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A Discrete Fourier Transform Framework for Localization
Relations
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Abstract: Localization relations arise naturally in the formulation of multi-scale
models. They facilitate statistical analysis of local phenomena that may contribute
to failure related properties. The computational burden of dealing with such re-
lations is high and recent work has focused on spectral methods to provide more
efficient models. Issues with the inherent integrations in the framework have led to
a tendency towards calibration-based approaches. In this paper a discrete Fourier
transform framework is introduced, leading to an extremely efficient basis for the
localization relations. Previous issues with the Green’s function integrals are re-
solved, and the method is validated against finite element analysis.

Keywords: Microstructure, crystal structure, elastic behavior, FEM, microme-
chanical modeling.

1 Introduction

Homogenization relations, linking a material’s properties at the mesoscale to those
at the macroscale, are fundamental tools for design and analysis of microstructure.
Such relations are often achieved through perturbation expansions [Beran (1968),
Dederichs and Zeller (1973), Willis (1981), Phan-Thien and Milton (1982)]. Re-
cent advances in this field have successfully applied spectral techniques to Kroner-
type perturbation expansions for polycrystalline and composite materials to provide
efficient inverse relations for materials design. More recently the same framework
has been used to provide ‘localization relations’ – determination of the local re-
sponse or its distribution, from a knowledge of the macroscale response employing
the same equations used in the calculation of effective properties [Duvvuru, Wu
and Kalidindi (2007), Binci, Fullwood and Kalidindi (2008), Kalidindi, Landi and
Fullwood (2008)]. The general framework may be applied to a range of material
responses with the same basic equations; these include fluid flow, diffusion, elec-
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tricity, magnetism and elasticity [Milton (2002)]. In this paper we focus on elastic-
ity, and in particular the local strain as determined from the variation of stiffness in
a material; other properties may be analyzed using an analogous route.

Numerical techniques for implementing such homogenization relations have ben-
efited enormously from the application of spectral techniques [Kalidindi, Landi
and Fullwood (2008), Adams, Henrie, Henrie, Lyon, Kalidindi and Garmestani
(2001), Adams, Kalidindi and Garmestani (2001), Adams, Lyon, Henrie, Kalidindi
and Garmestani (2002), Houskamp and Kalidindi (2007), Kalidindi and Duvvuru
(2005), Kalidindi, Duvvuru and Knezevic (2006)]. Such methods not only dra-
matically increase the efficiency of the numerical integrations, but they effectively
separate the geometry of the problem from the properties, enabling analysis and op-
timization of either aspect of the material design to be studied in isolation. Two par-
ticular bases used in such spectral frameworks are the primitive basis (see [Adams,
Gao and Kalidindi (2005)]) and generalized spherical harmonic functions (GSHF;
[Bunge P. R. Morris (1993), Adams (1986)]). The primitive basis provides the
benefit of a finite set of functions that are easy to apply and visualize, but lacks
the efficiency of the GSHF. In this paper the relations are implemented in a dis-
crete Fourier transform framework that combines advantages of both the primitive
and the GSHF bases, while improving the calculation time by orders of magnitude
using fast Fourier transforms (FFTs).

When applied to localization methods, analytical techniques, including spectral for-
mulations, have not proven to be accurate, and several studies have resorted to cal-
ibration techniques to achieve good results [Duvvuru, Wu and Kalidindi (2007),
Binci, Fullwood and Kalidindi (2008), Kalidindi, Landi and Fullwood (2008)]. In
order to address the weaknesses in previous models we also tackle several issues
not fully addressed in previous spectral frameworks; in particular, the calculation
of the Green’s function in the region of the central singularity, efficient calculation
of the Green’s function on a regular grid, and inclusion of the non-zero contribu-
tion from the outer surface of the integration volume (for recent work in the area
of Green’s functions applied to material property relations see [Yang and Tewary
(2008)]).

We subsequently demonstrate application of the framework to structures obtained
from a pair of isotropic materials, and materials made of polycrystalline compo-
nents.

2 The Localization Tensor

In keeping with standard notation we will write the stress, strain and displacement
within the material as σσσ , εεε and u, respectively; the local stiffness tensor is C(x),
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and the reference stiffness tensor for the perturbation analysis is CR.

We employ an additive decomposition of the strain field in the sample into an aver-
age quantity and a perturbation from the average as:

εεε (x) = ε̄εε +εεε
′ (x) , ε̄εε

′ = 0 (1)

The local perturbation in the strain field can be expressed in terms of a fourth-rank
polarization tensor, a, as:

εεε
′ (x) = a(x)ε̄εε, ā = 0 (2)

Then using εi j = (ui, j +u j,i)/2 and σσσ(x) = C(x)εεε(x), the conservation principle ∇ ·
σσσ = 0 leads to a differential equation that we may solve using the Green’s function
method to obtain:
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V
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(
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,j
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where C′ (x) = C(x)−CR and G is the Green’s function tensor. The value for ‘a’
can be repeatedly substituted into the right hand side of the equation to obtain a
series that may be written in condensed form as

a =−ΓΓΓC′+ΓΓΓC′ΓΓΓC′− . . . (4)

where ΓΓΓ is the integral operator containing the Green’s function. The reason for the
alternating sign will become apparent below. For transparency in the development
of the theory we will only consider the first term on the right hand side of this
equation; the other terms may be handled in a similar manner. Note that the Green’s
function has a singularity (Gki,l (x−x′)→ ∞ as x− x′ → 0), and therefore the
integral in Eq. (3) has a principal value in the neighborhood of x− x′ = 0. A
common approach to this issue is to evaluate the integral in Eq. (3) using integration
by parts over a volume Ṽ that lies between two spherical surfaces centered at x−
x′ = 0 with radii approaching 0 and ∞, respectively. Considering only the first term
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in the series
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Of the two spherical surface integrals in the first term of Eq. (5) the second integral
corresponding to x−x′→ 0 is the principal value term. Clearly when x≈ x′ on the
surface of this infinitesimal sphere, C′ijmn (x′) = C′ijmn (x), which is a constant, and
can be taken outside of the integral. Combine the integrands into tensors:
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The term I∞
kli j is typically assumed to equal zero, however this assumption is gen-

erally not valid. This is easy to see if we take an isotropic reference tensor and the
resultant analytical values of Gki,l. Suppose that the isotropic stiffness tensor has
Lamé constants λ ,µ and that x−x′ = r.

Gki,l (r) =
1

8πµ(λ +2µ)

{
(λ + µ)(δklri +δilrk)− (λ +3µ)δkirl

|r|3
−

3(λ + µ)rirkrl

|r|5

}
(7)

Since this is proportional to 1/|r|2 the integral over the surface of a sphere remains
approximately constant. In fact if the stiffness tensor is constant throughout the
material (and hence can be taken outside the integral), then clearly the integral over
the outer sphere is simply the negative of the integral over the inner sphere. If we
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make the common assumption that the material is random at infinity (completely
uncorrelated) then the stiffness tensor on a patch of the outer sphere is approxi-
mately C′ - the average value of the perturbation stiffness. Then the integral on the
outer sphere may be approximated by

I∞ ≈ EC′ (8)

Hence we may rewrite Eq. (5) as:

a(x) = EC′−EC′ (x)−
∫
Ṽ

ΦΦΦ
(
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)
C′
(
x′
)

dx′ (9)

Clearly if CR = C̄ then C′ = 0 and E∞ as calculated from Eq. (8) tends to zero,
in which case we arrive at the more common first-order form of the localization
equation

aklmn (x) =−EklijC′ijmn (x)−
∫
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)

dx′ (10)

In general we will not restrict the reference tensor to equal the average stiffness
tensor, hence we will use Eq. (9) rather than Eq. (10).

For completeness we repeat the commonly known definitions of E and ΦΦΦ for an
isotropic reference tensor:

Eijkl =
1
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where I is the fourth order symmetrized tensor identity:
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where n=r/|r|.



30 Copyright © 2009 Tech Science Press CMC, vol.9, no.1, pp.25-39, 2009

3 Spectral Form

Consider the formula for localization tensor as given in Eq. (9). Equations of
this type have benefited from rewriting in spectral form in various previous stud-
ies [Binci, Fullwood and Kalidindi (2008), Kalidindi, Landi and Fullwood (2008)].
One benefit of a spectral formulation is the ability to split material data from struc-
ture data for efficient design studies. Another immediate benefit may be seen in the
calculation of the final term of the equation. The convolution can be efficiently cal-
culated using fast Fourier transforms if the data is in discrete form. Let us combine
the E and ΦΦΦ terms into a single term, ΓΓΓ as in Eq. (5). Discretize the values of this
integrand on a regular grid as follows (normalized to remove the requirement for
an extra normalization term on the integrals):

ΓΓΓ(r)≈ 1
δ 3 ΓΓΓt χt (r) , ΓΓΓt =

∫
R(Ω)

ΓΓΓ(r)χt (r)dr (14)

where χt (r) is the indicator function for the spatial cell around discrete point rt ,
taking the value 1 for vectors lying in the cell, and 0 for vectors lying outside of
it; and δ 3 is the volume of one of these uniformly sized cells. If values of x are
defined on a discrete grid (obviously of the same spacing as r) and enumerated by
s, then a discrete form of the localization tensor can be defined:

as =−∑
t

ΓΓΓtC′s−t (15)

In the evaluation of ΓΓΓt using Eq. (14) special care must be taken in the vicinity of
the origin due to the singularity. The main issue here is calculation of the integral of
Φ in the cell about the origin r=0. Various previous studies have either ignored the
integral of Φ in the central cell, assuming that it was negligible, or have evaluated it
using a regular grid of integration points. Accurate calculations using Monte-Carlo
integration have established that the value of the integral in the central cell accounts
for approximately 15% of the total Φ integral; and this is almost independent of the
size of the cell. To qualify this last statement, we mean that the value of the integral
is independent of the size of the central cell if there is only a single material state
within the cell. We illustrate this issue in Fig. 1. Suppose that we numerically
integrate at rectangular grid points in a cell about the origin (shown as the open
circle in the figures to emphasize that we must avoid integrating at the singularity).
Since the integral of Φ between two cubes is zero, refining the grid, or including
points closer to the origin (as in Fig. 1b) will not improve the accuracy. We need to
integrate the white area outside the central circle to determine the main contribution
from Φ in this cell. For the results in this paper this was done to high accuracy using
Monte-Caro integration for each of the reference tensors used in the calculations
[Caflisch (1998)].
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It is worth noting that an equivalent approach would be to calculate E on the surface
of a cube about the origin rather than on a sphere. In this case the calculation for
Φ in the inner cell would be zero (since it would be over a volume between two
cubes), and the correction from previous work would be carried by the new value
of E. This method was also tested as an alternative to that mentioned above. Since
there is no known analytical solution for the calculation of E on the surface of
a cube a Monte-Carlo integration was again employed, thus giving no significant
advantage to the alternative.

a.  b.  
 

Figure 1: Schematic of an integration region (grey) about the origin (open circle)
that is not improved by taking extra points on the grid about the origin (b.)

For calculation of values of ΓΓΓt at values of t other than zero, clearly the value of
Φ decreases rapidly with distance from the origin, hence one may use a decreasing
grid refinement and maintain the same accuracy. The most efficient grid spacing
for the numerical integration in these cells was found to be for an odd number of
points in each direction, centered about the origin of the cell, and with spacings i/p
from the origin (in a unit cell; i indicates integer values, and p are the number of
points in each direction).

Adjustments of the integral to include the region between the rectangular region
over which we wish to take the FFTs, and the ‘infinite’ sphere over which the
Green’s function is calculated was demonstrated in a previous paper [Kalidindi,
Binci, Fullwood and Adams (2006)]. As an example of the contribution made
to the overall integral from the different regions we graph the magnitudes for an
example case of a material constructed of two isotropic media in Fig. 2. While the
principal value term (the integral on the inner spherical surface) is dominant, all
terms are significant, and cannot be ignored.

We wish to separate the material data from the structure data in our formulation
for the localization tensor. Hence we introduce a convenient function for holding
the structure information [Adams, Gao and Kalidindi (2005)]; the microstructure
function m(x,h) is a distribution function on the local state space for each point in
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Figure 2: Absolute values of contributions from different terms of the Green’s func-
tion integrals (from the inside to the outside of the integration region) shown as
bars, for an example material of two isotropic media. A bar representing the total
integral is also shown. The black region indicates the volume that is integrated
directly using a rectangular (FFT) grid.

the RVE:∫ b

a
m(x,h)dh = P(a≤ h(x)≤ b) (16)

This is sometimes written in the alternative manner involving the infinitesimal
neighborhood, V , of the point x:

m(x,h)dh =
dVh

V
= f (h) |xdh (17)

where dVh represents the volume of material in volume element V that is in a state
that lies in a neighborhood dh of h. Such a description allows for a continuous
state space (such as orientation), but also permits multiple states to exist at a single
‘point’ of the sample.

The motivation for this definition stems from the fact that material information is
generally derived from data gathered in a neighborhood rather than a single point.
This is obvious for a local state such as orientation, which is in fact defined in terms
of relative positions of atoms in a neighborhood; but it is also true that instruments
gather information from an area or volume determined by their resolution rather
than from a single point. We wish to discretize the function m(x,h) in both the real
space, ℜn , and the local state space, H. This is consistent with many characteriza-
tion techniques that read data from a discrete grid of the material sample. As before,
the real space is discretized into a regular grid, with vertices enumerated by s=1:S,
and the local state space is enumerated by n=1:N. We will write mn

s = m(xs,hn).
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Then we may write C′s−t = ∑
n

C′nmn
s−t . And

as = ∑
t

ΓΓΓt ∑
n

C′nmn
s−t (18)

Taking the Fourier transforms of both sides and using Plancherel’s theorem and the
convolution theorem

Ak =
1
N ∑

j=1:N
Γ̃k
(
C̃ j)∗M j

k (19)

where C̃ j is the FFT of C′n, Γ̃k is the FFT of ΓΓΓt , and M j
k = ℑs (ℑn (mn

s )); ℑn indicates
FFT with respect to variable n, and the asterisk indicates complex conjugation. We
may combine the first two terms on the right side of the equation to give

Ak =
1
N ∑

j=1:N
Z j

kM j
k (20)

Thus we have effectively split the structural information of the material contained
in the microstructure function from the property information contained in the local
stiffness tensor. This is a very efficient way to calculate the localization tensor for
each point in the material. Not only does it dramatically cut down the number of
operations involved in the original convolution (in the spatial dimensions), but it
also enables compression of the data. In Fourier space the most significant terms
in the series are generally gathered at the start of the series; one may often ignore
higher order terms with minimal loss in accuracy. This is the basis for compression
techniques such as those used in the imaging and sound industries. Hence one
may ignore the majority of the terms in C̃ j with little influence on the accuracy
(see the examples below). This approach dramatically reduces the summation in
Eq. (20), leading to even higher efficiency. Since these terms are only calculated
once for a given reference tensor, the significant terms may be stored in a concise
database for economical material analysis and design. For localization calculations
the higher order terms of Γ̃k may not necessarily be ignored, as such ‘smoothing’
would significantly reduce the accuracy at individual points. Hence there is likely
to be little compression in the spatial dimensions in Fourier space. However, for
effective property calculations (which are not considered in this paper) it may be
possible to gain compression in the spatial dimensions without significant loss of
accuracy.

One consequence of the use of FFTs to calculate the convolution in Eq. (18) is
the introduction of periodic boundary conditions. While different boundary condi-
tions may be utilized by padding in the various dimensions [Fullwood, Kalidindi,
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Niezgoda, Fast and Hampson (2008)], periodic boundaries were assumed for this
paper. Since the integral is centered at the origin (about x), the vectors represented
by t in Eq. (18) have a maximum length in each dimension of half the size of the
sample, in order to represent a cube that is centered at the origin, and of the same
side dimensions as the sample. Care must be taken in setting up the relevant tensors
to reflect this. Note also that the calculations are expedited by writing the stiffness
tensors in 9x9 matrix form.

4 Applications: Local Strains and Strain Distributions

In order to test the validity of the formulation given above various material struc-
tures were evaluated using finite element analysis to determine the local strains
based upon an applied global strain. The results were compared with calculations
using the method outlined above. A hypothetical material was constructed of two
isotropic phases of varying contrast in their stiffness coefficients. For these tests
the reference tensor was assumed to be given by the mean of that for the two con-
stituents, independent of the overall volume fractions of these constituents.

Example structures are shown in Fig. 3 for 75% of the stiff phase. The structures
are randomly dispersed single cells, unidirectional fibers and laminates. The Lamé
constants for the two materials are µ = 35,λ = 75 and µ = 55,λ = 100 respec-
tively; a global strain of 1% was applied in the 3-direction. The average relative
error between the FEM results and the analytical framework is 4.2% (for recent
work on homogenization using FEM see [Xu, Fan, Xie and Li (2008)]). A plot of
strain vs cell number for the analytical (dotted) and FE (solid) results is shown in
Fig. 4. The analytical results correlate well with the FEM calculations.

 

Figure 3: Schematic of 2-phase cube with darker areas representing stiffer phase
(75% volume fraction) for a. random, b. fiber and c. laminate structures.

In this example the reference tensor was chosen to be the mean of the two isotropic
constituents, and not the average stiffness tensor. This choice highlights the im-
portance of the first term on the right hand side of Eq. (10). Without this term
the average strain as calculated by the spectral method was 4% different from the
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Figure 4: Typical graph of strain vs cell number as calculated by the spectral
method (dotted) vs finite element (solid). A macroscopic strain of 1% is applied to
the cube of Fig. 3a in the z-direction.

applied (macro) strain; with this term the difference was less than 0.2%. The differ-
ences would be more apparent with phases of higher contrast. The ability to choose
a reference tensor that is not the mean of the constituent tensors is critical to effi-
cient material design. If the calculations use the mean tensor, then the Green’s
function terms in the integrals must be re-evaluated for each choice of material
structure (since the mean would change). A better choice is to choose a reference
tensor that lies between the stiffness tensors of the constituent phases [Kalidindi,
Binci, Fullwood and Adams (2006)]. Then only the values of M j

k change in Eq.
(20), leading to rapid optimization / analysis of material design.

Of significance in many failure calculations is the probability of local high stresses
or strains due to the geometrical interrelations of the material constituents. This
information is captured in the stress or strain distribution for the material. Figure 5
shows the strain distribution as calculated by FEM and using the spectral method
for a variety of structures. The distributions for the strains in the two material
components are given. The spectral method reasonably captures the shapes of the
distributions. For each structure the average error in calculated strain is less than
5%.

In order to test the potential compression of terms in the material database from
using spectral form, local strain in a copper polycrystal was considered. The lat-
tice orientation was assumed to be governed by a single axis of rotation (the e1
axis), with the local state being determined by a rotation, θ , about this axis; this
simplified description enabled the study to be carried out over a single dimension,
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Figure 5: Strain distributions for the stiff (square markers) and soft (circle markers)
phases of various structures as calculated by the new spectral method (dashed) vs
finite element (solid). A 1% macroscopic strain is applied to the cubes in the z-
direction (perpendicular to the laminates).
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Figure 6: Strain as calculated using the full material data in Fourier space (black
line) and using only 3% of the data (circles). The error is less than 1%.

given by θ . A method for incorporating all 3 Euler angles of lattice orientation
into the spectral framework will be discussed in future work. The calculation was
performed with 97% of the C̃ j terms in Eq. (19) being ignored. The result was
a negligible difference in the calculated strain (Fig. 6). As noted in the previous
section, the compression resulting from the FFTs is in the orientation dimension,
and not in the spatial dimension for these localization relations.

5 Conclusions

A spectral framework based upon discrete Fourier transforms has been developed
for localization relations, providing an efficient framework for analysis and design
of materials. The framework has been validated against finite element calculations,
and results in good accuracy for materials with low contrast in properties between
the phases. The contrast between the stiffness tensors of phases used in the ex-
amples of this paper are similar to the contrast found in a single phase polycrystal
metal or ceramic. Higher order terms of the series expansion could be included
into the framework to improve accuracy for higher contrast examples. These might
include, for example, fiber reinforced composites.

Several issues regarding the integration of the Green’s function have been addressed
during the development of the method, resulting in significant improvements in
accuracy when a rectangular grid is used as the basis for the integration.
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