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A Chain Approach of Boundary Element
Row-Subdomains for Simulating the Failure Processes in

Heterogeneous Brittle Materials
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Abstract: To improve the effectiveness of the lattice model for simulating the
failure processes of heterogeneous brittle materials, each lattice element is refined
as a subdomain with homogenous material, and is modeled by the boundary el-
ement method in this paper. For simplicity, each subdomain is modeled with
constant boundary elements. To enhance the efficiency, a row of sub-domains is
formed, and then a chain structure of such row-subdomain is constructed. The row-
equation systems are solved one by one, and then back substituted, to obtain the
final solution. Such a chain subdomain approach of the boundary element method
not only reduces the operations, but also the memory requirements. By “failure” of
the heterogeneous brittle material is meant to be the debonding of the interface of
subdomains, and each homogeneous subdomain remains to be linear elastic. For
the simulation of the failure process, a quasi-static approach is adopted. The cri-
terion of interface strength is used to determine the element wherein the interface
debonding will occur, and then the interface continuity condition is replaced by
the interface debonding condition for the next computation. The simulation of the
failure process is controlled by the sequential debonding of the boundary elements.
Some results are given to show the applicability of the presented BEM scheme, and
the complexity of the failure process of heterogeneous material.

1 Introduction

Based on the advances in computational mechanics, the numerical investigations of
heterogeneous materials, including the computation of effective material properties
and the simulation of failure process, attracted much attention of researchers and
engineers in recent years.

The composite materials, as one type of heterogeneous materials, have been inves-
tigated by many researchers in computational mechanics. Most authors adopted the
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finite element method to simulate the composite materials, for example, Dong and
Schmauder (1995), Wulf, Steinkopff and Fischmeister (1996), Ghosh and Moorthy
(1998) and Bohm, Han and Eckschlager (2004). Xu, Fan et al (2008) performed
FE simulation for bi-continuous heterogeneous solids via a random distribution of
materials, to predict the effective elastic properties. In the recent 10 years, some
authors adopted the fast multipole boundary element method and have shown some
advantageous features in this field, for example, Liu and Nishimura (2005), Wang
and Yao (2005) analyzed the 3D fiber- and particle-reinforced composites using
FM-BEM, Wang, Yao and Lei analyzed the 2D solids with numerous microcracks
using the fast multipole DBEM, and Wang and Yao (2008) simulated the strength
of carbon nanotube reinforced composites using rigid-fiber-based BEM.

The rocklike materials and concrete belong to another kind of heterogeneous ma-
terial. Schlangen and van Mier (1992) presented a simple lattice model for numer-
ically simulating the fracture of concrete materials and structures. Such a simple
lattice model is adopted and developed by many authors for simulating the rocklike
materials as well. Raghuprasad, Bhat and Bhattacharya (1998) applied the lattice
model to simulate the fracture in a quasi-brittle material under direct tension. Tang
and Kaiser (1998) presented a numerical approach for the simulation of damage
initiation and propagation causing seismic energy release during unstable failure of
brittle rock. Chen, Yao and Zheng (2002, 2003) presented 3D numerical simula-
tion of fracture processes in heterogeneous brittle materials using a simple lattice
model. Gao, Zheng and Yao (2006) generalized the lattice element to higher or-
der elements considering the influence of stress concentration. Tang, Tham et al
(2007) presented some numerical results of the influence of heterogeneity on the
strength characterization of rock under uniaxial tension. Liu, Kou, Lindqvist and
Tang (2007) presented a series of numerical tests including both rock mechanics,
and conducted fracture mechanics tests. Leite, Slowik and Apel (2007) described
the computational model of concrete’s mesoscopic structure of the simulation of
fracture processes.

In simple lattice models, the mechanical property of each lattice is regarded as ho-
mogeneous, but the distribution of the properties, including Young’s modulus and
tensile strength of lattices is random, for example in Weibull or normal distribution.
As the deformation of a lattice element reaches the value defined by the failure cri-
terion, as for example that the average principal strain reaches the critical value, the
failure of the full lattice is assumed occur and the Young’s modulus will be replaced
by a small value of ‘air modulus’.

On the other hand, the boundary element method has also been developed to deal
with the simulation of rocklike heterogeneous materials. Chen, Lin, Yao and Zheng
(2003) presented a BEM subdomain approach for the numerical simulation of fail-
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ure process in heterogeneous materials. Sfantos and Aliabadi (2007) proposed a
multi- scale boundary element modelling for material degradation and fracture of
heterogeneous materials, and the microstructural variability of the macro-continuum
is considered to investigate the possible applications to heterogeneous materials.

In an earlier investigation of Chen, Lin et al (2003), each lattice element is replaced
by a subdomain modeled by the boundary element method, where linear boundary
elements are applied, but the failure criterion adopted is still similar to that adopted
in a simple lattice model, namely, as the deformation of a BE subdomain reaches
the critical value, the whole subdomain is assumed to be damaged, and the Young’s
modulus is replaced by ‘air modulus’.

In this paper, the failure of the heterogeneous brittle material is assumed to be
the debonding of the boundary element on the interface of subdomains, and each
homogeneous subdomain remains to be linear elastic. The failure criterion is that
the interface element will debond, as soon as the average normal traction (or shear
stress) on a boundary element reaches the tensile (or shear) strength of the interface
or that of the material on the weaker side of the interface. Corresponding to such
a failure criterion, the “constant” boundary element is adopted in this paper, rather
than linear or higher order elements. In this way, the difficulties caused by the
corner conditions of the subdomains can be avoided. To enhance the efficiency,
a similar way as presented in Chen, Lin et al (2003) is adopted, a row of sub-
domains is formed with a row-subdomain at first, and then a chain structure of such
row-subdomain is constructed. The row-subdomain equation systems are solved
row by row, until the last row, and then back substituted, in order to obtain the
final solution. Such a chain approach of row-BE-subdomains not only reduces the
operations, but also the memory requirements.

In the next section, the chain approach of BE row-subdomains is formulated, then
the algorithm for simulating the failure process of heterogeneous materials is pre-
sented, including the failure criterion, modification of the row-BE-subdomain equa-
tion systems, and a sequential debonding element controlled simulation of the fail-
ure process. After that, some numerical examples are given to show the appli-
cability of the presented approach, and the complexity of the failure process of
heterogeneous material.

2 Chain approach of BE row-subdomains

The heterogeneous material is modeled by BE subdomains with nr rows and nc

columns, each subdomain has the same geometry, same element division and Pois-
son’s ratio, but the Young’s modulus could be different, as shown in Fig. 1. Each
ingredient of the heterogeneous material could be divided into several subdomains,



4 Copyright © 2009 Tech Science Press CMC, vol.9, no.1, pp.1-24, 2009

or modeled as one subdomain, but one subdomain can not include several ingredi-
ents.

Figure 1: Model of BE sub-domains

The BE equation system of the j-th subdomain in i-th row with Young’s modulus
Ei, j can be formulated as

Ei, j

Ē


H11 H12 H13 H14
H21 H22 H23 H24
H31 H32 H33 H34
H41 H42 H43 H44




u−i, j
u+

i, j
uL

i, j
uR

i, j

=


G11 G12 G13 G14
G21 G22 G23 G24
G31 G32 G33 G34
G41 G42 G43 G44




t−i, j
t+i, j
tL
i, j

tR
i, j

 (1)

where the superscripts −, +, L and R stand for the upper, lower, left and right side
of a row subdomain, the subscript i, j denotes the j-th subdomain in i-th row, all
sub-arrays of displacements and tractions consist of the normal components and
tangential components of all constant boundary elements. The matrices H and G
are obtained for the subdomain with certain prescribed Young’s modulus Ē.

For the first row of BE subdomains, using the continuous condition of the subdo-
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mains, the BE equation system can be integrated as

A1
11 A1

12 A1
13 A1

14 A1
15 A1

16
A1

21 A1
22 A1

23 A1
24 A1

25 A1
26

A1
31 A1

32 A1
33 A1

34 A1
35 A1

36
A1

41 A1
42 A1

43 A1
44 A1

45 A1
46

A1
51 A1

52 A1
53 A1

54 A1
55 A1

56
A1

61 A1
62 A1

63 A1
64 A1

65 A1
66





u−1
uL

1,1
uI

1
tI
1

uR
1,nC

t+1


=



B1
11 B1

12 B1
13 B1

14
B1

21 B1
22 B1

23 B1
24

B1
31 B1

32 B1
33 B1

34
B1

41 B1
42 B1

43 B1
44

B1
51 B1

52 B1
53 B1

54
B1

61 B1
62 B1

63 B1
64




t̄−1
t̄L
1,1

t̄R
1,nC

u+
1


(2)

where superscripts −, +, L and R stand for the upper, lower, left and right side
of the row-subdomain, uI

1, tI
1 stand for the interface displacements and tractions of

the BE subdomains in this row-subdomain, the supper bar of tractions in right side
denotes the given value, actually t̄L

1,1 = t̄R
1,nC

= 0. All sub-matrices of A and B can
be integrated by the sub-matrices of matrices H and G.

For the next row-subdomains, the BE equation system can be written as

Ai
11 Ai

12 Ai
13 Ai

14 Ai
15 Ai

16
Ai

21 Ai
22 Ai

23 Ai
24 Ai

25 Ai
26

Ai
31 Ai

32 Ai
33 Ai

34 Ai
35 Ai

36
Ai

41 Ai
42 Ai

43 Ai
44 Ai

45 Ai
46

Ai
51 Ai

52 Ai
53 Ai

54 Ai
55 Ai

56
Ai

61 Ai
62 Ai

63 Ai
64 Ai

65 Ai
66





u−i
uL

i,1
uI

i
tI
i

uR
i,nC

t+i


=



Bi
11 Bi

12 Bi
13 Bi

14
Bi

21 Bi
22 Bi

23 Bi
24

Bi
31 Bi

32 Bi
33 Bi

34
Bi

41 Bi
42 Bi

43 Bi
44

Bi
51 Bi

52 Bi
53 Bi

54
Bi

61 Bi
62 Bi

63 Bi
64




t−i
t̄L
i,1

t̄R
i,nC

u+
i


i = 2,3, ...,nR (3)

However, for the last row-subdomain, the last right-side given variables should be
given as: normal displacements of all bottom elements and tangential displacement
of the last one element are equal to zero, and tangential tractions of all other ele-
ments except the last one are equal to zero.

Solving the equation system (2), the solution can expressed as

u−1
uL

1,1
uI

1
tI
1

uR
1,nC

t+1


=



ũ−1
ũL

1,1
ũI

1
t̃I
1

ũR
1,nC

t̃+1


+



D1
1

D1
2

D1
3

D1
4

D1
5

D1
6


{

u+
1

}
(4)

The first array of right side is the part of solution related to the upper side given
load, and u+

1 is the right side unknown, which is dependent on the solution of the
subsequent row-subdomains.
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Considering the solution of the previous row-subdomains, the equation systems (3)
can be rearranged as

Ãi
11 Ai

12 Ai
13 Ai

14 Ai
15 Ai

16
Ãi

21 Ai
22 Ai

23 Ai
24 Ai

25 Ai
26

Ãi
31 Ai

32 Ai
33 Ai

34 Ai
35 Ai

36
Ãi

41 Ai
42 Ai

43 Ai
44 Ai

45 Ai
46

Ãi
51 Ai

52 Ai
53 Ai

54 Ai
55 Ai

56
Ãi

61 Ai
62 Ai

63 Ai
64 Ai

65 Ai
66





u−i
uL

i,1
uI

i
tI
i

uR
i,nC

t+i


=



Bi
11 Bi

12 Bi
13 Bi

14
Bi

21 Bi
22 Bi

23 Bi
24

Bi
31 Bi

32 Bi
33 Bi

34
Bi

41 Bi
42 Bi

43 Bi
44

Bi
51 Bi

52 Bi
53 Bi

54
Bi

61 Bi
62 Bi

63 Bi
64




t̃+i−1
t̄L
i,1

t̄R
i,nC

u+
i


i = 2,3, ...,nR (5)

where[
Ãi

m1
]
=
[
Ai

m1
]
+
[
Bi

m1
][

Di−1
6

]
m = 1,2, ...,6 i = 2,3, ...,nR (6)

Then the systems can be solved one by one row to get

u−i
uL

i,1
uI

i
tI
i

uR
i,nC

t+i


=



ũ−i
ũL

i,1
ũI

i
t̃I
i

ũR
i,nC

t̃+i


+



Di
1

Di
2

Di
3

Di
4

Di
5

Di
6


{

u+
i

}
(7)

Until the last row, the give boundary conditions on the lower side of this row should
be

u+
n,1

t+t,1
...

u+
n,k

t+t,k
...

u+
n,nc×nn−1

t+t,nc×nn−1
t+n,nc×nn

t+t,nc×nn



=



0
0
...
0
0
...
0
0
0
0



(8)

Namely, for the numerical experiment of uniaxial tension only the normal displace-
ments are constrained as zero, and the tangential tractions on all other elements
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except the last one are given to be zero. The tangential displacement on the last
element is set to be zero for the constraint of rigid body displacement. Solving the
equation system of the last row-subdomain, the final solution for that row except
the tractions on upper side can be obtained. After that, the final solution of each
row can be obtained by back substitution. In this way, not only the efficiency of
solving the full BE equation systems for heterogeneous material can be enhanced,
but also the memory requirement can be reduced.

3 Algorithm for simulating failure process

For simulating the failure process of brittle material, it is assumed that the failure
is caused by interface debonding of the subdomains with different or identical ma-
terial properties. For simplicity, a quasi-static approach is adopted, and the stress
singularity at the crack tip is neglected.

As long as the solution of full BE equation systems is obtained, it is not difficult to
determine the debonding element according to the criterion

kL max

(
t i, j,k,l
n

σ
i, j
t

,
t i, j,k,l
t

σ
i, j
s

)
= 1 (9)

where kL is the load factor to be determined, the superscripts i, j, k, l denote the l-th
element on the k-th side of the j-th subdomain in i-th row, t i, j,k,l

n , t i, j,k,l
t stand for the

normal and tangential traction of each constant boundary element corresponding to
unit load applied, σ

i, j
t and σ

i, j
s stand for the tensile and shear strength of i-row

j-subdomain.

As the debonding at one element occurs, the corresponding interface condition
should be changed from continuous to the separated. If the debonding element
belongs to the interface of subdomains in the same row, the integrated equation sys-
tem of this row-subdomain should be modified. If the debonding element belongs
to the interface of subdomains in two adjacent rows, then the equation systems of
these two row-subdomains should be modified.

For example, if the debonding occurs at the m-th element of upper side of i-th row,
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j-th domain, then Eq. (3) should be modified as



Ai
11 Ai

12 Ai
13 Ai

14 Ai
15 Ai

16
Ai

21 Ai
22 Ai

23 Ai
24 Ai

25 Ai
26

Ai
31 Ai

32 Ai
33 Ai

34 Ai
35 Ai

36
Ai

41 Ai
42 Ai

43 Ai
44 Ai

45 Ai
46

Ai
51 Ai

52 Ai
53 Ai

54 Ai
55 Ai

56
Ai

61 Ai
62 Ai

63 Ai
64 Ai

65 Ai
66





u−i
uL

i,1
uI

i
tI
i

uR
i,nC

t+i


=



Bi
11− 0 Bi

11+ Bi
12 Bi

13 Bi
14

Bi
21− 0 Bi

21+ Bi
22 Bi

23 Bi
24

Bi
31− 0 Bi

31+ Bi
32 Bi

33 Bi
34

Bi
41− 0 Bi

41+ Bi
42 Bi

43 Bi
44

Bi
51− 0 Bi

51+ Bi
52 Bi

53 Bi
54

Bi
61− 0 Bi

61+ Bi
62 Bi

63 Bi
64





t−i−
0

t−i+
t̄L
i,1

t̄R
i,nC

u+
i


i = 2,3, ...,nR (10)

where the elements in matrix B corresponding to the debonding element could be
replaced by zero, because the debonding element is assumed to be traction free. On
the other side of the debonding element, it is at the bottom side of a subregion. The
Eq. (3) should be modified as



Ai
11 Ai

12 Ai
13 Ai

14 Ai
15 Ai

16− −Bi
14∗ Ai

16+
Ai

21 Ai
22 Ai

23 Ai
24 Ai

25 Ai
26− −Bi

24∗ Ai
26+

Ai
31 Ai

32 Ai
33 Ai

34 Ai
35 Ai

36− −Bi
34∗ Ai

36+
Ai

41 Ai
42 Ai

43 Ai
44 Ai

45 Ai
46− −Bi

44∗ Ai
46+

Ai
51 Ai

52 Ai
53 Ai

54 Ai
55 Ai

56− −Bi
54∗ Ai

56+
Ai

61 Ai
62 Ai

63 Ai
64 Ai

65 Ai
66− −Bi

64∗ Ai
66+





u−i
uL

i,1
uI

i
tI
i

uR
i,nC

t+i−
u+

i∗
t+i+


=



Bi
11 Bi

12 Bi
13 Bi

14− 0 Bi
14+

Bi
21 Bi

22 Bi
23 Bi

24− 0 Bi
24+

Bi
31 Bi

32 Bi
33 Bi

34− 0 Bi
34+

Bi
41 Bi

42 Bi
43 Bi

44− 0 Bi
44+

Bi
51 Bi

52 Bi
53 Bi

54− 0 Bi
54+

Bi
61 Bi

62 Bi
63 Bi

64− 0 Bi
64+





t−i
t̄L
i,1

t̄R
i,nC

u+
i−
0

u+
i+


i = 2,3, ...,nR (11)

where the unknown in left vector corresponding to the debonding element is changed
to the displacements of this side, the corresponding elements in the matrix A should
be replaced by those elements originally in B. And the elements corresponding to
the debonding element in matrix B could be replaced by zero.
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Solving the renewed equation systems in above-mentioned way, the next debonding
element can be determined.

If the debonding element is located between the neighboring BE subregions in the
same row, the original unknown interface variables uI

i , tI
i should be replaced by

uI−
i , uI+

i , and the corresponding elements in matrix A should be modified corre-
spondingly.

The failure process is a nonlinear process, but the nonlinearity is caused only by the
modification of the configuration corresponding to debonding. For each configura-
tion, either original perfect one or any configuration with debonding, the equation
system is still linear. Therefore the numerical simulation of the failure process for
such heterogeneous brittle material can be controlled by the sequential debonding
elements, rather than applied loading or displacement. For each configuration the
computation can be carried out in the same way.

A load-deformation plot obtained by the debonding element controlled failure pro-
cess is shown in Fig. 2. In the plot each circle point denotes the tensile load applied
and the corresponding average normal displacement of the upper loading side for
the case of certain element just reached the failure criterion. The line connected
these circle point indicates the sequence of the debonding element one by one. The
connecting lines in this plot do not have any other essential physical meaning.

Figure 2: Debonding element controlled load-deformation plot
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From this plot, it is not difficult to obtain the corresponding load-deformation curve
controlled by applied load or displacement. The applied load controlled load-
deformation curve corresponding to Fig. 2 is shown in Fig. 3, and the displacement
controlled load-deformation curve is shown in Fig. 4.

Figure 3: Applied load controlled load-deformation curve

In Fig. 3, it can be observed that only a part of circle points, namely, the points
1, 2, 3, and 7, are related to the load controlled load-deformation curve,. Actually,
after the element corresponding to point 3 is debonding, under the corresponding
load level, the next elements corresponding to the points 4, 5, 6 will be debonded
immediately, because the debonding load is lower than the current load. As the
applied load controlled load-deformation curve reaches the point 7, the plate will
fully lost the load-carrying ability, and the curve is stop there.

In Fig. 4, similar feature can be observed. The points 4, 5, 8, 10, 11 and 14 are not
related to the displacement controlled load-deformation curve. Actually, after the
element corresponding to the point 3 is debonding, the elements corresponding to
the points 4 and 5 will be debonded immediately.

Certainly, it should be pointed out here, these curves are come from the numerical
simulation, rather than physical experiments. The numerical simulation is based on
the above mentioned basic assumptions, all dynamic factors are neglected.



A Chain Approach of Boundary Element Row-Subdomains 11

Figure 4: Displacement controlled load-deformation curve

4 Numerical examples

4.1 Effective Young’s modulus for test samples of heterogeneous square sheet

Five test sample groups of heterogeneous brittle square sheet with 20×20 ingredi-
ents are computed using the above mentioned BE subdomain approach. The shape
parameterγ of the Weibull distribution of Young’s modulus for each groups are
taken as 2.0, 3.0, 4.0, 5.0 and 10.0 respectively, and the scale parameter α is al-
ways taken as 1.0. The Young’s moduli of the ingredients are created by Matlab
with function weibrnd (1.0, γ , 20, 20). Each group has 10 samples. The random
distribution of the Young’s modulus for some samples is illustrated in Fig. 5. Some
numerical results are listed in Table 1, and the relationship of the average value of
effective Young’s moduli versus the shape parameterγ of the Weibull distribution is
shown in Fig. 6.

From the results listed in Table 1, it can be concluded that for the computation
of the effective Young’s modulus of such heterogeneous materials, each ingredient
modeled as one BE subdomain with one constant element on each side is good
enough, and each ingredient divided into one subdomain with 4 constant element on
each side is more accurate. The variance for larger sample with 40×40 ingredients
is less than smaller one, and the average value of 10 sample with 20×20 ingredients
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(a) γ = 2.0                              (b) γ = 3.0                               (b) γ = 4.0                               (b) γ = 5.0

Figure 5: Random distribution of Young’s modulus for samples with different shape
parameter

is accurate enough.

Figure 6: The relationship of effective Young’s moduli versus the shape parameter
γ

The relationship of effective Young’s moduli versus the shape parameter of Weibull
distribution shows that the heterogeneity of the material reduces the Young’s modu-
lus, and the effective Young’s modulus will approach that of the corresponding ho-
mogeneous material, as the shape parameter of the Weibull distribution increases.
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4.2 Simulation of the failure process for a test sample of square sheet with
10×10 ingredients using different discretization schemes

A small test sample is used to simulate the failure process of heterogeneous brittle
material, which is consisted of 10×10 ingredients with a Weibull distribution of
shape parameter γ = 2.0, created by Matlab with the function of weibrnd (1.0,
2.0, 10, 10). Each ingredient is modeled as single BE subdomain, 2×2 and 4×4
subdomains with one constant element on each side respectively, or as single BE
subdomain with 4 constant elements on each side.

For the simulation, the distribution of tensile strength is assumed to be related with
the distribution of Young’s moduli, namely in the computation the tensile strength
is assumed to be 0.1% of Young’s modulus, and the shear strength is assumed to be
70% of tensile strength. For reference, the distribution of the Young’s modulus is
shown in Fig. 7

Figure 7: Distribution of Young’s modulus

The comparison of the failure process simulated using different discretization schemes,
by the plot of debonding interface elements, is shown in Fig. 8. Because the numer-
ical error of the computation could influence the sequentially cracked interface, the
plots of debonding interface elements obtained for different discretization schemes
are not identical. But the failure is initiated and propagated mostly in the same
weaker ingredients.
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       (a) different subdomain division         (b) different discretization with same element length 

Figure 8: Comparison of the failure process simulated using different discretization
schemes

Fig. 8(b) shows the comparison of the failure process for different discretization
with identical element length, namely, each ingredient divided into 4×4 subdo-
mains with one constant element on each side, and modeled as single subdomain
with 4 constant elements on each side. The stress distribution obtained by the latter
scheme should be more accurate. Considered the higher stress near the crack tip,
the failure of this sample is approximately the initiation and propagation of single
crack. But after debonding of 20 elements some numerical instability happened for
the latter scheme. This problem should be further investigated in future, and in the
following numerical examples the subdomains with one element on each side will
be adopted for simulating the failure process of heterogeneous brittle materials, and
it is numerically stable in the computation of all numerical examples.

The debonding element controlled load-deformation plot for different discretization
schemes are shown in Fig. 9(a). The corresponding tensile load controlled load-
deformation curves are shown in Fig. 9(b). It can be observed that the tensile
strengths obtained by different discretization schemes are different. The highest is
obtained by the scheme of single subdomain with one element per side for each
ingredient, then 2×2, 4×4 subdomain schemes, the lowest value is obtained by
the scheme of single subdomain with 4 element per side. The values of the tensile
strength of this test sample obtained by the above mentioned schemes are 3254,
3165, 2986 and 2413 respectively.

Because finer mesh for BE subdomains can obtain more accurate results for the
stress analysis, therefore the lowest value should be a better approximation of the
tensile strength. The real fracture analysis with boundary element method can ob-



16 Copyright © 2009 Tech Science Press CMC, vol.9, no.1, pp.1-24, 2009

tain further improved results, but the cost would be too high. The presented scheme
with single subdomain per ingredient with one element per side is already better
than simple lattice model for such kind of brittle failure.

   (a) debonding element controlled plot                 (b) tensile load controlled plot 

Figure 9: Load-deformation plot of the test sample

4.3 Failure process of a rectangular sheet with 15×125 ingredients

The test sample in the last numerical example consists of only 10×10 ingredients.
Therefore the characteristics of the brittle failure is quite similar with the homoge-
neous material, it is approximately the initiation and propagation of single crack.
To simulate the characteristics of the brittle failure of heterogeneous material, larger
test sample is required.

As a test sample, a rectangular sheet with 15×125 ingredients is adopted, the
Weibull distribution of the material properties, namely, Young’s modulus, and the
related tensile strength and shear strength, is created by Matlab with the function
weibrnd (1.0, 1.5, 15, 125). To avoid the debonding on traction loaded side, an
additional row of subregions with homogeneous higher Young’s modulus is added
there.

Figure 10: Weibull distribution of Young’s modulus
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Figure 11: Three stages of the failure process: 40, 80 and 130 elements debonding

The distribution of Young’s modulus is shown in Fig. 10, and the failure process
simulated is shown in Fig. 11 with the plot of debonding elements in three stages:
40 elements debonding, 80 elements debonding and 130 elements debonding.

These plots have shown the characteristics of the failure of heterogeneous material.
The debonding occurs at dispersive location and unlike the initiation and propaga-
tion of single crack for homogeneous material under simple tensile loading. The
computation is stable until 130 elements debonding and a part of test sample loses
the necessary geometrical constraint.

The debonding element controlled load-deformation plot is shown in Fig. 12(a),
where the multi-peaks corresponding to the dispersive interface cracks in heteroge-
neous material can be observed. It is quite different from the plot for homogeneous
sheet with 20×20 subregions under simple tension shown in Fig. 12(b). However,
other characteristics of the failure of heterogeneous materials observed in displace-
ment controlled experiment, such as the softening stage of the load-deformation
curve or residual strength, still can not be found here.

4.4 Tensile strength for test samples of heterogeneous square sheet

To investigate the effect of heterogeneity on the tensile strength, one more test
sample groups of heterogeneous brittle square sheet with 20×20 ingredients than
that presented in example 1 for the computation of effective Young’s modulus,
are simulated using the presented approach. Each ingredient is modeled as single
subdomain with one constant boundary element per edge. The upper side of the
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Figure 12: Debonding element controlled load-deformation plot for test sample and
20×20 homogeneous one

sample is uniformly normal traction loaded.

For the simulation, the same assumption as above mentioned has been adopted.
The distribution of tensile strength is assumed to be related with the distribution of
Young’s modulus, namely in the computation the tensile strength is assumed to be
0.1% of Young’s modulus, and the shear strength is assumed to be 70% of tensile
strength.

The nondimensional tensile strength obtained is listed in Table 2. It can be ob-
served that the tensile strength decreases as the heterogeneity increases, namely
the shape parameter γ of Weibull distribution decreases. Furthermore, in compar-
ison with Table 1, it can be observed that the decrease of tensile strength is much
more remarkable than the decrease of effective Young’s modulus. For example,
in the case of γ = 10.0, the tensile strength is reduced 36.3% in comparison with
corresponding homogeneous material, while the effective Young’s modulus only
reduced 6.1%; for the case of γ = 2.0, the tensile modulus reduced 75.6%, effec-
tive Young’s modulus reduced only 29.6%.

For different samples with identical shape parameter γ of Weibull distribution the
variances of the nondimensional tensile strength is also listed in Table 2. The vari-
ances listed are not too big for the samples with 20×20 ingredients. However
the difference of the corresponding debonding element controlled load-deformation
plot and the plot of debonding interface element are remarkable.

The debonding element controlled load-deformation plots for 10 samples of γ = 1.5
are shown in Fig. 13, and the corresponding plots of debonding interface element
are shown in Fig. 14.

In Fig. 13(e) the remarkable softening stage and residual strength can be observed,
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(a)                           (b)                            (c) 

(d)                           (e) 

   

(f)                           (g)                            (h) 

   

(i)                           (j) 

Figure 13: Debonding element controlled load-deformation plots for different sam-
ples of γ = 1.5
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(a)                           (b)                            (c) 

   

(d)                           (e) 

(f)                           (g)                            (h) 

   

(i)                           (j) 

Figure 14: Plots of debonding interface element for different samples of γ = 1.5
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and the corresponding plot of debonding interface elements has shown dispersive
characteristics. However, the plots of other samples, such as Fig. 13(a, b, g), have
not shown any softening characteristics, and some plots of debonding interface ele-
ments have shown that the failure process is similar to the initiation and propagation
of single crack. These results have shown the complexity of the failure process of
heterogeneous brittle material.

5 Concluding Remarks

A chain approach of BE row-subdomains, for simulating the failure process of
heterogeneous brittle materials, is presented in this paper, wherein each ingredient
is modeled with BE subregion or subregions, and the boundary of each subregion is
divided into constant boundary elements. The constant boundary element adopted
in this approach not only avoids the difficulties caused by the corner conditions in
subdomain approach, but also matches to the failure criterion adopted in this paper.

The failure of the heterogeneous brittle material is modeled with sequential debond-
ing of the interfacial boundary elements, as the boundary traction reaches the failure
criterion. This model is more reasonable than the sequential failure of the whole
BE subregions or of the whole simple lattice element as presented in most prior
literature.

Considering that the nonlinearity of the failure process of heterogeneous brittle
material is caused by the element-debonding-based configuration changes, after
the last element cracks and before the debonding of the next element, the equation
system for a fixed configuration is still linear, a sequential debonding element con-
trolled algorithm for the simulation of failure process is suggested in this paper.
From the debonding element controlled load-deformation plot, it is not difficult
to transform it into a traction controlled load-deformation curve or displacement
controlled load-deformation curve.

Some numerical examples for the computation of effective elastic properties and
the simulation of the failure process of the heterogeneous materials are given to
show the effectiveness and applicability of the presented numerical approach, and
the complexity of the failure process of heterogeneous brittle material.

Further investigations should be focused on the validation of the presented approach
with the experimental results of real heterogeneous materials.
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