enables the simulation of an interface with non negligible thickness. Therefore, the
macroscopic properties of the interface material, such as stiffness and strength, can
be measured experimentally and used directly in the cohesive model.

In the literature, there are also available cohesive models implemented in a user-
written material subroutine for explicit finite element analysis. Generally, these
models are checked by simulating quasi-static standard delamination toughness
tests, and a simulation of delamination in a monolithic composite laminated plate
subjected to low-velocity impact is presented as the most challenging applica-
tion. Under impact loading, delamination growth develops under variable mixed-
mode conditions, and this phenomenon must be accounted properly in the cohesive
model. However, the formulations available in the literature often do not control
the crack growth in a consistent thermodynamically way (e.g. Pinho et al. (2006)).

The contents of this paper are structured as follows: first, the updated formula-
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tion of the cohesive model given by Turon et al. (2006) is presented. Next, the
adaptations of the formulation to be implemented in a continuum interface are de-
scribed. After, the implementation of the model in a user-written material is also
explained in detail. Finally, the numerical predictions of interlaminar fracture tests
of polymer-based composite materials are compared with experimental data in or-
der to validate the model.

2 Damage Model Formulation

The main aspects of the delamination model presented by Turon et al. (2006) are
presented in this section with some modifications of the original formulation.

The constitutive law used is shown in Fig. 1. This law is a bilinear relationship
between relative displacements and tractions. The first line represents an elastic
relationship, prior to damage onset. Damage onset is related with the interface
strength τo. When the area under the traction-displacement relation is equal to the
fracture toughness, Gc, the interface tractions revert to zero and a new crack surface
is created.

 

Figure 1: Bilinear constitutive law.

 

Figure 2: Propagation modes.
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The different relative displacements between the nodes of a surface element are
shown in Fig. 2, where each displacement is directly associated with the corre-
sponding propagation mode by assuming that the crack front is located at the indi-
cated line. At finite element scale level, it is not possible to distinguish the shear
modes II and III because the crack front is in fact unknown. For this reason, shear
modes are generally grouped together in the formulation of the cohesive models
(see section 2.1).

The damage model follows the general formulation of continuum damage models
proposed by Mazars (1982), and Simo and Ju (1987). The Helmholtz free energy
by unit surface of the interface under isothermal conditions is defined as:

ψ (∆∆∆i,d) = (1−d)ψ
0 (∆∆∆i) i = 1,2,3 (1)

where d is the scalar isotropic damage variable and ψ0 (∆∆∆i) is a function of the
relative displacement space defined as:

ψ
0 (∆∆∆i) =

1
2

∆∆∆iD0
i j∆∆∆ j i, j = 1,2,3 (2)

Eq. 1 indicates that the relative displacement components, ∆∆∆i, are the free variables
of the system (i.e. displacement driven formulation), and d is the internal variable
that ensures the irreversibility of the model.

Negative values of ∆∆∆3 (mode I) have no physical sense because the cracks are closed
and no damage is produced. Therefore, the damage model has a unilateral be-
haviour for this propagation mode, which means that the damage variable can be
activated or deactivated as a function of the loading state. Therefore, Eq. 1 is
modified as:

ψ (∆∆∆i,d) = (1−d)ψ
0 (∆∆∆i)−dψ

0 (δ3i 〈−∆∆∆3〉) i = 1,2,3 (3)

where 〈−〉 is the Macaulay brackets defined as 〈x〉 = 1
2 (x+ |x|), and δi j is the

Kronecker delta.

Applying Coleman’s method (Simo and Ju (1987)), the constitutive equation reads:

τi =
∂ψ

∂∆∆∆i
= (1−d)D0

i j∆∆∆ j−dD0
i jδ3 j 〈−∆∆∆3〉 i, j = 1,2,3 (4)

D0
i j is the undamaged stiffness tensor, defined as:

D0
i j = δi jK i, j = 1,2,3 (5)

where K is a scalar parameter corresponding to the slope of the first line in the
constitutive law, typically called penalty stiffness. As Eq. 5 shows, the penalty
stiffness is the same for any propagation mode.



Simulation of delamination 57

To ensure the thermodynamic consistency of the model, the dissipated energy by
surface unit during the damage propagation process, Ξ, has to be equal or greater
than zero:

Ξ = Y ḋ ≥ 0 (6)

where the thermodynamic force Y associated with the internal variable d is defined
as:

Y =−∂ψ

∂d
(7)

The value of the damage variable has to be evaluated at each time increment during
the loading process. Therefore, it is necessary to define a suitable norm of the
relative displacement vector, the surface for damage activation, a law for damage
evolution, and criteria for damage onset and damage propagation.

2.1 Norm of the relative displacement vector

The selected norm of the relative displacement components is defined as:

λ =
√
〈∆∆∆3〉2 +∆∆∆2

shear (8)

where ∆∆∆3 is the relative displacement in mode I, and ∆∆∆shear is the Euclidian norm of
the relative displacements in mode II and mode III:

∆∆∆shear =
√

∆∆∆2
1 +∆∆∆2

2 (9)

Normally, the shear modes II and III are represented together because their indi-
vidual evaluation depends on the relative displacement between homologous nodes
with respect to the crack front orientation. Since at finite element scale level the
crack orientation is generally unknown, it is not possible to distinguish between
modes II and III.

2.2 Surface of damage activation and law for damage evolution

The surface of damage activation from Turon et al. (2006) is modified by the ex-
pression:

F (∆∆∆t ,dt) := G(∆∆∆t)−dt ≤ 0 ∀t ≥ 0 (10)

where G(∆∆∆t) is a monotonic loading function which depends on the relative dis-
placement vector ∆∆∆ = {∆∆∆1,∆∆∆2,∆∆∆3}T at time t, and dt is the damage variable at time
t which is used as the threshold function.
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The evolution of the damage variable is defined by means of the Kuhn-Tucker con-
straints which provide the formulation of the loading-unloading–reloading condi-
tions as (Oliver et al. (1990)):

ḋ ≥ 0; F (∆∆∆t ,dt)≤ 0; ḋF (∆∆∆t ,dt) = 0 ∀t ≥ 0 (11)

On the other hand, to ensure that the surface of damage activation will grow as
much as the internal variable grows, the persistence (or consistency) condition is
required. This is:

F (∆∆∆t ,dt) = 0⇒ Ḟ (∆∆∆t ,dt) = 0 ∀t ≥ 0 (12)

Therefore, the damage variable dt is explicitly defined by:

dt = max
{

0, max
s

(G(∆∆∆t))
}

0≤ s≤ t ∀t ≥ 0 (13)

which fully describes the evolution of the internal variable for any loading–unloading–
reloading situation. On the other hand, by using the constitutive equation (see Fig.
3) for any mixed-mode ratio β (see Eq. 21), the function G(∆∆∆t) is defined as:

G(∆∆∆t) = min

 ∆∆∆
f
t (λt −∆∆∆o

t )

λt

(
∆∆∆

f
t −∆∆∆o

t

) , 1

 ∀t ≥ 0 (14)

 

Figure 3: Parameters of the bilinear constitutive equation.

Eq. 14 defines the loading function by means of the bilinear constitutive equa-
tion, where ∆∆∆o

t and ∆∆∆
f
t are the onset and propagation damage parameters at time

t, respectively. The values of ∆∆∆o and ∆∆∆ f are obtained by means of the onset and
propagation damage criteria, respectively. These values will be constant unless the
mixed-mode ratio changes. The variables used in Eq. 14 are identified in Fig. 3.
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2.3 Criterion for damage propagation

The propagation criterion for delamination growth under mixed-mode loading con-
ditions is established in terms of energy release rates and fracture toughnesses. The
criterion is based on the work of Benzeggagh and Kenane (1996), and was origi-
nally defined for mixed mode I and II:

Gc = GIc +(GIIc−GIc)
(

GII

GI +GII

)η

(15)

where GIc and GIIc are the fracture toughnesses in mode I and II, respectively; GI

and GII are the energy release rates in mode I and II, respectively. The η parame-
ter is found by least-square fit of experimental data points of fracture toughnesses
under different mixed-mode ratios.

The propagation criterion can be rewritten as follows:

Gc = GIc +(Gshear_c−GIc)Bη (16)

where Gshear and Gshear_c are the shear energy release rate and the pure mode II
fracture toughness, respectively. The expressions of Gshear and Gshear_c are defined
by Eq. 17 and 18, respectively (Camanho et al. (2003)).

Gshear = GII +GIII (17)

Gshear_c = GIIc (= GIIIc) (18)

Eq. 17 is valid whenever the constitutive equations of modes II and III are equal.
This hypothesis is very common because the fracture toughness of mode III is
difficult to obtain and typically it is considered equal to GIIc.

On the other hand, Eq. 18 ensures that the propagation criterion is consistent for
pure mode loading cases II or III. As in the case of Eq. 17, Eq. 18 means that the
constitutive equations for mode II and III are equal.

The parameter B is defined as:

B =
Gshear

GI +Gshear
(19)

The mixed-mode ratio β defined by Turon et al. (2006) is given by:

β =
∆∆∆shear

〈∆∆∆3〉+∆∆∆shear
(20)
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However, the definition of β is changed by Eq. 21, which allows the B parameter
to be equal to β by developing Eq. 19 and considering the same penalty stiffness
for all propagation modes.

β =
∆∆∆2

shear

〈∆∆∆3〉2 +∆∆∆2
shear

=
∆∆∆2

shear
λ 2 (21)

Finally, the propagation criterion defined in relative displacement terms can be ob-
tained by means of Eq. 16 and by knowing that the crack propagates when the
fracture energy release rate is equal to the critical value. In other words, by using
Eq. 22 (deduced by means of Eq. 16) and Eq. 23, the propagation criterion yields
to Eq. 24.

Gc (β ) =
1
2

K∆∆∆
o
3∆∆∆

f
3 +
(

1
2

K∆∆∆
o
shear∆∆∆

f
shear−

1
2

K∆∆∆
o
3∆∆∆

f
3

)
β

η (22)

Gc (β ) =
1
2

K∆∆∆
o
∆∆∆

f (23)

∆∆∆
f =

∆∆∆o
3∆∆∆

f
3 +
(

∆∆∆o
shear∆∆∆

f
shear−∆∆∆o

3∆∆∆
f
3

)
β η

∆∆∆o (24)

∆∆∆o
3 and ∆∆∆o

shear are the relative displacements for damage onset in pure mode I and
shear mode respectively, and ∆∆∆

f
3 and ∆∆∆

f
shear are the relative displacements for dam-

age propagation in pure mode I and shear mode respectively. The parameter ∆∆∆o is
the displacement for damage onset, and it is determined by means of the damage
initiation criterion. Normally, the damage propagation criterion is formulated inde-
pendently of the initiation criterion. However, Eq. 24 shows that both criteria are
linked in this model.

2.4 Criterion for damage onset

In this model, the criterion for damage onset is assumed the same as the applied
criterion for damage propagation. This means that the onset damage criterion is
also based on energy terms, which is a different characteristic of the usual cohe-
sive damage formulations where a stress-based criterion is used. The models that
account for the interaction of the stress components are usually based on Ye’s cri-
terion (1988). However, experimental data of material strengths for the initiation
of delamination under mixed-mode loading are not readily available, and conse-
quently, these failure criteria have not been fully validated.

Therefore, by replacing in Eq. 16 only the elastic energy terms of the constitutive
equation, Eq. 25 is obtained which is finally equalled to Eq. 26 in order to find the
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criterion for damage onset defined in terms of relative displacements (Eq. 27).

Go (β ) =
1
2

K (∆∆∆o
3)

2 +
(

1
2

K (∆∆∆o
shear)

2− 1
2

K (∆∆∆o
3)

2
)

β
η (25)

ψ (β ) =
1
2

K (∆∆∆o)2 (26)

∆∆∆
o =

(
(∆∆∆o

3)
2 +
(
(∆∆∆o

shear)
2− (∆∆∆o

3)
2
)

β
η

) 1
2

(27)

3 Formulation Adaptations for Non-Zero-Thickness Cohesive Elements

Having formulated a cohesive model for zero-thickness elements, the required
modifications to enable also the use of non-zero-thickness elements (i.e. contin-
uum elements) are described in this section.

3.1 Relation between relative displacements and strains

If a continuum element is used, the input data are not the relative displacements, but
the strain tensor. Therefore, to model a cohesive continuum model with softening,
the relative displacement ∆∆∆i and the corresponding strain component εi j can be
related by means of the expression:

∆∆∆i = heεi jn j (2−δ3i) i, j = 1,2,3 (28)

where he is the element thickness, and n j is the corresponding component of the
unitary normal vector to the crack plane, n = {0,0,1}T (see Fig. 2).

As explained in the model formulation, the area under the constitutive equation ge

defined by stresses and relative displacements is directly the fracture toughness of
the material Gc. However, if the constitutive model is defined in terms of stresses
and strains, the law has to be adjusted in function of the element thickness he. Then,
the resultant area ge is the dissipated energy by unit of volume at the corresponding
integration point of the finite element. This energy is equal to the fracture toughness
of the material divided by the finite element thickness (see Eq. 29). This approach
follows the called Crack Band Model suggested by Bažant and Oh (1983), which
is the procedure normally used to ensure the correct energy dissipation and mesh
independency in continuum damage models.

E = GcAcrack = ge(Acrackhe) ⇒ ge =
Gc

he
(29)

The dissipated energies for each case are illustrated in Fig. 4.
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Figure 4: Constitutive charts defined by stresses and relative displacements (left),
or by stresses and strains (right).

3.2 Penalty stiffness

If cohesive volumetric elements are used, the penalty stiffness is here varied in
function of the mixed-mode ratio. Its definition can be done in function of the ele-
ment thickness and the elastic properties of the modelled interface material (Allix
et al. (1995)). In particular, Eq. 30 defines the penalty stiffness for pure mode I,
and Eq. 31 defines the penalty stiffness for pure modes II or III (shear):

K1 =
Em

he
(30)

K2 =
Gm

he
(31)

where Em is the Young’s modulus and Gm is the shear elastic modulus of the in-
terface material. Normally, the elastic properties of the interface material are con-
sidered as the neat material, although it is generally not true (Corigliano and Allix
(2000)).

For surface cohesive elements, the penalty stiffness is selected with a fixed value for
all mixed-mode ratios. Ideally, the value of the penalty stiffness is infinite because
these elements do not have thickness, and then they do not affect the compliance
of the whole structure (Remmers et al. (2003)). However, too high value of the
interface stiffness can generate numerical problems such as the generation of spuri-
ous oscillations in the tractions of the element (Schellekens and De Borst (1993)).
Therefore, a suitable value of the penalty stiffness should be selected in order to
provide a reasonable stiffness without generating numerical problems. Based in
mechanical considerations, Turon et al. (2007) proposed Eq. 32 in order to esti-
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mate the interface stiffness K for mode I crack propagation.

K =
αE33

t
(32)

E33 is the elastic modulus through-the-thickness of the composite material, α is
an increasing parameter (normally it is taken about α ≈ 50), and t is the laminate
thickness adjoining to the cohesive element. Eq. 32 also can be developed for
shear modes, by replacing E33 by the shear elastic modulus. However, since the
model formulation for surface elements assumes the same penalty stiffness for each
mixed-mode ratio, Eq. 32 is used for all cases because it gives the biggest value.

3.3 Redefined onset and propagation damage criteria

Since the penalty stiffness for the volumetric elements is a function of the mixed-
mode ratio, the onset and propagation damage criteria written in terms of relative
displacements must be redefined. However, the procedure used in sections 2.3 and
2.4 to find these expressions can not be exactly applied here because the function
which describes the variation of the penalty stiffness under a determined mixed-
mode ratio is unknown.

In order to find the onset criterion, Eq. 33 is used. This equation is the damage
criterion with the corresponding elastic energy terms replaced (i.e. Eq. 25 with
different penalty stiffness for pure mode I and pure shear mode). On the other hand,
Eq. 34 represents the elastic energy of the constitutive equation defined in terms of
relative displacements of pure mode I, ∆∆∆o

3 (β ), and pure shear mode, ∆∆∆o
shear (β ), for

damage onset in a determined mixed-mode ratio.

Go (β ) =
1
2

K1 (∆∆∆o
3)

2 +
(

1
2

K2 (∆∆∆o
shear)

2− 1
2

K1 (∆∆∆o
3)

2
)

Bη (33)

ψ (β ) =
1
2

K1 〈∆∆∆o
3 (β )〉2 +

1
2

K2 (∆∆∆o
shear (β ))2 (34)

Using Eq. 33 and 34, and the selected definition of the mixed-mode ratio (Eq. 21),
the terms ∆∆∆o

3 (β ) and ∆∆∆o
shear (β ) can be found:

〈∆∆∆o
3 (β )〉=

 2Go (β )

K1 +
(

β

1−β

)
K2

 1
2

(35)

∆∆∆
o
shear (β ) =

(
β

1−β

) 1
2

〈∆∆∆o
3 (β )〉 (36)
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Finally, the onset damage criterion is obtained by taking the Euclidian norm of the
relative displacements described by Eq. 35 and 36 (see section 2.1):

∆∆∆
o =

(
〈∆∆∆o

3 (β )〉2 +(∆∆∆o
shear (β ))2

) 1
2

(37)

In the same sense, the propagation damage criterion can be deduced. In this case,
Eq. 38 represents the damage criterion with the corresponding pure fracture tough-
ness terms replaced (i.e. Eq. 22 with different penalty stiffness for pure mode I and
pure shear mode). On the other hand, Eq. 39 is the fracture toughness for a given
mixed-mode ratio defined in terms of relative displacements for damage onset in
pure modes I and shear, ∆∆∆o

3 (β ) and ∆∆∆o
shear (β ), and for damage propagation, ∆∆∆

f
3 (β )

and ∆∆∆
f
shear (β ).

Gc (β ) =
1
2

K1∆∆∆
o
3∆∆∆

f
3 +
(

1
2

K2∆∆∆
o
shear∆∆∆

f
shear−

1
2

K1∆∆∆
o
3∆∆∆

f
3

)
Bη (38)

Gc (β ) =
1
2

K1 〈∆∆∆o
3 (β )〉

〈
∆∆∆

f
3 (β )

〉
+

1
2

K2 (∆∆∆o
shear (β ))

(
∆∆∆

f
shear (β )

)
(39)

where ∆∆∆o
3 (β ) and ∆∆∆o

shear (β ) are previously found by means of Eq. 35 and 36.

By equalling Eq. 38 and 39, and by using again the definition of the mixed-mode
ratio (Eq. 21), the terms ∆∆∆

f
3 (β ) and ∆∆∆

f
shear (β ) can be found:

〈
∆∆∆

f
3 (β )

〉
=

K1 (1−Bη)∆∆∆o
3∆∆∆

f
3 +K2Bη∆∆∆o

shear∆∆∆
f
shear〈

∆∆∆o
3 (β )

〉(
K1 +

(
β

1−β

)
K2

) (40)

∆∆∆
f
shear (β ) =

(
β

1−β

) 1
2 〈

∆∆∆
f
3 (β )

〉
(41)

Finally, the propagation damage criterion is obtained by making the Euclidian norm
of the relative displacements described by Eq. 40 and 41 (see section 2.1):

∆∆∆
f =
(〈

∆∆∆
f
3 (β )

〉2
+
(

∆∆∆
f
shear (β )

)2
) 1

2

(42)

It should be noted that the B parameter must be redefined by Eq. 43, since the
penalty stiffnesses in pure mode I and shear modes are different and then they can
not be simplified.

B =
K2β

K2β +K1 (1−β )
(43)
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If Eq. 30 and 31 are replaced in Eq. 43, the B parameter can be also defined in
function of the elastic properties considered for the interface material. That is:

B =
Gmβ

Gmβ +Em (1−β )
(44)

4 Model Implementation

4.1 Strategy of implementation

The delamination model presented by Turon et al. (2006) was implemented in a
user-written element subroutine called UEL (Abaqus 6.8 (2008)). This implemen-
tation was used to simulate problems in an implicit finite element code. However,
the model formulated in sections 2 and 3 is here implemented in a user-written
material subroutine, called VUMAT, assigned for explicit finite element analysis.

The user material implemented has to be defined on sets of elements which repre-
sent the delamination layers. These elements can be zero-thickness (i.e. surface el-
ements) or non-zero-thickness (i.e. continuum elements) types. In particular, when
a zero-thickness interface is used, in-plane cohesive elements with four integra-
tion points of the Abaqus element library must be used (Aymerich et al. (2008)).
This element is called COH3D8. However, when non-zero-thickness interface is
desired, any tri-dimensional solid element can be applied.

When surface elements are used, the input data given by the finite element software
to the user material subroutine is directly the increment of the relative displacement
vector, whereas the input data for continuum elements is the increment of the strain
tensor. In order to use the same subroutine for both element types, Eq. 28 is
applied to transform easily the corresponding strain tensor components to relative
displacements (see Fig. 5). On the other hand, if surface elements are used, a
constitutive thickness equal to the unity has to be introduced in the user material
subroutine which ensures that the strains are equal to the relative displacements.

4.2 Input variables to define the model in a user material subroutine

The parameters required to define completely the model in a user material subrou-
tine are described below:

• Elastic properties and density of the interface material (isotropic): Em, νm

and ρm.

By means of Em and νm the value of Gm can by calculated by using Eq. 45.
If surface elements are used, normally the value of Em is taken between 105

and 5e6 N/mm3 for a sub-laminate thickness between 0.125 mm and 5 mm
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Figure 5: Transformations from strains to relative displacements for each propaga-
tion mode.

(Turon et al. (2007)), and the Poisson coefficient νm must be equal to -0.5 in
order to obtain the same penalty stiffness for all mixed-mode ratios.

Gm =
Em

2(1+νm)
(45)

• Thickness of the interface cohesive element: he.

If surface elements are used, the value of the constitutive thickness intro-
duced in the subroutine must be equal to the unity (although the geometrical
thickness defined in the model is equal to zero).

• Interface strengths for pure mode I and shear modes (II and III): τo
3 and τo

1 .

The relative displacements which give the damage onset for pure mode load-
ing cases are obtained by means of the interface strengths. The corresponding
equations are:

∆∆∆
o
3 =

τo
3

K1
(46)

∆∆∆
o
shear =

τo
1

K2
(47)
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• Interface fracture toughness for pure mode I and shear modes (II and III): GIc

and GIIc.

The relative displacements which give the damage propagation for pure mode
loading cases are obtained by means of pure mode fracture toughnesses. The
corresponding equations are:

∆∆∆
f
3 =

2GIc

K1∆∆∆o
3

=
2GIc

τo
3

(48)

∆∆∆
f
shear =

2GIIc

K2∆∆∆o
shear

=
2GIIc

τo
1

(49)

• Parameter of the least-square fit: η .

The experimental data used to calculate η is obtained from MMB tests (Mixed-
Mode Bending) at different mode ratios.

4.3 Algorithm

The steps of the algorithm implemented in the user material subroutine repeated
for each stable time increment ∆∆∆t are numbered below:

0. Read the properties defined and calculate the model parameters (see previous
sections 3.2 and 4.2).

1. Calculate the strain components at time t +∆∆∆t.

εit+∆∆∆t = εit +∆∆∆εit+∆∆∆t

{
i = 1, ...,3 (sur f aceelement)
i = 1, ...,6 (volumetricelement)

(50)

2. Calculate the relative displacements at time t +∆∆∆t for each propagation mode.

Mode I : ∆∆∆3t+∆∆∆t =

{
heε1t+∆∆∆t (sur f aceelement)
heε3t+∆∆∆t (volumetricelement)

Mode II : ∆∆∆1t+∆∆∆t =

{
heε2t+∆∆∆t (sur f aceelement)
heγ13t+∆∆∆t (volumetricelement)

Mode III : ∆∆∆2t+∆∆∆t =

{
heε3t+∆∆∆t (sur f aceelement)
heγ23t+∆∆∆t (volumetricelement)

(51)
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3. Application of the damage model, where the following terms are calculated:

∆∆∆sheart+∆∆∆t =
√

(∆∆∆1t+∆∆∆t)
2 +(∆∆∆2t+∆∆∆t)

2 (52)

λt+∆∆∆t =
√
〈∆∆∆3t+∆∆∆t〉2 +

(
∆∆∆sheart+∆∆∆t

)2 (53)

βt+∆∆∆t =
∆∆∆2

sheart+∆∆∆t

〈∆∆∆3t+∆∆∆t〉2 +∆∆∆2
sheart+∆∆∆t

(54)

Bt+∆∆∆t =
K2βt+∆∆∆t

K2βt+∆∆∆t +K1 (1−βt+∆∆∆t)
(55)

〈∆∆∆o
3 (β )〉t+∆∆∆t =

K1
(
1−Bη

t+∆∆∆t

)
(∆∆∆o

3)
2 +K2Bη

t+∆∆∆t

(
∆∆∆o

shear

)2

K1 +
(

βt+∆∆∆t
1−βt+∆∆∆t

)
K2

 1
2

(56)
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〉
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(
1−Bη

t+∆∆∆t

)
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3 +K2Bη
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o
shear∆∆∆

f
shear〈
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〉
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(
K1 +

(
βt+∆∆∆t

1−βt+∆∆∆t

)
K2

) (57)

(
∆∆∆

f
shear (β )

)
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βt+∆∆∆t

1−βt+∆∆∆t

) 1
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∆∆∆
f
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〉
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(58)
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3 (β )〉2t+∆∆∆t +(∆∆∆o
shear (β ))2
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) 1
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f
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f
3 (β )

〉2
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+
(

∆∆∆
f
shear (β )

)2

t+∆∆∆t

) 1
2

(60)

G(∆∆∆t+∆∆∆t) = min

 ∆∆∆
f
t+∆∆∆t

(
λt+∆∆∆t −∆∆∆o

t+∆∆∆t

)
λt+∆∆∆t

(
∆∆∆

f
t+∆∆∆t −∆∆∆o

t+∆∆∆t

) ,1

 (61)

• If G(∆∆∆t+∆∆∆t)≤ dt ⇒ dt+∆∆∆t = dt

→ Elastic reloading, unloading or neutral loading.

• If G(∆∆∆t+∆∆∆t) > dt ⇒ dt+∆∆∆t = G(∆∆∆t+∆∆∆t)
→Loading.

4. Calculate the stress vector at time t +∆∆∆t:

τt+∆∆∆t = Ct+∆∆∆tεt+∆∆∆t (62)

where:
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• For surface elements:

Ct+∆∆∆t =

(1−d∗t+∆∆∆t

)
Em 0 0

0 (1−dt+∆∆∆t)Gm 0
0 0 (1−dt+∆∆∆t)Gm

 (63)

where:

d∗t+∆∆∆t = dt+∆∆∆t

〈
ε1t+∆∆∆t

〉∣∣ε1t+∆∆∆t

∣∣ (64)

• For volumetric elements:

Ct+∆∆∆t =



Em(1−(1−d∗t+∆∆∆t)ν2
m)

ϒ
−νmEm(−1−(1−d∗t+∆∆∆t)νm)

ϒ

−νmEm(−1−(1−d∗t+∆∆∆t)νm)
ϒ

Em(1−(1−d∗t+∆∆∆t)ν2
m)

ϒ

νmEm(1−d∗t+∆∆∆t)
Φ

νmEm(1−d∗t+∆∆∆t)
Φ

0 0
0 0
0 0

νmEm(1−d∗t+∆∆∆t)
Φ

0 0 0
νmEm(1−d∗t+∆∆∆t)

Φ
0 0 0

−Em(1−d∗t+∆∆∆t)(1−νm)
Φ

0 0 0
0 Gm 0 0
0 0 (1−dt+∆∆∆t)Gm 0
0 0 0 (1−dt+∆∆∆t)Gm


(65)

where:

Φ = 1−2ν
2
m
(
1−d∗t+∆∆∆t

)
−νm (66)

ϒ = 1−2ν
3
m
(
1−d∗t+∆∆∆t

)
−ν

2
m
(
3−2d∗t+∆∆∆t

)
(67)

d∗t+∆∆∆t = dt+∆∆∆t

〈
ε3t+∆∆∆t

〉∣∣ε3t+∆∆∆t

∣∣ (68)

5. Calculate the energy dissipated at time t +∆∆∆t:

Dt+∆∆∆t = Dt +D∆∆∆t (69)

where Dt and D∆∆∆t are the accumulated and the increment of the dissipated
energy, respectively. The determination of D∆∆∆t is given by Eq. 70:

D∆∆∆t =
1
2

(
dt+∆∆∆t −dt

∆∆∆t

)(
K1

(
∆∆∆

2
3t+∆∆∆t

+∆∆∆3t+∆∆∆t

〈
−∆∆∆3t+∆∆∆t

〉)
+K2

(
∆∆∆

2
1t+∆∆∆t

+∆∆∆
2
2t+∆∆∆t

))
(70)
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6. Calculate the free energy at time t +∆∆∆t.

ψt+∆∆∆t =
1
2

(
(1−dt+∆∆∆t)

(
K2

(
∆∆∆

2
1t+∆∆∆t

+∆∆∆
2
2t+∆∆∆t

)
+K1

(
∆∆∆

2
3t+∆∆∆t

))
−dt+∆∆∆tK1

(
∆∆∆3t+∆∆∆t

〈
−∆∆∆3t+∆∆∆t

〉))
(71)

7. Calculate the internal energy at time t +∆∆∆t.

Ut+∆∆∆t = ψt+∆∆∆t +Dt+∆∆∆t (72)

5 Dimensions of Cohesive Elements

5.1 Maximum thickness of volumetric cohesive elements

For each mixed-mode ratio there is a maximum thickness of the cohesive elements
in the direction perpendicular to the crack propagation plane. This is due to the fact
that the propagation criterion defined in terms of relative displacements remains
constant and the onset criterion changes whether the element thickness changes.
The reason of the onset criterion changes is due to the introduction of penalty stiff-
ness dependency with element thickness (see Eq. 30 and 31). Since the onset cri-
terion should be reached before the propagation criterion, equalizing both criteria
the maximum cohesive thickness he,max is obtained for a given mixed-mode ratio
β . The resulting equation which defines the maximum thickness of the cohesive
element, he,max, is:

he, max =
2(GIc +(GIIc−GIc)Bη)

(τo
3)

2

Em
+
(

(τo
1)

2

Gm
− (τo

3)
2

Em

)
Bη

(73)

By means of Eq. 73 it is possible to plot the variation of the maximum cohesive
element thickness as a function of the mixed-mode ratio, which is included in pa-
rameter B by Eq. 43. Taken into account the material properties shown in Tab. 2
and 3, the evolution of the maximum thickness is plotted in Fig. 6.

Eq. 73 can also be obtained by using the onset and propagation criteria defined
in terms of strains. In this case, the onset criterion remains constant versus the
variations of the thickness, whereas the propagation criterion changes in order to
assess the correct energy dissipation independently of the mesh size.

Normally, the cohesive element thickness is defined with a small value (e.g. be-
tween 0.001 and 0.1 mm) and certainly the value used will be smaller than the
maximum value given by Eq. 73.
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Figure 6: Evolution of the maximum element thickness in function of the mixed-
mode ratio.

Using again the material properties shown in Tab. 2 and 3, the variation of the onset
criterion of the constitutive equation defined in terms of relative displacements and
the variation of the propagation criterion of the constitutive equation chart defined
in terms of strains are shown in Fig. 7. These charts correspond to the simulations
in one element with constant in-plane dimensions under pure mode I loading.
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5.2 In-plane dimensions of the cohesive elements

The in-plane dimensions of the cohesive elements are selected following the con-
siderations and equations proposed by Turon et al. (2007). In particular, the in-
plane dimensions are defined by means of the cohesive zone length lcz, which is a
material and structural property (Yang and Cox (2005)). It is defined as the distance
from the crack front until the point with the maximum interface strength τo. To ob-
tain suitable results by using cohesive zone models, the tractions in the cohesive
zone have to be represented correctly by a proper number of elements.

The model that will be used in this paper in order to predict the length of the cohe-
sive zone was proposed by Rice (1980), and reads:

lcz =
9π

32
Em

Gc (β )
(τo (β ))2 (74)

where Em is the Young’s modulus, and Gc (β ) and τo (β ) are the fracture toughness
and the maximum strength of the interface for a given mixed-mode ratio, respec-
tively.

The length of the cohesive elements le is easily calculated by means of:

le =
lcz

Ne
(75)

where Ne is the number of elements in the cohesive zone. Normally, the smallest
value of the cohesive zone length resulted from the different values of mixed-mode
ratio is used, and it is recommended to apply at least three or four elements in order
to describe the cohesive zone accurately.

6 Simulations

This section presents the application of cohesive elements in the simulation of in-
terlaminar fracture tests of composite specimens under quasi-static loading con-
ditions. These tests allow the validation of the damage model presented without
consider the interaction with other damage mechanisms which can appear inside
the layers, because the damage is normally concentrated in interfaces where only
delamination occurs.

First, Mixed-Mode Bending (MMB) and End-Notched Flexure (ENF) tests of uni-
directional zero degree layup specimens with an initial pre-crack are considered
(see section 6.2). The MMB allows to test any mixed-mode case except pure mode
II, which is obtained by the ENF test. The cases simulated are B =0.0 (pure mode
I), B =0.2, B =0.5, B =0.8 and B =1.0 (pure mode II). It should be noted that
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only non-zero-thickness elements have been used in all the simulations considered,
which represent a resin-rich interface layer.

Different mixed-mode analyses at one finite element were simulated previously
in order to check that the predicted dissipated energy at each integration point is
equal to the corresponding fracture toughness adjusted by the least square fit of
experimental data points of the selected material (see Tab. 3).

Simulations of quasi-static Transverse Crack Tension tests (TCT) of unidirectional
zero degree layup specimens are also shown (see section 6.3). The TCT test is an
alternative to the ENF test, which determines pure mode II interlaminar fracture
toughness (Prinz and Cao (1989)).

Finally, the numerical considerations in order to carry out quasi-static simulations
by using an explicit finite element code are explained in detail.

6.1 Model considerations for quasi-static explicit simulations

The proposed simulations are solved by means of an explicit finite element code.
As it has been explained in the introduction, the explicit integration schemes deter-
mine a solution to the dynamic equilibrium of the global set equations by explicitly
advancing the kinematic state from the previous time increment, without solving
simultaneously equations and without iterating for each time increment. For this
reason, the formulation of the tangent stiffness tensor is not derived since no iter-
ations are carried out. Therefore, the accelerations, velocities and displacements
are calculated explicitly at each node recurring to a simple central differences rule
applied over a time increment.

For linear and nonlinear problems alike, explicit methods require a small time in-
crement size which is independent of the type and duration of loading, and depends
solely on the highest natural frequency ωmax and on the critical damping ξ in the
mode with the highest frequency. That is:

∆∆∆tstable ≤
2

ωmax

(
ξ

√
1+ξ 2

)
(76)

Alternately, instead of looking at the global model, a simple estimate which is
efficient and conservative can be used. It is based on the highest frequency of
each individual finite element of the model, which is always associated with the
dilatational mode. It can be shown that the highest element frequency determined
is always higher than the highest frequency in the assembled finite element model.
Then, this method is more conservative, because it will give a smaller stable time
increment than the true stability limit that is based on the maximum frequency of
the entire model. Based on these observations, the stability limit can be approached
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by means of the called Courant condition which considers the minimum dimension
of the element Le and the wave speed of the material cm:

∆∆∆tstable ≤
Le

cm
(77)

where the wave speed is a material property:

cm =

√
Em

ρm
(78)

where Em and ρm represent the bulk stiffness and the density, respectively, of the
interface material (Bergan and Mollestad (1985); Abaqus 6.8 (2008)).

Eq. 77 shows that the stable time increment is roughly proportional to the shortest
element dimension, and then it is advantageous to keep the element size as large
as possible. However, the use of cohesive elements reduces the time increment
due to their small thickness. There are some actions to alter one or more of the
factors influencing the time increment. The action here considered for increasing
the efficiency of the proposed simulations is to scale the mass density of these
critical elements (i.e. mass scaling).

Static problems have a large time solution, which often it is unworkable to analyze
the simulation in its real scale of time using an explicit code because requires an
excessive number of stable small increments of time. To obtain a faster solution,
the event should be accelerated in some way, but ensuring that the inertial forces
remain insignificant. With the use of Rayleigh damping and a modification to the
density, a solution to a non-linear static problem can be obtained in a realistic time
(Iannucci (2006)). In order to control the proposed simulations, the kinetic energy
and the internal energy are monitored in order to keep the kinetic energy less than
5% of the internal energy of the system. This is sometimes referenced to as dynamic
relaxation (Papadrakakis (1981); Sauvé and Metzger (1995)).

On the other hand, the loading velocity should be such that the solution obtained is
close to the real static solution and the dynamic effects remain insignificant. In an
approximate way, the maximum loading velocity could be estimated by means of:

vL < 0.01

√
Em

ρm
(79)

The loading velocity defined in all the simulations is 0.5 mm/s, which is much
lower than the maximum value given by Eq. 79 (see interface properties in Tab. 2
and 7).
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Quasi-static analyses in explicit algorithms require the application of loading as
smooth as possible. Sudden movements cause stress waves, which can introduce
noisy or inaccurate results. Applying the load in the smoothest possible manner
requires that the acceleration changes only a small amount from one time incre-
ment to the next. Then, if the acceleration is smooth, it follows that the changes
in velocity and displacement are also smooth. This option can be defined easily in
Abaqus software by selecting a smooth amplitude table of loading in all the pro-
posed simulations. By defining it, Abaqus software connects automatically each of
the user data pairs of loading with curves, whose first and second derivatives are
smooth, and whose values are zero at each of user loading data points (Abaqus 6.8
(2008)).

It has to be noted that the selected mass scaling factor for critical elements is con-
siderably high (≈ 1.0e3). However, since the boundary displacements are applied
in a smooth manner and in a large time scale, the kinetic energy and the inertial
forces of the model remain small.

In all simulations proposed, Rayleigh Damping is applied, which damps lower (i.e.
mass-dependent) and higher (i.e. stiffness-dependent) frequency range behaviours.
Rayleigh Damping is defined by means of two damping factors: the mass propor-
tional damping αR which damps the lower frequencies, and the stiffness propor-
tional damping βR which damps the higher frequencies. The mass proportional
damping factor introduces damping forces caused by the absolute velocities of the
model and so simulates the model moving through a viscous media. A mass pro-
portional damping factor is adopted in order to improve the dynamic simulation to
a quasi-static solution. In all the simulations, the value defined is set to critically
damp the lowest frequency of the model (Abaqus 6.8 (2008)). On the other hand,
the stiffness proportional damping factor adds damping stress to the stress caused
by the constitutive response at the integration point. However, in all simulations
the high frequency noise expected is not observed probably due to the viscosity
coefficients used to control the unrealistic hourglass modes generated from single
integration elements and also by the default introduction of a small amount of nu-
merical damping in the form of bulk viscosity to control high frequency oscillations
(Iannucci (2006)). Therefore, no stiffness proportional Rayleigh damping is de-
fined which it is favourable consideration since this factor often implies a dramatic
drop in the stable time increment.

Finally, the cohesive elements which reach the maximum damage value at their in-
tegration points are deleted from the mesh. These deleted elements have no ability
to carry stresses and, therefore, have no contribution to the stiffness of the model.
This action avoids large deformations of the damaged elements, and possible spu-
rious stress transfer to the bodies around them. However, if damaged elements are
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deleted, penetration between the joined laminates can occur, mainly in tests with
high percentage of mode II. To avoid it, a contact pair surfaces without friction
have been defined between the two laminate surfaces that were initially linked by
the cohesive elements.

6.2 MMB and ENF fracture toughness tests

The simulations of quasi-static MMB and ENF tests of unidirectional zero degree
layup specimens are analysed in this section.

6.2.1 Configuration of the tests

The loading conditions in the MMB simulations are defined by means of the linear
Eq. 80 which relates the displacements in three different points of the specimen
(Camanho et al. (2003)):

ΛLP =
( c

L

)
ΛI +

(
c+L

L

)
ΛM (80)

where L is the half specimen length and c is the length from the loading point
(LP) to the middle point (M) of the specimen. The different mixed-mode cases are
generated by modifying the length c, which reads:

c =
L
(

1
2

√
3
(1−B

B

)
+1
)

3− 1
2

√
3
(1−B

B

) (81)

In Fig. 8 are marked the points LP, M, and I where the displacements are pre-
scribed.

 
Figure 8: MMB test configuration.
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Figure 9: ENF test configuration.

The loading conditions of the ENF test are also defined by displacements. Just as
indicates Fig. 9, it is applied a displacement in the middle point M of the specimen.

The numerical results are compared with experimental data performed by Reeder
and Crews (1990, 1991 and 1998) to validate the model. These results are presented
in a force-displacement chart. For the MMB test, the results are read at point LP
(Fig. 8), and in point M for the ENF test (Fig. 9).

6.2.2 Sizes and types of the elements

An 8-node solid element with reduced integration (one integration point) is used
to model the laminates and volumetric cohesive elements. This element is called
C3D8R (Abaqus 6.8 (2008)). For all simulations, each laminate thickness is mod-
elled by four elements, which is enough to capture accurately the laminate rotations
during the simulations. The thickness defined for the interface elements is 0.01 mm,
which is much smaller than the value obtained by means of Eq. 73 (see Fig. 6).

On the other hand, the in-plane length of the cohesive element is determined by
Eq. 74 and 75. If three elements are desired to be along the cohesive length, the
maximum in-plane length at the crack propagation direction is of 0.45 mm. The
length finally used is 0.3 mm for all the simulations. It is not necessary to define a
small length element at width specimen direction because the crack propagates on
the opposite direction. Therefore, the specimen width is modelled by using only
two elements.

6.2.3 Materials and specimen dimensions

The material used is a thermoplastic matrix-based reinforced by unidirectional car-
bon fibres (AS4/PEEK). The properties are set in Tab. 1.

The material properties defined to the interface elements are defined in Tab. 2, and
are selected by considering that these elements represent a resin-rich layer. The
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Table 1: AS4/PEEK properties.

E11 E22 = E33 G12 = G13 G23 ν12 = ν13 ν23 ρ

(MPa) (MPa) (MPa) (MPa) (t/mm3)
122700 10100 5500 3700 0.25 0.45 1600e-12

pure mode fracture toughnesses (see section 4.2) of the interface are written in Tab.
3.

Table 2: Interface properties.

Em νm ρm τo
3 τo

1 = τo
2

(MPa) (t/mm3) (MPa) (MPa)
10100 0.3 1600e-12 80 100

Table 3: Fracture toughnesses of the interface for different mixed-mode ratios
(Reeder and Crews (1991 and 1998)).

GII/GT 0% 20% 50% 80% 100%
(MMB) (MMB) (MMB) (MMB) (MMB)

Gc (N/mm) 0.969 1.103 1.131 1.376 1.719
Initial crack
length:
a0(mm)

32.9 33.7 34.1 31.4 39.2

The parameter η is taken 2.284, which is obtained by means of a least-square fit of
the experimental data exposed in Tab. 3.

The specimen dimensions are: 102 mm long, 25.4 mm wide, and each laminate
arm is 1.56 mm thick.

6.2.4 Results

The force-displacement relations obtained in the experiments and in the finite el-
ement simulations of the MMB test for each proposed mixed-mode case: B =0.0
(pure mode I), B =0.2, B =0.5, and B =0.8 are respectively shown in Fig. 10, 11,
12, 13. The results of the ENF test (B =1.0, pure mode II) are shown in Fig. 14.

The corresponding analytical expressions for MMB test with B =0.0 (pure mode I)
and ENF test which give the relationship of the critical load and the displacement
during propagation are also plotted in the corresponding figures. These equations
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are set in Tab. 4 and 5, and are deduced by using Linear Elastic Fracture Mechanics
and Simple Beam Theory (Kinloch et al. (1993); Carlsson et al. (1986)). In these
equations, E11 is the longitudinal elastic modulus of the specimen, a is the crack
length, and b, h and L are the width, the arm height and the half length of the
specimen, respectively.

Table 4: Analytical equations of MMB test with B = 0.0.

MMB Test: B = 0.0 (pure mode I)

Critical load Pc =
(

E11b2h3GIc
12a2

) 1
2

Compliance C = ΛLP
P = 8a3

bE11h3

Table 5: Analytical equations of ENF test B = 1.0 (pure mode II).

ENF Test: B = 1.0 (pure mode II)

Critical load Pc =
(

16E11b2h3GIIc
9a2

) 1
2

Compliance C = ΛLP
P = 3a3+2L3

8bE11h3
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Figure 10: Experimental and numerical force-displacement relation of the MMB
test B = 0.0 (pure mode I).
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Figure 11: Experimental and numerical force-displacement relation of the MMB
test B = 0.2.
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Figure 12: Experimental and numerical force-displacement relation of the MMB
test B = 0.5.

6.2.5 Discussion

The charts obtained by numerical simulations of the proposed tests are in a good
agreement with the experimental data. The predicted case of B= 0.0 (pure mode
I) is the most far of the corresponding experimental chart. This difference is not
due to limitations of the numerical simulations, but rather to the fact that the ex-
perimental fracture toughness used corresponds to the onset delamination and not
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Figure 13: Experimental and numerical force-displacement relation of the MMB
test B = 0.8.
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Figure 14: Experimental and numerical force-displacement relation of the ENF test
(pure mode II).

to the propagation, which is normally larger than the onset fracture toughness. The
analytical model which gives the relationship of the critical load and the displace-
ment during propagation is plotted. The fracture toughness specified is Gc = 0.969
N/mm (see Tab. 3), and the numerical curve shows an excellent correlation with the
descending part of the analytical load-displacement curve. On the other hand, the
analytical model corresponding to the ENF test with a fracture toughness of Gc =
1.719 N/mm (see Tab. 3) is plotted in Fig. 14, which also shows a good agreement
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between the analytical load-displacement curve and the numerical prediction.

Once the delamination is initiated, oscillations are observed in all predictions.
However, the amplitude of these oscillations has been reduced by considering vis-
cous algorithms and damping factors, by increasing the mesh refinement, and by
reducing the loading velocity. Other possibility allowed for propagation tests which
was not exposed here is to reduce the interface strength (Elmarakbi et al. (2006)).

In part, the oscillations which appear in a quasi-static explicit simulation may be a
consequence of the constitutive equation shape. For implicit simulations, the shape
of the constitutive equation does not affect to the results, whenever the fracture
toughness is correctly accounted and the initial stiffness and maximum traction are
reasonably consistent with the stiffness and strength of the material being mod-
elled. However, in quasi-static explicit simulations, the shape has an important role
for the stability simulation. The equation used has two discontinuities, one at ini-
tiation damage onset and other in the damage propagation. In some cases, stress
waves appear at these points whose generate high frequency vibrations that break
the cohesive element at the neighbourhood. Therefore, an attractive solution is to
use constitutive equation shapes without discontinuities (Pinho et al. (2006)).

6.3 TCT tests

The simulations of quasi-static Transverse Crack Tension tests (TCT) of unidirec-
tional zero degree layup specimens are analysed in this section.

6.3.1 Configuration of the TCT tests

The TCT specimens are manufactured by continuous fibre laminates with unidirec-
tional stacking order whose central plies are cut prior to curing, as shown in Fig.
15. When these specimens are loaded by tension, delaminations develop under pure
mode II. Such laminates are referred by [0m, 6 0n]s, where the slash indicates the cut
plies.

The TCT specimens can be tested with or without pre-cracks previously induced.
The specimens with pre-cracks are those undergoing a determined number of fa-
tigue cycles at near-threshold loading for delamination growth. For no pre-cracked
specimens, the gap between cut plies is a resin rich region which delaminates un-
der pure mode I. Next, at certain load level, delamination starts at the corner point
between cut and continuous plies along the fibre direction and quickly develops
under pure mode II to certain length or full-scale. For pre-cracked specimens, this
pre-delamination phase is not experimented since small initial interface cracks are
previously created (Ye et al. (1990)). Consequently, the resulting critical load
and fracture toughness are more representative in these specimens than for no pre-
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cracked specimens.

The TCT test is then an alternative to the ENF test (König et al. (1997)). It is
assumed that in the TCT test there is less sliding friction between the delaminated
plies than in the ENF test. A second advantage concerns compliance calibration for
data reduction. The compliance of the TCT specimen is less sensitive to the error in
crack length measurement, because the compliance is related linearly to the crack
length a (see Eq. 82), whereas for the ENF specimen the compliance is related to
a3 (see Tab. 5).

C =
Λ

P
=

L(t− tc)+2atc
bt (t− tc)E11

(82)

E11 is the longitudinal elastic modulus of the specimen, a is the length of one crack,
and tc is the whole thickness of cut central plies. The geometrical variables L, b and
t are the length, width, and total thickness of the specimen, respectively (see Fig.
15).

 
Figure 15: TCT specimen.

From the evaluation of the compliance C and the delamination length a (see Eq.
82), the fracture toughness GIIc can be derived for a constant specimen width b as:

GIIc =
1
4

tcP2
c

b2E11t (t− tc)
(83)

The factor 1/4 is introduced because there are four crack tips. Eq. 83 shows that
GIIc can be obtained by determining solely the critical load Pc.

Only no pre-cracked specimens are simulated. The laminates considered are: [02, 6
04]s, [04, 6 04]s and [04, 6 08]s. The numerical results obtained are basically the critical
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load Pc for delamination propagation, and are compared with experimental values
performed by Ye et al. (1990).

6.3.2 Sizes and types of the elements

Two delamination planes are modelled in the TCT specimens, as shown in Fig.
16. One corresponds to the interface of the cut central plies which delaminates
under pure mode I, and is modelled by using zero-thickness type elements with
four integration points of the Abaqus element library (i.e. COH3D8). The other
delamination plane corresponds to the interface between cut and continuous plies
along the fibre direction which delaminates under pure mode II. In this case, the
interface is modelled by using non-zero-thickness type elements with reduced inte-
gration (i.e. C3D8R). The thickness defined for this interface is 0.01 mm, which is
much smaller than the value obtained by means of Eq. 73. The in-plane length of
these elements at the crack propagation direction is determined by means of Eq. 74
and 75. If three elements are desired to be along the cohesive length, the maximum
in-plane length is of 0.37 mm. The length finally used is 0.33 mm.

 
Figure 16: Detail of the location of the cohesive elements.

The specimen width is meshed with five elements, and each ply thickness with
two elements. The composite material is modelled by using also C3D8R elements.
Only half thickness of the specimen is modelled by defining symmetric boundary
conditions.

6.3.3 Materials and specimen dimensions

The composite material used is an epoxy matrix-based reinforced by unidirectional
carbon fibres (T300/914C). The properties are extracted from Ye et al. (1990) and
set in Tab. 6.

The material properties defined to the interface elements located between cut and
continue plies are shown in Tab. 7, and are selected by considering that these
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elements represent a resin-rich layer. The fracture toughness GIIc is obtained by
testing pre-cracked TCT specimens (Ye et al. (1990)). For zero-thickness cohesive
elements the properties are equal than those set in Tab. 7 except the elastic modulus
(i.e. penalty stiffness) which is set 1e6, and in order to obtain the same penalty
stiffness for all propagation modes the Poisson modulus is set equal to -0.5.

Table 6: T300/914C properties.

E11 E22 = E33 G12 = G13 G23 ν12 = ν13 ν23 ρ

(MPa) (MPa) (MPa) (MPa) (t/mm3)
129000 9256 MPa 5000 MPa 3306 MPa 0.28 0.4 1600e-12

Table 7: Interface properties.

Em νm ρm τo
3 τo

1 GIc GIIc

(MPa) (t/mm3) (MPa) (MPa) (N/mm) (N/mm)
9256 0.3 1600e-12 50 59 0.17 0.467

The parameter η is approached to 1.47, which is obtained by means of least-
square fit of mixed-mode fracture toughnesses obtained in MMB tests (König et
al. (1997)).

The dimensions of the specimens are: 140 mm long (L), 20 mm wide (b), and the
ply thickness is approximately 0.125 mm. The total length of the specimens is 380
mm (W ).

6.3.4 Results and discussion

The load-displacement relations obtained in the finite element simulations of each
TCT specimen are plotted in Fig. 17. These Figures show a peak load which
corresponds to the point where the interface of the cut central plies is completely
damaged. Next, stationary load values appear after the drop of the peak loads (i.e.
after the pre-delamination phase). These stationary loads are the critical loads for
pure mode II delamination of the interface between cut and continue plies. By
means of Eq. 83 and the numerical critical loads obtained, the fracture toughness
GIIc can be predicted. The results are set in Tab. 8 and show a good agreement
with the value defined in the model: GIIc = 0.467 N/mm. On the other hand, a
comparison of the results shown in Tab. 8 indicates good correlation between the
predicted peak loads and the corresponding experimental values.
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Figure 17: Numerical load-displacement relations for the TCT specimens.

Table 8: Experimental and numerical results.

Laminate Experimental Numerical Numerical Numerical
Ppeak (N) Ppeak (N) Pc (N) GIIc (N/mm)

[02, 6 04]s 8500 8963 8600 0.478
[04, 6 04]s 15219 14380 14200 0.488
[04, 6 08]s 14321 13080 12100 0.473

7 Conclusions

The formulation and implementation of a thermodynamically consistent damage
model for the simulation of progressive delamination in composite materials under
variable mixed-mode ratio by using an explicit finite element code was presented.
The model was formulated in the context of Damage Mechanics, and implemented
by means of a user-written material subroutine. The user material can be defined on
sets of elements that represent the possible location for delamination. The elements
can be selected to have zero-thickness (surface elements) or non-zero-thickness
(continuum elements).

The model was used to simulate the initiation and propagation of delamination in
fracture toughness tests (MMB, ENF and TCT) under quasi-static loading condi-
tions. The examples analyzed are in good agreement with the test results, and
they indicate that the proposed formulation can predict the delamination process
of composite structures that exhibit progressive delamination. It should be noted
that some numerical predictions have showed some stability problems or oscilla-
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tions which have been reduced significantly by considering viscous algorithms and
damping factors, by increasing the mesh refinement, and by reducing the loading
velocity during the crack propagation process. However, these oscillations may
be reduced even more by modifying the shape of the constitutive equation to one
without discontinuity points.

To make use of the damage model implemented and of the explicit finite element
code, the next step is to simulate low-velocity impacts of foreign objects on mono-
lithic laminated composite plates, where the delamination generally propagates un-
der variable mixed-mode conditions. In these analyses, the study of the shape and
extension of the delamination at interfaces between mismatch orientation layers is
of great interest since the delamination can reduce dramatically the damage toler-
ance of the structure. In order to carry out an accurately prediction, an intralaminar
damage model must be added in these analyses (such as the model developed in
Maimí et al. (2007a) and (2007b)), since impact loading conditions creates in-
tralaminar damage mechanisms which interact with the delamination failure mode.
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